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Abstract

The GloVe word embedding model relies on solving a global
optimization problem, which can be reformulated as a max-
imum likelihood estimation problem. In this paper, we pro-
pose to generalize this approach to word embedding by con-
sidering parametrized variants of the GloVe model and in-
corporating priors on these parameters. To demonstrate the
usefulness of this approach, we consider a word embedding
model in which each context word is associated with a cor-
responding variance, intuitively encoding how informative it
is. Using our framework, we can then learn these variances
together with the resulting word vectors in a unified way. We
experimentally show that the resulting word embedding mod-
els outperform GloVe, as well as many popular alternatives.

Introduction
Word embedding models learn low-dimensional vector rep-
resentation of words based on co-occurrence information
obtained from some large text corpus. The aim of such mod-
els is to learn representations which capture word similari-
ties, analogies, and other lexical relationships. Various word
embedding models have already been proposed in the lit-
erature, including approaches inspired by neural language
models, such as Skipgram (SG) and the Continuous Bag-
of-Word (CBOW) model (Mikolov et al. 2013), regression
based models, such as the least squares regression model
GloVe (Pennington, Socher, and Manning 2014) and the or-
dinal regression model from (Jameel and Schockaert 2017)
and different kinds of probabilistic models, such as Gaus-
sian embeddings (Vilnis and McCallum 2014), a Bayesian
version of Skipgram (Barkan 2017) and an approach using
Dirichlet-Multinomial language models (D-GloVe) (Jameel
and Schockaert 2016).

Word embeddings play a crucial role in deep learning ap-
proaches to natural language processing tasks, as they allow
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for a natural way to represent textual input to neural net-
works. Word embeddings have similarly transformed related
fields such as information retrieval (Zamani and Croft 2017),
(Dehghani et al. 2017), (Ensan 2018), knowledge base com-
pletion (Yang, Tang, and Cohen 2016), (Wang et al. 2014),
(Zhong et al. 2015) and recommender systems (Musto et al.
2015), (Zhao et al. 2017).

The approach we follow in this paper is based on GloVe
(Pennington, Socher, and Manning 2014). This model aims
to find two vector representations, denoted by wi and w̃i,
and two bias terms bi and b̃i for each word i such that
wi · w̃j + bi+ b̃j approximates log xij , with xij the number
of times words i and j co-occur1 that co-occurrence counts
are weighted based on how closely together the words i and
j appear. Given GloVe’s formulation as a least squares re-
gression problem, it can be naturally interpreted in terms of
maximum likelihood estimation. Specifically, it is easy to
see that the basic2 GloVe objective is equivalent to maxi-
mizing the following expression:∏

i,j

N (log xij ;wi · w̃j + bi + b̃j , σ
2) (1)

where we writeN (.;µ, σ2) for the Normal distribution with
mean µ and variance σ2. The variance σ2 encodes how
closely we expect wi · w̃j+ bi+ b̃j to approximate log(xij).
In GloVe, this variance is assumed to be fixed for every word
pair (i, j). In such cases, σ2 can be chosen arbitrarily, as the
choice of σ2 does then not affect which word vectors and
bias terms maximize (1). Intuitively, however, it seems de-
sirable to use a variance σ2

j which depends on how infor-
mative the context word j is: if j is a highly informative
context word, it should have a strong influence on the word
vector representation of i and thus we intuitively want the
associated variance σ2

j to be low. On the other hand, if j is a
stop word, we may not want it to influence the word vector
representation of i at all, and thus want σ2

j to be high.
The method we develop in this paper will allow us to learn

a suitable variance σ2
j for each context word j. To this end,

we will put priors on these variances, and maximize the re-
sulting posterior distribution instead of (1), which will allow

1As usual, we will assume throughout the paper
2The full GloVe model also includes a weight f(xij), which

we do not consider here for simplicity.
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us to jointly learn the informativeness of each context word
and the actual word embedding. More generally, by treating
the problem of learning a word embedding as maximum a
posteriori (MAP) estimation, rather than a maximum likeli-
hood estimation problem, a wide range of parametrized vari-
ants of GloVe could be considered.

To the best of our knowledge, the idea of using priors to
learn parametrized word embedding models has not yet been
considered. However, the importance of priors has been ex-
tensively studied in the context of probabilistic topic models
(Wallach, Mimno, and McCallum 2009). In particular, the
widely used Latent Dirichlet Allocation (LDA) (Blei, Ng,
and Jordan 2003) model can be seen as a variant of proba-
bilistic Latent Semantic Analysis (pLSA) (Hofmann 1999)
which includes priors. In this sense, the relationship between
our proposed approach and the GloVe model is somewhat
analogous to the difference between LDA and pLSA.

Related Work
Probabilistic Word Embedding Models. While, to the best
our knowledge, our MAP based generalization of GloVe has
not yet been considered, a number of probabilistic models
for generating word embeddings have already been stud-
ied. One approach, called Gaussian embeddings, was intro-
duced by Vilnis et al. (Vilnis and McCallum 2014) and fur-
ther developed in (Chacón 2016). The main underlying idea
is to represent words using Gaussian distributions, with the
aim of capturing the diversity of word meaning, although
this idea has also been applied in applications such as col-
laborative filtering (Dos Santos, Piwowarski, and Gallinari
2017) and knowledge graph embedding (He et al. 2015). In-
tuitively, the Gaussian representation of a given word w can
be viewed as a soft region in the word embedding space, en-
coding the kinds of contexts in which the word may appear.
One of the main underlying motivations is that such mod-
els should be better suited for modelling hypernymy. Note
that Gaussians (with diagonal covariance matrices) are used
in this approach to compactly represent regions, rather than
for capturing uncertainty. Non-probabilistic representations
for representing words as regions have been considered as
well. For instance, (Jameel and Schockaert 2017) used or-
dinal SVM regression with a quadratic kernel to learn word
regions. These approaches clearly differ from our work, as
we still represent words using vectors, but use a probabilistic
formulation to find these vectors.

Bayesian versions of Skipgram have been studied in
(Barkan 2017) and (Bravzinskas, Havrylov, and Titov 2016),
which respectively rely on standard variational techniques
and on variational autoencoders for performing inference.
The aim of such approaches is to replace point estimates by
distributions of word vectors. While the representation of
words as probability distributions is similar as in Gaussian
embeddings, the motivation is slightly different: in the latter
approach the Gaussian distributions are themselves viewed
as representations of the words, whereas the Bayesian mod-
els assume that words are represented as vectors, but they
model uncertainty about the true vector representations of
the words. Still, experiments in (Bravzinskas, Havrylov, and
Titov 2016) show that such Bayesian models can be used in

a similar way as Gaussian embeddings, with similar levels of
performance. Our work is different in that we are using max-
imum a posteriori estimates, rather than aiming to character-
ize the full posterior distributions, which means that we can
keep our models highly efficient. The motivation of our work
is also different: whereas the aforementioned Bayesian Skip-
gram models aim at characterizing the uncertainty of word
vector representations, our aim is to develop parametrized
generalizations of the GloVe model.

Our model is also related to the work of (Jameel and
Schockaert 2016), which introduced the idea that variance,
in the probabilistic formulation of GloVe, can be related to
the informativeness of context words. However, they esti-
mate this informativeness in a heuristic way from GloVe
embeddings that are initially trained in the standard way. In
contrast, our work focuses on the role of priors for jointly
learning the parameters of word embedding models and the
resulting word vectors, and we use the idea of learning suit-
able variances to illustrate the potential of our setting. An-
other idea proposed in (Jameel and Schockaert 2016) is to
use a Dirichlet-Multinomial language model to smooth co-
occurrence counts and to estimate the randomness of these
counts, to reduce the impact of infrequent words.

Probabilistic Topic Models. Probabilistic topic models
(PTMs) are document representations based on latent vari-
ables, which intuitively represent topics. While conceptually
different from word embeddings, they have served as an in-
spiration for this paper, in particular regarding the impor-
tance of priors in such models.

One of the key reasons for using priors in PTMs has been
to avoid overfitting. This was motivated by the fact that the
pLSA model, which is one of the first PTMs, was found to
be prone to overfitting, even when using the tempered EM
algorithm (Popescul, Pennock, and Lawrence 2001). In their
seminal work, (Blei, Ng, and Jordan 2003) argue that the
introduction of priors in their LDA model helps overcome
this problem of overfitting. Similarly, in this paper, the in-
troduction of priors will allow us to avoid overfitting when
considering parametrized variants of the GloVe model.

The use of priors has also made it possible to consider var-
ious extensions of the LDA model. Some examples include
the use of authorship (Rosen-Zvi et al. 2004), temporal in-
formation (Wang, McCallum, and Wei 2007) or class labels
(Zhu, Ahmed, and Xing 2012), (Zhu et al. 2014). To the best
of our knowledge, similar extensions to word embeddings
have not yet been studied, although it is worth mentioning
that several hybrid models have been proposed that combine
topic and word embedding models (Das, Zaheer, and Dyer
2015), (Li et al. 2016), (Shi et al. 2017).

Model Description
In this section we describe our word embedding model,
which is based on Maximum A Posteriori (MAP) estima-
tion. From a conceptual point of view, one important differ-
ence with GloVe is that we associate a variance σ2

j with each
word j, intuitively encoding how strongly the number of co-
occurrences xij of words i and j should influence the word
vector representation of i. These variances σ2

j are essentially
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estimated from the data, i.e. from the co-occurrence statis-
tics xij that are derived from some text corpus. However,
the model will also incorporate a prior over these variances,
which intuitively allows us to prevent overfitting.

Let us write τi for the tuple (wi, w̃i, bi, b̃i), D (the co-
occurrence statistics from) for the given document collection
and V for the vocabulary. Our word embedding model has
the following general form:

P (m, s, t, ψ|D) ∝ P (D|m, s)P (m, s|t, ψ)P (t)P (ψ)

where the vector m = (µ1, ..., µ|V |2) associates a mean µij
with each word pair (i, j), s = (σ2

1 , ..., σ
2
|V |) associates a

variance σ2
i with each word i, and t = (τ1, ..., τ|V |) contains

the usual word embedding parameters. The role of ψ will be
explained below. For simplicity, we will assume a uniform
prior on t and ψ, and thus not consider the probabilities P (t)
and P (ψ) in the remainder. The probability P (D|m, s) is
evaluated similarly to the maximum likelihood formulation
of the GloVe model (1). In particular, we assume that the
model defines a Normal distribution for each pair of words
(i, j), which acts as a prediction for log xij :

P (D|m, s) =
∏
i,j

xij 6=0

N (log xij ;µij , σ
2
j ) (2)

where the product ranges over all pairs (i, j) for which
xij > 0. Note that differently from the GloVe model, in
our case the mean µij is not directly determined from the
word embedding parameters. Instead, we consider a proba-
bility distribution over possible values of µij , which will be
determined by the parameters of the word embedding model
(see below). We refer to the model corresponding to (2) as
WeMAP (for “Word Embedding as Maximum A Posteriori
estimation”).

We will also consider two variants to (2). First, the
GloVe model uses a weighting function f to reduce the
impact of rare words. It is defined as f(xij) = (

xij

xmax
)α

if xij ≤ xmax and f(xij) = 1 otherwise, where usually
α = 0.75 and xmax = 100 are chosen. This weighting func-
tion can be taken into account in the probabilistic formula-
tion (WeMAP1) as follows:

P (D|m, s) =
∏
i,j

xij 6=0

N (log xij ;µij , σ
2
j )
f(xij) (3)

For the second variant (WeMAP2), log xij is replaced by the
Pointwise Mutual Information (PMI) between occurrences
of i and j. Let θ > 0 be the smoothing parameter. To esti-
mate this PMI, we use Bayesian smoothing as follows:

pmi(i, j) = log

(
pij
pi · pj

)
pij =

xij + θ

x∗∗ + |V |2θ
pi =

xi∗ + θ

x∗∗ + |V |θ
xi∗ = x∗i =

∑
j∈V

xij x∗∗ =
∑
i,j∈V

xij

This leads to the following variant of (2):

P (D|m, s) =
∏
i,j

N (pmi(i, j);µij , σ2
j ) (4)

One advantage of using this smoothed version of PMI is
that pmi(i, j) is also defined if xij = 0, which allows us to
consider negative examples. In particular, the product in (4)
could, in principle, range over any word pair (i, j), regard-
less of whether xij = 0. In practice, the resulting quadratic
time complexity would be prohibitive, hence we limit the
number of pairs for which xij = 0 to a small sample, sim-
ilar to how negative samples are used in e.g. the Skipgram
model (Mikolov et al. 2013). In our experiments with this
variant, for each j, we set the number Nj of negative exam-
ples (i.e. the number of randomly sampled words i for which
xij = 0) as Nj = 2 · |{i |xij 6= 0}|.

The probability P (m, s|t, ψ) acts as a prior on the means
in m and variances in s. It is defined using the Normal In-
verse Gamma (NIG) distribution, which is the usual conju-
gate prior for the normal distribution (Murphy 2007). This
is a probability distribution over pairs (µ, σ2), which is de-
fined as the product of a Normal distribution and an In-
verse Gamma (IG) distribution. In particular, we evaluate
P (m, s|t, ψ) as follows3:

P (m, s|t, ψ) =
∏
i,j

xij 6=0

NIG(µij , σ
2
j ;µ

0
ij , λ, α, β) (5)

The NIG distributions in (5) have four parameters. The pa-
rameter µ0

ij defines our prior belief about the mean. This
key parameter is where the parameters of the actual word
embedding come into play:

µ0
ij = wi · w̃j + bi + b̃j

The parameters α and β are respectively the shape and scale
parameters of the Inverse Gamma distribution, and λ is a
precision parameter which controls how much µij can de-
viate from our prior belief µ0

ij . Rather than treating these
parameters as encoding our prior beliefs, as in typical prob-
abilistic models, we will assume that these parameters α,
β and λ are encoded in the vector ψ = (α, β, λ). In par-
ticular, in our MAP formulation, these parameters will then
be chosen such that they maximize the posterior probability
P (m, s, t, ψ|D).

Putting everything together, we learn a word embedding
model by maximizing the following:∏

i,j
xij 6=0

N (log xij ;µij , σ
2
j )NIG(µij , σ

2
j ;µ

0
ij , λ, α, β)

Because the NIG distribution is a conjugate prior of the Nor-
mal distribution, this expression simplifies to a product of
NIG distributions, which will make the computations easier.

3For the ease of presentation, we will assume that variant (2) or
(3) of the likelihood function is used; for variant (4), P (m, s|t, θ)
is defined in the same way, except that the range of the product then
also includes the negative examples.
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Note that we do not need to perform any probabilistic in-
ference, as we end up with an optimization problem, which
we can simply solve using SGD. Compared to Bayesian in-
ference methods, this MAP approach has the advantage of
being computationally much easier. Interestingly, it was re-
cently found in (Mandt, Hoffman, and Blei 2017) that there
are also relationships between approximate Bayesian infer-
ence and gradient methods.

Experiments
In this section, we present a series of experiments in which
we compare our model with popular and recent state-of-
the-art word embedding and topic models, all of which can
be classified as dimension reduction methods. Topic models
such as LDA are an interesting baseline to additionally con-
sider in our experiments given the important role they have
played in our motivation. Apart from some common intrin-
sic evaluation tasks for word embeddings, we also consider
three extrinsic evaluation tasks: text classification, document
retrieval and named entity recognition (NER).

Methodology
Corpora: We have considered the May 2018 dump of the
English Wikipedia. We pre-processed the dump using a pub-
licly available script4, which yielded 4.3 billion tokens. Af-
ter removing tokens that appear fewer than 500 times in the
collection, we ended up with a vocabulary of 117835 distinct
tokens. We have lower-cased and removed punctuations. We
have considered a symmetric context window size of 10
words, which is a common choice that has been shown to
give good results (Pennington, Socher, and Manning 2014).

Intrinsic evaluation tasks: We have considered three stan-
dard evaluation tasks for word embedding models. First, we
considered three analogy datasets: the Google Word Anal-
ogy dataset5, the Microsoft Research Syntactic Analogies
Dataset (MSR)6, and the BATS 3.0 dataset7. Second, we
considered 14 word similarity datasets8, and finally two out-
lier detection datasets9.

We formatted the BATS 3.0 dataset to be similar to
the Google and MSR word analogy datasets, so that we
can use the same evaluation script for all word analogy
experiments10. The BATS 3.0 dataset has 4 superclasses:
“Inflectional Morphology (DI)”, “Derivational Morphol-
ogy (DM)”, “Encyclopedia Semantics (ES)”, and “Lexico-
graphic Semantics (LS)”. Within each superclass there are
10 subclasses consisting of 50 unique word pairs. We com-
pute average accuracy for each of these 10 subclasses and
report results for the superclass.

4https://github.com/facebookresearch/fastText
5https://aclweb.org/aclwiki/Analogy (State of the art)
6https://aclweb.org/aclwiki/Syntactic Analogies (State of the

art)
7http://vsm.blackbird.pw/bats
8https://github.com/mfaruqui/eval-word-vectors
9http://lcl.uniroma1.it/outlier-detection/ and

https://github.com/belph/wiki-sem-500
10We have made this formatted dataset along with codes which

created them available here: https://bit.ly/2J5MtXj

Evaluation results were obtained using publicly avail-
able implementations. For instance, word analogy results
for the Google dataset were obtained using the code
from the GloVe project11, word similarity results were ob-
tained using the VSMLib tool12, and outlier detection re-
sults were also obtained from available code13. We share
our code, pre-processing scripts and datasets online14.
We have indexed the word similarity datasets as follows:
EN-MC-30 (E1), EN-MEN-TR-3k (E2), EN-MTURK-287
(E3), EN-MTURK-771 (E4), EN-RG-65 (E5), EN-RW-
Stanford (E6), EN-SIMLEX-999 (E8), EN-Verb-143 (S8),
EN-WS-353-ALL (E9), EN-WS-353-REL (E10), EN-WS-
353-SIM (E11), EN-YP-130 (E12), SimVerb-3500 (E13),
and RareWords15 (E14). For outlier detection, we use O1
to refer to the dataset by (Camacho-Collados and Navigli
2016) and O2 for the WikiSem-500 dataset (Blair, Merhav,
and Barry 2016).

Extrinsic evaluation tasks: We have used the benchmark
TREC WT2G16 dataset for document retrieval which comes
with associated TREC topics (queries) and document an-
notations. We represent each document and each query as
the average of all the words via their corresponding vec-
tors. Then, given a query, the similarity can be modeled
as cosine similarity between the document vector and the
query vector. For document retrieval tasks, the method of
only using embeddings is a weak ranker (Mitra et al. 2016),
(Nalisnick et al. 2016). Following Mitra et al. (2016), we
use a weighted average of the similarities between embed-
dings and the Okapi BM25 model (Robertson and Walker
1994). We have used Elasticsearch17 to construct the index
and to retrieve the related documents using the default BM25
model (Robertson and Walker 1994).

For document classification, we used the standard Reuters
(Reu52 and Reu8), 20Newsgroups (20NG), TechTC30018

(TTC), and WebKB (WKB) collections, which are avail-
able online19 in preprocessed form. We also considered two
sentence classification datasets from the Text-Top-Model19

project: the Movie Review Polarity dataset (MRP) and the
Subjectivity dataset (SUB). For the named entity recognition
(NER) task, we have used the CoNLL-2003 English bench-
mark dataset20. To generate the document classification re-
sults we have used the Text-Top-Model19 project, which
has implementations for many text classification algorithms,
as well as code for automatic tuning and model selection.
In particular, we used the Convolutional Neural Network
(CNN) model from Keras for document classification, and
the CNN-based model described in (Kim 2014) for sentence

11https://github.com/stanfordnlp/GloVe
12http://vsm.blackbird.pw/tools
13http://lcl.uniroma1.it/outlier-detection/
14https://bit.ly/2J5MtXj
15https://nlp.stanford.edu/ lmthang/morphoNLM/
16http://ir.dcs.gla.ac.uk/wiki/Terrier/WT2G
17https://github.com/elastic/elasticsearch
18http://techtc.cs.technion.ac.il/techtc300/techtc300.html
19https://github.com/nadbordrozd/text-top-model
20https://gist.github.com/JackNhat/

0dc0b57b248df1b970a0d64475b31580

6565



Table 1: Word analogy results in Accuracy
GSem GSyn Avg. MSR DI DM ES LS

SG 71.58 60.50 65.45 51.71 55.45 13.48 08.78 67.11
CBOW 64.81 47.39 55.17 45.33 50.58 10.11 07.02 76.43
Gauss 66.33 51.67 58.22 41.38 45.17 12.87 07.90 90.32
GloVe 78.85 62.81 69.97 53.04 55.21 14.82 10.56 88.13
D-GloVe 82.34 62.84 71.55 54.47 55.82 13.39 10.22 77.45
MM (L) 78.89 62.86 70.02 53.54 53.79 14.48 09.09 76.91
MM (Q) 80.80 63.49 71.22 54.47 52.20 12.07 10.24 74.73
NWE 78.84 62.76 71.55 54.26 55.04 13.93 09.18 68.02
SV 57.11 39.25 47.22 29.16 47.01 12.01 08.43 60.21
SVD 73.19 50.29 60.51 42.47 54.97 12.07 10.32 67.12
NMF 62.09 31.50 45.16 27.11 43.91 11.69 09.05 52.55
LDA 59.28 38.16 47.59 29.21 43.69 11.45 08.82 51.54
HDP 63.72 36.97 48.91 28.67 45.02 11.56 08.66 55.76
WeMAP 83.50 63.01 72.16 55.08 56.02 14.95 10.61 90.32
WeMAP1 83.50 63.02 72.18 55.08 56.02 14.95 10.62 90.32
WeMAP2 83.52 63.08 72.19 55.08 56.03 14.95 10.62 90.32

classification. For NER we have used the model described in
(Chiu and Nichols 2016) with its online implementation21.
This model takes word embeddings as input. We used the
default settings and trained the model for 50 epochs.

Baseline Models: We compare our method with several
popular and strong baseline models: GloVe (Pennington,
Socher, and Manning 2014), Skipgram (SG) (Mikolov et
al. 2013), Continuous Bag-of-Words (CBOW) (Mikolov et
al. 2013), Gaussian word embeddings (Gauss) (Vilnis and
McCallum 2014), D-Glove (Jameel and Schockaert 2016),
maximum-margin embeddings (MM) (Jameel and Schock-
aert 2017), both in their linear (denoted by L) and quadratic
(denoted by Q) versions, SemanticVectors (SV)22 (Widdows
and Ferraro 2008), Singular Value Decomposition (SVD)
(Golub and Reinsch 1970), Non-Negative matrix factoriza-
tion (NMF) (Lee and Seung 2001), LDA topic models (Blei,
Ng, and Jordan 2003), and their non-parametric counter-
part called Hierarchical Dirichlet Processes (HDP) (Teh et
al. 2005), and finally the Bayesian extension to the SG
model proposed in (Barkan 2017) (NWE). Note that SVD
and NMF are applied to a PMI-weighted word-word co-
occurrence matrix. The topic models LDA and HDP repre-
sent topics as probability distributions over words. We then
represent a word as a vector containing the probability of
that word in each of the topics.

Parameter selection: All models have some free parame-
ters that need to be tuned. For datasets that have pre-defined
tuning and testing splits, we used these standard splits. For
the other datasets, we randomly selected 20% as tuning
data, and we report results on the remaining 80%. The num-
ber of dimensions for each model was selected from {50,
100, 300, 400}. For CBOW and SG, we chose the num-
ber of negative samples from a pool of {1, 5, 10, 15}. For
GloVe, we selected the xmax value from {10, 50, 100} and α
from {0.1, 0.25, 0.5, 0.75, 1}. For the Gaussian word em-

21https://github.com/kamalkraj/
Named-Entity-Recognition-with-\\Bidirectional-LSTM-CNNs

22https://github.com/semanticvectors/semanticvectors/wiki

bedding approach, we used the spherical Gaussians with
KL-divergence, which gave better results than the diago-
nal model in our experiments. For D-GloVe, we selected
the Dirichlet prior constant from {0.0001, 0.001, 0.01, 0.1,
1000, 2000, 5000, 8000}. For WeMAP2, we selected θ from
{0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}. The number
of iterations for all word embedding models was fixed to 20
and the number of posterior inference iterations for all topic
models was fixed to 1000. We have also experimented with
the different number of iterations for different models, and
in each case we found that no major changes occurred after
20 iterations for the word embedding models and 1000 itera-
tions for the topic models. We also experimented with differ-
ent learning rate parameters, namely {0.01, 0.001, 0.0001,
0.00001}. For the variational inference-based LDA model,
we began with the default hyper-prior values hard-coded in
the implementation23, which were later updated after each
iteration by the sampler, and we did same for the HDP24

model. Note that parameter selection was done for all tasks,
both for the baselines and for the proposed models. The only
hyperparameters of WeMAP that need to be tuned are the
number of dimensions and the learning rate for SGD. In par-
ticular, WeMAP requires less tuning than Skip-Gram (where
the parameters of the negative sampling strategy need to
be tuned) and GloVe (where the parameters of the f(xij)
weighting function need to be tuned). WeMAP1 uses the
f(xij) function from GloVe and thus shares the same hy-
perparameters as GloVe. We have found that 0.75 for alpha
and xmax = 100 gave us good results most of the time for
WeMAP1 which is also true for GloVe. For WeMAP2 we
also need to tune a smoothing parameter, and most of the
time θ = 0.00001 gave good results. In our three models,
a learning rate of 0.001 consistently gave good results. We
have also observed that 300 dimensions almost always led
to the best results.

23http://www.cs.columbia.edu/blei/lda-c/
24https://github.com/blei-lab/hdp
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Table 2: Word similarity results in Spearman’s ρ
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 Avg.

SG 0.741 0.742 0.651 0.653 0.757 0.470 0.356 0.289 0.662 0.643 0.726 0.565 0.195 0.470 0.566
CBOW 0.727 0.615 0.637 0.555 0.639 0.419 0.279 0.307 0.618 0.563 0.682 0.227 0.168 0.419 0.490
Gauss 0.632 0.710 0.650 0.620 0.695 0.436 0.283 0.273 0.624 0.601 0.690 0.510 0.147 0.436 0.522
GloVe 0.739 0.746 0.648 0.651 0.752 0.473 0.347 0.308 0.675 0.659 0.732 0.582 0.184 0.422 0.566
D-GloVe 0.750 0.746 0.652 0.659 0.779 0.474 0.347 0.315 0.677 0.659 0.735 0.579 0.188 0.473 0.574
MM (L) 0.740 0.737 0.656 0.651 0.764 0.465 0.339 0.296 0.663 0.649 0.726 0.554 0.186 0.465 0.564
MM (Q) 0.770 0.742 0.649 0.658 0.779 0.480 0.356 0.289 0.688 0.672 0.751 0.565 0.196 0.470 0.576
NWE 0.745 0.677 0.627 0.585 0.737 0.450 0.360 0.334 0.681 0.638 0.749 0.487 0.212 0.450 0.552
SV 0.653 0.671 0.632 0.599 0.591 0.393 0.245 0.276 0.582 0.555 0.672 0.421 0.127 0.393 0.486
SVD 0.606 0.697 0.644 0.620 0.674 0.427 0.279 0.246 0.605 0.596 0.676 0.502 0.141 0.427 0.510
NMF 0.589 0.617 0.618 0.568 0.537 0.324 0.228 0.290 0.537 0.525 0.615 0.372 0.106 0.324 0.446
LDA 0.643 0.657 0.630 0.595 0.592 0.376 0.242 0.261 0.569 0.558 0.655 0.413 0.122 0.376 0.478
HDP 0.632 0.646 0.627 0.584 0.571 0.358 0.234 0.274 0.563 0.548 0.648 0.421 0.113 0.358 0.470
WeMAP 0.764 0.751 0.651 0.657 0.777 0.470 0.361 0.303 0.682 0.663 0.746 0.592 0.196 0.480 0.578
WeMAP1 0.766 0.751 0.651 0.657 0.777 0.470 0.361 0.303 0.683 0.663 0.746 0.592 0.196 0.480 0.578
WeMAP2 0.769 0.752 0.657 0.659 0.779 0.472 0.361 0.303 0.684 0.663 0.748 0.593 0.196 0.480 0.580

Table 3: Outlier detection.
O1 O2

Acc OPP Acc OPP
SG 59.375 90.430 30.466 70.794
CBOW 57.813 89.258 30.645 70.399
Gauss 60.938 90.625 37.957 74.354
GloVe 62.500 91.016 39.677 75.541
D-GloVe 67.188 91.797 39.749 75.555
MM (L) 59.375 89.844 38.530 74.645
MM (Q) 65.625 91.211 38.280 74.881
NWE 62.500 91.406 33.441 71.409
SV 57.813 87.695 29.677 69.951
SVD 57.813 88.281 35.197 72.938
NMF 57.813 87.500 27.814 68.490
LDA 56.250 86.719 28.244 68.242
HDP 59.375 88.281 27.993 68.759
WeMAP 67.188 92.578 39.642 75.720
WeMAP1 64.063 92.188 39.749 75.169
WeMAP2 67.188 92.578 39.677 75.541

Results
Intrinsic Evaluation We first present the results for tradi-
tional word embedding tasks. They are summarized in Ta-
ble 1 for the analogy datasets, Table 2 for the word similar-
ity datasets, and Table 3 for the outlier detection datasets.
For the analogy datasets, our model clearly and consistently
outperforms all of the baselines, with the only exception
being the syntactic fragment of the Google dataset, where
MM(Q) is marginally better. “Avg.” measures the overall
performance on the Google dataset in which WeMAP2 per-
forms the best. For outlier detection, our model also achieves
the best results, where only D-GloVe is marginally better
than some variants of our model on O2 in terms of accuracy.
Note that we measure outlier detection performance using
Accuracy and Outlier Position Percentage (OPP). The goal
of OPP is to reflect the position of the outlier word w.r.t. to
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Figure 1: Run time comparisons with competitive compar-
ative methods (CPU hours) for 5 iterations and 300 dimen-
sional vectors.

other similar words, where the outlier detection problem is
thus evaluated as a ranking problem. These metrics are de-
fined in more detail in (Blair, Merhav, and Barry 2016) and
(Camacho-Collados and Navigli 2016).

For word similarity, on average our models outperform
the baselines, although the improvement is not consistent
across all datasets. Note that our model consistently outper-
forms the popular SG model. On most datasets, our model
also outperforms GloVe and D-GloVe, which are the most
closely related models.

We also conducted a running time analysis in CPU hours
in Figure 1, where we can see that our model runs faster than
most comparative models. This experiment was performed
on 3.20 GHz machine with 25 threads.

Extrinsic Evaluation We summarize the document re-
trieval results in Figure 2. While the differences between
the models are small, due to the fact that they all rely on
BM25, our model achieved the best performance. In Table 4,
we summarize the text classification results. For this ex-
periment, we also include some text classification baselines
which use standard bag-of-words representations with tf-idf
weighting. In particular, SVM (L), SVM (R) and SVM (Q)
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Figure 2: Mean Average Precision (MAP) scores on WT2G.
In the figure, starting from left, colour refers to SG,

CBOW, Gauss, GloVe, D-GloVe,
MM (L), MM (Q), NWE, SV,

SVD, NMF, LDA, HDP, Okapi
BM25, WeMAP, WeMAP1, and WeMAP2.

Table 4: Text classification results (F1 score).
TTC 20NG Reu52 Reu8 WKB MRP SUB

SG 0.336 0.469 0.396 0.720 0.846 0.763 0.879
CBOW 0.313 0.382 0.385 0.483 0.800 0.716 0.813
Gauss 0.243 0.366 0.312 0.566 0.796 0.729 0.868
GloVe 0.297 0.480 0.426 0.720 0.846 0.771 0.879
D-GloVe 0.331 0.459 0.312 0.671 0.737 0.740 0.810
MM (L) 0.294 0.417 0.428 0.485 0.796 0.761 0.879
MM (Q) 0.331 0.322 0.312 0.485 0.786 0.753 0.811
NWE 0.333 0.440 0.394 0.485 0.784 0.762 0.808
SV 0.332 0.397 0.420 0.573 0.702 0.700 0.803
SVD 0.335 0.377 0.413 0.628 0.771 0.701 0.809
NMF 0.334 0.397 0.412 0.484 0.750 0.698 0.802
LDA 0.334 0.417 0.412 0.485 0.746 0.655 0.808
HDP 0.333 0.446 0.412 0.587 0.740 0.638 0.801
SVM (L) 0.309 0.480 0.444 0.700 0.846 0.765 0.874
SVM (R) 0.334 0.426 0.444 0.684 0.825 0.766 0.879
SVM (Q) 0.335 0.365 0.460 0.720 0.846 0.767 0.879
MLP 0.334 0.435 0.396 0.673 0.737 0.769 0.815
MultNB 0.335 0.447 0.429 0.688 0.737 0.770 0.861
BernNB 0.330 0.377 0.392 0.484 0.737 0.770 0.814
WeMAP 0.338 0.468 0.434 0.720 0.847 0.774 0.879
WeMAP1 0.334 0.469 0.446 0.713 0.847 0.776 0.879
WeMAP2 0.355 0.481 0.444 0.720 0.842 0.773 0.879

are SVM classifiers which respectively use a linear, RBF and
quadratic kernel, MLP is a Multi-layer Perceptron classifier,
MultiNB is a Naive Bayes classifier for Multinomial mod-
els, and BernNB is a Naive Bayes classifier for multivari-
ate Bernoulli models. In document classification task, our
model outperforms all baselines, except for the Reuters-52
(Reu52) dataset, where an SVM classifier using the bag-of-
words representations achieved the best performance. Note,
however, that for this dataset our model is still the best per-
forming word embedding model.

On the sentence classification datasets, our model again
achieves the best performance (although many models
achieve the same performance on SUB). In the NER task,
as shown in Table 5, our model performs on par with SG in
terms of F1, and it outperforms the other models.

Table 5: NER results showing Precision (Prec.), Recall
(Rec.) and F-measure (F1).

Prec. Rec. F1
SG 0.871 0.883 0.877
CBOW 0.853 0.871 0.862
Gauss 0.864 0.880 0.872
GloVe 0.868 0.879 0.874
D-GloVe 0.865 0.877 0.871
MM (L) 0.869 0.879 0.874
MM (Q) 0.862 0.874 0.868
NWE 0.862 0.880 0.874
SV 0.859 0.876 0.867
SVD 0.859 0.873 0.866
NMF 0.844 0.861 0.853
LDA 0.832 0.849 0.840
HDP 0.839 0.856 0.847
WeMAP 0.874 0.878 0.876
WeMAP1 0.876 0.878 0.877
WeMAP2 0.871 0.879 0.875

Conclusions
In this paper, we have introduced a probabilistic word em-
bedding model, in which word vectors are learned by find-
ing the parameters that maximize a posterior probability. De-
spite its probabilistic formulation, our model learns standard
word vectors, in contrast to e.g. Bayesian versions of Skip-
gram, which aim to learn word representations that take the
form of probability distributions. The most immediate prac-
tical benefit of our model is the fact that it allows us to asso-
ciate a separate variance with each word. In this way, we are
able to implicitly take into account the fact that some words
are more informative than others. We presented experimen-
tal results that showed our model to consistently perform
well across a wide range of tasks, while remaining compu-
tationally efficient.

The setting we have developed in this paper opens up sev-
eral promising avenues for future work. For example, we
could straightforwardly extend our model with informed pri-
ors on the word vectors, e.g. to encode prior knowledge from
a lexicon. Moreover, the use of priors may allow us to intro-
duce additional parameters without overfitting. For exam-
ple, in (Jameel and Schockaert 2017) a quadratic regression
based word embedding model was found to outperform its
linear counterpart. Similarly, we may replace the linear re-
gression based formulation of GloVe with a model in which
each context word is represented as a quadratic mapping,
where priors could be used to encourage the model to stay
close to being linear to avoid overfitting in the case of rare
context words.
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