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Abstract

Neural question generation (NQG) is the task of generating
a question from a given passage with deep neural networks.
Previous NQG models suffer from a problem that a signif-
icant proportion of the generated questions include words
in the question target, resulting in the generation of unin-
tended questions. In this paper, we propose answer-separated
seq2seq, which better utilizes the information from both the
passage and the target answer. By replacing the target an-
swer in the original passage with a special token, our model
learns to identify which interrogative word should be used.
We also propose a new module termed keyword-net, which
helps the model better capture the key information in the tar-
get answer and generate an appropriate question. Experimen-
tal results demonstrate that our answer separation method sig-
nificantly reduces the number of improper questions which
include answers. Consequently, our model significantly out-
performs previous state-of-the-art NQG models.

Introduction
Neural question generation (NQG) is the task of generat-
ing questions from a given passage with deep neural net-
works. One of its key applications is to generate questions
for educational materials (Heilman and Smith 2010). It is
also used as a way to improve question answering (QA) sys-
tems (Duan et al. 2017; Tang et al. 2017; 2018) or to engage
chatbots to start and continue a conversation (Mostafazadeh
et al. 2016).

Automatic question generation (QG) from a passage is a
challenging task due to the unstructured nature of textual
data. One of major issues in NQG is how to take the ques-
tion target, referred to as the target answer, in the passage.
Specifying the question target is necessary for generating
natural questions because there could be multiple target an-
swers in the passage as in the following example. In Figure
1(a), the passage “John Francis O’Hara was elected presi-
dent of Notre Dame in 1934.” has various candidates to be
asked such as the person “John Francis O’Hara”, the loca-
tion “Notre Dame”, and the number “1934.” Without taking
the target answer as an additional input, existing NQG mod-
els such as (Du, Shao, and Cardie 2017) tend to generate
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Figure 1: An example of overall idea for QG in this paper.
Generated questions from existing NQG models tend to in-
clude words from the answer, resulting in the generation of
improper questions. Replacing the answer into a special to-
ken effectively prevents the answer words from appearing in
the question, resulting in the generation of desired questions.

questions without specific target. This is a fundamental lim-
itation due to the fact that recent NQG systems mostly rely
on RNN sequence-to-sequence model (Sutskever, Vinyals,
and Le 2014; Bahdanau, Cho, and Bengio 2015), and RNNs
do not have the ability to model high-level variability (Ser-
ban et al. 2017).

To overcome this limitation, most recent NQG models in-
corporated the target answer information by using the an-
swer position feature (Zhou et al. 2017; Song et al. 2018).
However, these approaches have a critical issue that a sig-
nificant proportion of the generated questions include words
in the target answer. For example, Figure 1(b) shows the im-
properly generated question “Who was elected John Fran-
cis?”1 which exposes some words in the answer. This prob-
lem results from the tendency of the sequence-to-sequence
model to include all information from the passage (Am-
playo, Lim, and Hwang 2018). It becomes severer with the
recent trend that NQG models use the copy mechanism
(Gulcehre et al. 2016) to encourage that many words in the
original passage appear in the question.

This study focuses on resolving this problem by separat-
ing the target answer from the original passage. For example,
the masked passage “<a> was elected president of Notre
Dame in 1934.” in Figure 1(c) still contains enough informa-
tion to generate the desired question in Figure 1(d), because

1This example is actually generated by our base model which
will be introduced in the later part.
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the term “president” is mostly about someone’s position. In-
terestingly, even though a target answer is replaced with a
special token <a> in a passage, we can infer the interroga-
tive word through contextual information from the remain-
ing part of the passage. Therefore we expect that separating
a target answer will prevent the answer inclusion problem.

In this paper, we develop a novel architecture named
answer-separated seq2seq which treats the passage and the
target answer separately for better utilization of the infor-
mation from both sides. The first step in our NQG model
is an answer masking. Literally, we replace the target an-
swer with the mask token <a>, and keep the corresponding
target answer apart. The masked passage is encoded by an
RNN encoder inside of our model. This approach to sepa-
rate the target answer from the passage helps our model to
identify the question type related to the target answer be-
cause the model learns to capture the position and contex-
tual information of the target answer with the help of the
token <a>. Furthermore, we propose a new module called
keyword-net as a part of answer-separated seq2seq, which
extracts key information from the target answer kept apart
before. The keyword-net makes our NQG model be consis-
tently aware of the target answer, supplementing the infor-
mation deficiency caused by answer separation. This mod-
ule is inspired by how people keep the target answer in mind
when they ask questions. Lastly, we adopt a retrieval-style
word generator proposed by (Ma et al. 2018) which better
captures the word semantics during the generation process.

When we evaluate our answer-separated seq2seq on the
SQuAD dataset (Rajpurkar et al. 2016)), our model outper-
forms previous state-or-the-art NQG models by a consider-
able margin. We empirically demonstrate the impact of the
answer separation in following three ways: the rare appear-
ance of the target answer in the generated questions, the bet-
ter prediction of interrogative words, and the higher atten-
tion weights of the <a> token to interrogative words. Fur-
thermore, trained with the only questions generated by our
model, a machine comprehension system achieves a compa-
rable results.

Related Work
Recently, there have been several NQG models which
are end-to-end trainable from (passage, question, answer)
triplets written in natural language. (Du, Shao, and Cardie
2017) first dealt with end-to-end learning with regard to the
question generation problem using a sequence-to-sequence
model with an attention mechanism, achieving better perfor-
mance than rule-based question generation methods in both
automatic and human evaluations. However, their model did
not take the target answer into account, resulting in genera-
tion of the questions which were full of randomness.

To generate more plausible questions, (Zhou et al. 2017)
utilized answer positions to make the model aware of the tar-
get answer and used NER tags and POS tags as additional
features. (Song et al. 2018) utilized the multi-perspective
context matching algorithm of (Wang, Hamza, and Florian
2017) to employ the interaction between the target answer
and the passage for collecting the relevant contextual infor-
mation. Both works employed a copy mechanism (Gulcehre

et al. 2016) to reflect the phenomenon by which many of
the words in the original passage are copied to the gener-
ated question. However, none of them dealt with the issue
of many of generated questions including target answers,
and the copy mechanism could intensify this problem. To
tackle this problem, this paper focuses on developing an
NQG model that utilizes the target answer as a separated
knowledge.

Additionally, there have been several works which uti-
lize question generation to improve the question answering
system. (Duan et al. 2017) crawled an external QA dataset
and generated questions from it through their retrieval-based
and generation-based question generation methods. With the
generated questions as additional data for training the QA
system, they demonstrated that their question generation
model helps to improve QA systems. More recently,(Tang et
al. 2018) presented a joint training algorithm that improves
both the question answering system and the question gener-
ation model.

To the best of our knowledge, none of the previous works
has focused on the issue that a significant proportion of gen-
erated questions include words in the target answers.

Task Definition
Given a passage Xp = (xp1, ..., x

p
n) and a target answer

Xa = (xa1 , ..., x
a
m) as input, the NQG model aims to gen-

erate a question Y = (y1, ..., yT ) asking about the target
answer Xa in the passage Xp. The NQG task is defined as
finding the best Y that maximizes the conditional likelihood
given the Xp and the Xa:

Y = argmax
Y

P (Y |Xp, Xa) (1)

= argmax
Y

T∑
t=1

P (yt|Xp, Xa, y<t) (2)

Base Model: Encoder-Decoder with Attention
Following previous works, we base our model on the RNN
encoder-decoder architecture (Sutskever, Vinyals, and Le
2014), which is an RNN-based sequence-to-sequence learn-
ing model. It generates a task-specific sequential output
from a given sequential input and is widely adopted in se-
quence generation tasks such as neural machine translation
(Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2015), text summarization (Nallapati et al. 2016) and di-
alogue model (Serban et al. 2016; 2017). In neural question
generation, the model takes a passage Xp as an input and
outputs a question Y which is relevant to the input passage
Xp. Note that the base model does not take the target answer
as the input.

An RNN encoder-decoder model consists of two parts:
an encoder and a decoder. The encoder is used to represent
the variable-length input sequence as a fixed-length vector
which includes contextual features of the input sequence,
reflecting dependency among each input token. The decoder
then generates an output sequence based on the encoder out-
put.
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Figure 2: Overall architecture of our model

In general, attention mechanism (Bahdanau, Cho, and
Bengio 2015), which functions as visual attention mech-
anisms found in human, is combined with the encoder-
decoder model. The mechanism alleviates the bottleneck
that the decoder only relies on a fixed-size vector to gen-
erate sequences. With the attention mechanism, the decoder
is able to pay attention to the most relevant parts of the given
input sequence while generating an output sequence. In the
following section, we describe the structure of the encoder-
decoder with attention in details.

Encoder The encoder is used to extract contextual fea-
tures from the given input passage Xp. We use an one-layer
bi-directional LSTM as the encoder. A bi-directional LSTM
consists of a forward LSTM and a backward LSTM:

→
hpi =

−−−−→
LSTM(xpi ,

→
hpi−1) (3)

←
hpi =

←−−−−
LSTM(xpi ,

←
hpi+1) (4)

hpi = [
→
hpi ;

←
hpi ] (5)

For each time step i, forward hidden state
→
hpi and back-

ward hidden state
←
hpi are concatenated to form a hidden state

of bi-LSTM.

Decoder Given the extracted features from the encoder,
the decoder generates the corresponding question Y . We uti-
lize a one-layer uni-directional LSTM with attention:

st = LSTM(yt−1, st−1, ct) (6)
P (yt|y<t, X

p) = Softmax(Wost) (7)

For each time step t, the output token of previous time
step yt−1, the hidden state of previous time step st−1 and
the context vector of current time ct are passed through the
decoder LSTM to compute the decoder hidden state of cur-
rent time step st. Each hidden state of decoder st is then
linearly projected with a trainable weight matrix Wo and
passed through a softmax layer to compute the probability
of output yt. The context vector ct is used to reflect the most
relevant feature from the input passage Xp while generating
the current question token yt. In Eq. (8), the alignment score

eti is computed as the matching score between st−1 and hpi ,
where Wc and Uc are trainable weight matrices and v> is
a trainable vector. As in Eq. (9), the alignment weight αti

is computed with normalization and we take the weighted
average of hpi as context vector:

eti = v> tanh(Wcst−1 + Uch
p
i ) (8)

αti =
exp(eti)∑n

k=1 exp(etk)
(9)

ct =

n∑
i=1

αtih
p
i (10)

Answer-Separated Seq2seq
Previous encoder-decoder based neural question generation
models take the whole passage Xp as an input. However,
RNN encoders tend to pass all of the information in the
passage to the decoder, causing a serious issue: the gener-
ated question often includes the target answer Xa. There-
fore, we propose answer-separated seq2seq which treats
the target answer and the passage separately for better uti-
lization of the information from both sides. With a simple
pre-processing of data, we separate the target answer from
the input passage. Encoded with two individual encoders of
answer-separated seq2seq, contextual feature of the passage
and the target answer are passed to the decoder. We further
propose keyword-net as another part of answer-separated
seq2seq, which is used to extract the key information from
target answer. In every decoding step, the decoder utilizes
both the contextual feature of the passage from the atten-
tion mechanism and the keyword feature of the target answer
from the keyword-net to generate a question that is related to
the target answer in the passage. Furthermore, we adopt a re-
trieval style word generator by (Ma et al. 2018) as the output
layer of the decoder to better capture the word semantics.

Different from the general RNN encoder-decoder, our
answer-separated seq2seq consists of :
• Two encoders each to extract contextual feature from the

passage Xp and the target answer Xa.
• Answer-separated decoder which combines both the in-

formation from the passage and the target answer.
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In the following section, we give a detailed description on
how answer-separated seq2seq works. An overview of our
answer-separated seq2seq is shown in Figure 2.

Encoder
Answer-separated seq2seq contains two individual encoders
each for encoding the passageXp and the target answerXa.
Similar to the base model, we use two one-layer bi-LSTMs
as encoders.

Answer-Separated Passage Encoder Rather than feed-
ing the passage encoder with additional features to empha-
size the answer position, we first extract the target answer
inside the passage and simply replace the corresponding tar-
get answer with a special <a> token as in Figure 1(c). In
this way, the model learns to capture the position and con-
textual information of the target answer, knowing which part
of the passage should be focused by the generated question.
As a result, the probability that the generated question in-
cludes the target answer is reduced. This has a direct effect
of preventing generation of questions irrelevant to the given
target answer. We use the same one-layer bi-LSTMs as in
Eq. (1) and Eq. (2).

Answer encoder We use another one-layer bi-LSTM to
encode the target answer Xa. In the last time step of the
answer encoder, the hidden state of each LSTM is concate-
nated to form the final hidden state hafinal , which represents
the overall feature of the answer Xa:

→
haj =

−−−−→
LSTM(xaj ,

→
haj−1) (11)

←
haj =

←−−−−
LSTM(xaj ,

←
haj+1) (12)

s0 = hafinal = [
→
ham;

←
ham] (13)

Answer-Separated Decoder
To exploit sufficient information from both the passage and
the target answer, we design the answer-separated decoder.
Based on LSTM, answer-separated decoder employs fea-
tures of the passage and the target answer in the following
three ways.

Decoder Initialization We initialize the decoder state
with the final answer vector hafinal.

Incorporating the Key Feature of the Answer We ex-
tract the key information in the target answer to disam-
biguate the question target. For example, given a passage
“Steve Jobs is the founder of Apple” and the target answer
“founder of Apple”, we want to generate a question like
“Who is Steve Jobs?”. Then “founder” in “founder of Ap-
ple” is a keyword which defines the representative charac-
teristic of the whole answer. In every decoding step, we use
an attention-based module, termed keyword-net, to extract
the key information from the target answer. For each layer of
the keyword-net, a normalized matching score between out-
put vector of last layer ol−1t and answer hidden states haj is
computed. We then take the weighted average over haj as the

extracted keyword feature olt in current layer l. We initialize
o0t with context vector ct of current decoding step. Following
equations describe the mechanism of keyword-net:

o0t = ct (14)

pltj = Softmax((ol−1t )>haj ) (15)

olt =
∑
j

pltjh
a
j (16)

st = LSTM(yt−1, st−1, ct, o
L
t ) (17)

Retrieval Style Word Generator Based on the current
decoder structure, we further adopt an architecture which
can generate words by querying distributed word representa-
tion, with the purpose of capturing the semantic information
of the according words.

(Ma et al. 2018) proposed a retrieval style word genera-
tion layer which can remedy a shortcoming of the sequence-
to-sequence model that sequence-to-sequence model has
tendency to memorize the sequence pattern rather than re-
flecting word meanings. They made use of word embeddings
to tackle the problem. Their word generator produces words
by querying the distributed word representations, hoping to
capture the meaning of used words. We then borrow the idea
behind this novel word generator to replace the existing out-
put layer in our decoder.

The query qt is computed as a combination of the decoder
hidden state st and the context vector ct. By querying qt to
each of the word embedding ek, we can compute the rele-
vance score between qt and ek where Wa is a trainable pa-
rameter matrix. Then the normalized value of score function
denotes the generation probability of each word. Since the
original output layer takes the most of model parameters,
we can dramatically reduce the parameter size and the time
of model convergence by using this word retrieval layer:

qt = tanh(Wq[st; ct]) (18)

score(qt, ek) = q>i Waek (19)
p(yt) = Softmax(score(qt, ek)) (20)

Experimental Settings
In this section, we first introduce the dataset we conduct ex-
periments on. Then we give a detailed description of hyper-
parameter settings of our model. Lastly, several evaluation
methods mainly used to assess the quality of generated ques-
tions are introduced.

Dataset
For fair comparison, we use the same dataset that is used
by previous works (Du, Shao, and Cardie 2017; Zhou et
al. 2017; Song et al. 2018): two processed versions of
SQuAD(Rajpurkar et al. 2016) dataset. The original SQuAD
dataset contains 23,215 paragraphs from 536 articles with
over 100k questions and their answers, which are origi-
nally created by crowd-workers. Since the original dataset
is divided into train/dev splits, (Du, Shao, and Cardie 2017;
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Model Split-1 Split-2
BLEU METEOR ROUGE-L BLEU

(Du, Shao, and Cardie 2017) 12.28 16.62 39.75 -
(Song et al. 2018) 13.98 18.77 42.72 13.91
(Zhou et al. 2017) - - - 13.29
ASs2s-ASdec 12.30 ± 0.26 16.70 ± 0.22 40.32 ± 0.26 12.25 ± 0.24
ASs2s-keyword 13.95 ± 0.29 19.34 ± 0.24 40.60 ± 0.25 13.86 ± 0.30
ASs2s-<a> 14.37 ± 0.28 18.95 ± 0.24 42.06 ± 0.27 14.05 ± 0.30
ASs2s 16.20 ± 0.32 19.92±0.20 43.96 ± 0.25 16.17 ± 0.35

Table 1: Evaluation of our model and previous NQG models with three metrics: BLEU-4, METEOR and ROUGE-L.

Zhou et al. 2017) re-divided them into train/dev/test splits,
and extracted passages from the paragraph that contains the
target answer, each of which we call data split-1 and data
split-2 in the following lines. For the data split-1, since (Du,
Shao, and Cardie 2017) does not include the target answers,
(Song et al. 2018) extracted them from each passage to make
(passage, question, answer) triplets. As a result, data split-1
and data split-2 contains 70,484/10,570/11,877 triplets and
86,635/8,965/8,964 triplets respectively. We tokenize both
data splits with Stanford CoreNLP (Manning et al. 2014)
and then lower-case them.

Implementation Details
We implement our models in Tensorflow 1.4 and train the
model with a single GTX 1080 Ti. The hyperparameters of
our proposed model are described as follows.

Our model consists of two one-layer encoders each for
encoding passages and target answers, and a one-layer de-
coder to generate questions. The number of hidden units in
both encoders and the decoder are 350. For both encoder
and decoder, we use 34k most frequent words appeared in
training corpus, replacing the rest with the <UNK> to-
ken. We use 300-dimensional pre-trained GloVe (Penning-
ton, Socher, and Manning 2014) embeddings trained on 6
billion-token corpus for initialization and freeze it when
training. Weight normalization is applied to the attention
module and dropout with Pdrop = 0.4 is applied for both
RNNs and the attention module. The layer size of keyword-
net is set as 4.

Training and Inference During training, we optimize the
cross-entropy loss function with the gradient descent algo-
rithm using Adam (Kingma and Ba 2014) optimizer, with an
initial learning rate of 0.001. The mini-batch size for each
update is set as 128 and the model is trained for up to 17
epochs.

When testing, we conduct beam search with beam width
10 and length penalty weight 2.1. Decoding stops when the
generated token is <EOS>. The Performances of all our
models are reported as mean and standard derivation values
(Mean ± Std).

Named Entity Replacement To further improve the
model performance, we pre-process the data with a very sim-
ple technique. Since most named entities do not appear of-

Model Complete Partial
seq2seq+AP 0.8% 17.3%
(Song et al. 2018) 2.9% 24.0%
ASs2s 0.6% 9.5%

Table 2: Percentage of complete/partial inclusion of the tar-
get answer in generated questions.

ten, by replacing those named entities with representative
tokens, we can not only reduce unknown words but also
capture the grammatical structure. We look for the named
entity tags for tokens in the given passage and replace each
of them with the corresponding tag. We make sure that the
same entity is assigned the same tag. NER tags are ex-
tracted with named entity tagger in Stanford CoreNLP. For
those passages that have different named entities with the
same tag, we distinguish them with different subscripts such
as Person1, P erson2. We store a matching table between
named entities and tags, which is used to post-process the
generated questions.

Evaluation Methods

Following (Zhou et al. 2017; Song et al. 2018), we compare
the performance of NQG models with 3 evaluation metrics:
BLEU-4, Meteor and RougeL, which are standard evalua-
tion metrics of machine translation and text summarization.
We use the evaluation package published by (Chen et al.
2015).

BLEU-4 BLEU-4 measures the quality of the candidate
by counting the matching 4-grams in the candidate to the
4-grams in the reference text.

Meteor Meteor compares the candidate with the reference
in terms of exact, stem, synonym, and paraphrase matches
between words and phrases.

RougeL RougeL assesses the candidate based on longest
common subsequence shared by both the candidate and the
reference text.
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Model Question type
what how when which where who why yes/no

seq2seq+AP 77.3% 56.2% 19.4% 3.4% 12.1% 36.7% 23.7% 5.3%
ASs2s 82.0% 74.1% 43.3% 6.1% 46.3% 67.8% 28.5% 6.2%

Table 3: Recall of interrogative word prediction.

Results
Performance Comparison
We compare our model with previous state-of-the-art NQG
models. Since there exists two different data splits pro-
cessed by (Du, Shao, and Cardie 2017; Zhou et al. 2017),
we conduct experiments on both data splits. To figure
out the effect of each module, we also conduct ablation
tests against some key modules: ASs2s denotes the com-
plete answer-separated seq2seq model. ASs2s-< a> is the
answer-separated seq2seq without replacing the target an-
swer in the original passage. ASs2s-keyword is the answer-
separated seq2seq without keyword-net. ASs2s-ASdec is the
answer-separated seq2seq without the answer-separated de-
coder but with a general LSTM decoder.

As shown in Table 1, ASs2s outperforms all of the pre-
vious NQG models on both data splits by a great margin,
showing that separate utilization of target answer informa-
tion plays an important role in generating the intended ques-
tions. With the help of answer-separated decoder, ASs2s-
<a> still outperforms the previous NQG models except for
ROUGE-L on data split-1. However, there is a considerable
decrease in all metrics compared to the complete model.
This results from the fact that answer separation prevents
generated question from including the answer. Similarly,
ASs2s-keyword has a big drop in performance and this veri-
fies that the keyword-net has actual impact on improving the
performance. ASs2s-ASdec has greater decrease in all met-
rics compared to the ASs2s. This is a very natural result be-
cause without the answer-separated decoder, the model has
to generate questions by only relying on context around the
target answer position without knowledge of the target an-
swer.

Impact of Answer Separation
Answer separation helps the model generate the right ques-
tion for the given target answer. Since the base model does
not utilize the target answer information, we further define
seq2seq+AP(Answer Position) as base model with answer
position feature (Zhou et al. 2017) for comparison. We show
the benefits of answer-separated seq2seq in three aspects.

Answer Copying Frequency If a NQG model captures
the question target well, the generated question will rarely
include the target answer. We verify the assumption by com-
puting the percentage of generated questions including tar-
get answers. Since (Du, Shao, and Cardie 2017) ignores
the target answer, we choose seq2seq+AP to represent (Du,
Shao, and Cardie 2017) with answer position feature. Fur-
ther, we choose the previous state-of-the-art (Song et al.

2018) for comparison because both (Zhou et al. 2017) and
(Song et al. 2018) use the copy mechanism.

As shown in Table 2, the percentage that the target an-
swers are either completely or partially included in the gen-
erated questions is significantly lower in our model. We also
figure out an interesting observation: even though (Song et
al. 2018) is the previous state-of-the-art NQG model, it gen-
erates more irrelevant questions to the target answer when
compared to seq2seq+AP. This observation indicates the
negative effect of copy mechanism that the target answer in-
side the passage is unintentionally copied to the generated
question.

Interrogative Word Prediction To figure out the effect
of answer-separated seq2seq on question type prediction,
we compare the recall of each interrogative word predic-
tion between the generated questions of answer-separated
seq2seq and seq2seq+AP. We group questions into 8 cate-
gories: “what”, “how”, “when”, “which”, “where”, “who”,
“why” and “yes/no”. As shown in Table 3, answer-separated
seq2seq has better recall score over seq2seq+AP in all
categories. Especially, the recall of question types “how”,
“when”, “where” and “who” improved in big magnitude.
Both model’s recall of question type “what” is very high
because “what” takes up more than half of the whole train-
ing set (55.4%). Both model’s recall of type “which” is very
low. This may result from the fact that some combinations
like “which year” and “which person” may be generated as
“where” and “who” respectively. For question types “why”
and “yes/no” which only take up 1.5% and 1.2% of the train-
ing set respectively, both models did not perform well due to
the small amount of data.

Attention from <a> We verify the effect of replacing
answer with <a> by comparing attention matrices. Given
the passage “john francis o’hara was elected president of
notre dame in 1934.” and the target answer “john francis
o’hara”, following Figure 3(a) and Figure 3(c) show the at-
tention matrices produced by our answer-separated seq2seq
and seq2seq+AP respectively.

As shown in Figure 3(a), the interrogative word ”who”
gets most of the attention weights(higher attention weights)
from the <a> token in our answer-separated seq2seq. Fur-
ther more, Our model can generate a question that is ex-
actly related to the target answer. With additional answer
position features as in Figure 3(c), only a part of answer
is attended while generating the interrogative word “who”.
In this case, if the answer has some contextual information,
then the model may omit it, generating an unintended ques-
tion. Also, the generated question contains “john francis”
which is a part of the target answer. We infer that the encoder
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Figure 3: (a) and (b) show attention matrices of our model given a passage with two different target answers. (c) shows an
attention matrix of seq2seq+AP given the same passage and the target answer as (a).

tends to utilize more information from the word embeddings
rather than answer position features, since the word embed-
ding has far more information than answer position features.

Question Generation for Machine Comprehension
By training a machine comprehension system on the syn-
thetic data generated by our model, we verify that our model
has an enough ability to generate natural and fluent ques-
tions. By changing the position of the <a> token, we can
easily produce various questions with our model. Figure 3(a)
and Figure 3(b) shows one example where we use our model
to generate two different questions corresponding to differ-
ent target answers from the same input passage.

We experiment with QANet (Yu et al. 2018) on SQuAD
dataset to verify whether the generated questions from our
model are valid or not. Since most of the answers correspond
to named entities, we use words and phrases that are named
entities from training part of data split-1 as target answers.
Then, we pair those answers with corresponding passages.
We also make sure that selected answers are not overlapped
with answers in the original SQuAD dataset because our
NQG model is trained with the target answer provided with
SQuAD dataset. If answers are overlapped, our model may
generates exact the same questions as the golden questions.
then we pair those answers with corresponding passages.

To organize the dataset in the same way as SQuAD
dataset, (paragraph, question, answer position) triplets, we
trace the passage in data split-1 in the original paragraph and
re-compute the answer position as well. We finally make a
synthetic data with about 50k questions and train the ma-
chine comprehension system only with our synthetic data.

As shown in Table 4, the machine comprehension sys-
tem achieves EM/F1 score of 22.72/31.58 in public SQuAD
dev set. This result is far below the result 68.78/78.56 of
the case when the model is trained with the original training
set. However, considering our synthetic data only consists
of target answers with single named entity, we further check
EM/F1 score of partial dev set that only has a single named
entity as the answer. We find that in the 10k dev set, about
40 percent of the data has an answer with a single named en-

Answers Exact Match (EM) F1 score
ALL 22.72 31.58
NER 49.09 56.57

Table 4: Performance of the machine comprehension system
which is trained only with synthetic data generated by our
NQG model.

tity and the machine comprehension system achieves EM/F1
score of 49.09/56.57 with those parts of the data. Since the
SQuAD dataset is a human-made dataset, this result suffi-
ciently shows that our answer-separated seq2seq can gener-
ate valid questions that can be acceptable both by human and
machine comprehension systems.

Conclusion
In this paper, we investigate the advantages of answer sepa-
ration in neural question generation. We observe that exist-
ing NQG models suffer from a serious problem: a significant
proportion of generated questions include words in the ques-
tion target, resulting in the generation of unintended ques-
tions. To overcome this problem, we introduce a novel NQG
architecture that treats the passage and the target answer sep-
arately to better utilize the information from the both sides.
Experimental results show that our model has a strong abil-
ity to generate the right question for the target answer in the
passage. As a result, it yields a substantial improvement over
previous state-of-the-art models.
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