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Abstract
Although Neural Machine Translation (NMT) models have
advanced state-of-the-art performance in machine translation,
they face problems like the inadequate translation. We at-
tribute this to that the standard Maximum Likelihood Esti-
mation (MLE) cannot judge the real translation quality due to
its several limitations. In this work, we propose an adequacy-
oriented learning mechanism for NMT by casting transla-
tion as a stochastic policy in Reinforcement Learning (RL),
where the reward is estimated by explicitly measuring trans-
lation adequacy. Benefiting from the sequence-level training
of RL strategy and a more accurate reward designed specif-
ically for translation, our model outperforms multiple strong
baselines, including (1) standard and coverage-augmented at-
tention models with MLE-based training, and (2) advanced
reinforcement and adversarial training strategies with rewards
based on both word-level BLEU and character-level CHRF3.
Quantitative and qualitative analyses on different language
pairs and NMT architectures demonstrate the effectiveness
and universality of the proposed approach.

Introduction
During the past several years, rapid progress has been made
in the field of Neural Machine Translation (NMT) (Kalch-
brenner and Blunsom 2013; Sutskever, Vinyals, and Le
2014; Bahdanau, Cho, and Bengio 2015; Gehring et al.
2017; Wu et al. 2016; Vaswani et al. 2017).

Although NMT models have advanced the community,
they still face inadequate translation problems: one or mul-
tiple parts of the input sentence are not translated (Tu et al.
2016). We attribute this problem to the lack of the mech-
anism to guarantee the generated translation being as suf-
ficient as human translation. NMT models are generally
trained in an end-to-end manner to maximize the likelihood
of the output sentence. Maximum Likelihood Estimation
(MLE), however, could not judge the real quality of gen-
erated translation due to its several limitations
1. Exposure bias (Ranzato et al. 2016): The models are

trained on the groundtruth data distribution, but at test
time are used to generate target words based on previous
model predictions, which can be erroneous;
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2. Word-level loss (Shen et al. 2016): Likelihood is defined
at word-level, which might hardly correlate well with
sequence-level evaluation metrics like BLEU.

3. Focusing more on fluency than adequacy (Tu et al. 2017):
Likelihood does not measure how well the complete
source information is transformed to the target side, thus
does not correlate well with translation adequacy. Ade-
quacy metric is regularly employed to assess the transla-
tion quality in practice.

Some recent work partially alleviates one or two of the
above problems with advanced training strategies. For ex-
ample, the first two problems are tackled by sequence
level training using the REINFORCE algorithm (Ranzato
et al. 2016; Bahdanau et al. 2017), minimum risk train-
ing (Shen et al. 2016), beam search optimization (Wiseman
and Rush 2016) or adversarial learning (Wu et al. 2017;
Yang et al. 2018). The last problem can be alleviated by in-
troducing an auxiliary reconstruction-based training objec-
tive to measure translation adequacy (Tu et al. 2017).

In this work, we aim to fully solve all the three problems
in a unified framework. Specifically, we model the transla-
tion as a stochastic policy in Reinforcement Learning (RL)
and directly perform gradient policy update. The RL re-
ward is estimated on a complete sequence produced by the
NMT model, which is able to correlate well with a sequence-
level task-specific metric. To explicitly measure translation
adequacy, we propose a novel metric called Coverage Dif-
ference Ratio (CDR) which is calculated by counting how
many source words are under-translated via directly com-
paring generated translation with human translation. Bene-
fiting from the sequence-level training of RL strategy and a
more accurate reward designed specifically for translation,
the proposed approach is able to alleviate all the aforemen-
tioned limitations of MLE-based training.

We conduct experiments on Chinese⇒English and
German⇔English translation tasks, using both the RNN-
based NMT model (Bahdanau, Cho, and Bengio 2015)
and the recently proposed TRANSFORMER (Vaswani et
al. 2017). The consistent improvements across language
pairs and NMT architectures demonstrate the effective-
ness and universality of the proposed approach. The pro-
posed adequacy-oriented learning improves translation per-
formance not only over a standard attention model, but
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also over a coverage-augmented attention model (Tu et
al. 2016) that alleviates the inadequate translation prob-
lem at the word-level. In addition, the proposed metric –
CDR score, consistently outperforms the commonly-used
word-level BLEU (Papineni et al. 2002) and character-level
CHRF3 (Popović 2015) scores in both the reinforcement
learning and adversarial learning frameworks, indicating the
superiority and necessity of an adequacy-oriented metric in
training effective NMT models.

Background
Neural Machine Translation (NMT) is an end-to-end struc-
ture which could directly model the translation probability
between a source sentence x = x1, x2, . . . , xJ and a target
sentence y = y1, y2, . . . , yI word by word:

P (y|x) =
I∏
i=1

P (yi|y<i,x; θ) (1)

where y<i is the partial translation before decoding step i
and θ is parameters of the NMT. The probability of generat-
ing the i-th word P (yi|y<i,x; θ) is calculated by

P (yi|y<i,x; θ) ∝ exp {f(yi−1, si, ci; θ)} (2)

where si is the i-th hidden state of the decoder and f(·)
is a non-linear activation function of the decoder state.
ci is a distinct source representation for time i, calcu-
lated as a weighted sum of the source annotations: ci =∑J
j=1 αi,j · hj , where hj is the annotation of xj from a en-

coder, and its weight αi,j is computed by

αi,j =
exp(ei,j)∑J

j′=1 exp(ei,j′)
with ei,j = a(si−1,hj) (3)

where a(·) is an attention model that scores how well yi
and hj (i.e., xj) match. The encoder and decoder can be
implemented as Recurrent Neural Network (RNN) (Bah-
danau, Cho, and Bengio 2015), Convolutional Neural Net-
work (CNN) (Gehring et al. 2017), or Self-Attention Net-
work (SAN) (Vaswani et al. 2017).

The parameters of the NMT θ are trained to maximize the
likelihood of training instances {[xn, yn]}Nn=1:

L(θ) = argmax
θ

N∑
n=1

logP (yn|xn; θ) (4)

Although likelihood is a widely-used training objective
for its simpleness and effectiveness, it has several afore-
mentioned limitations including exposure bias (Ranzato et
al. 2016; Wiseman and Rush 2016), word-level estima-
tion (Shen et al. 2016), and focusing more on fluency than
adequacy (Tu et al. 2017).

Approach
Intuition
In this work, we try to solve the three problems mentioned
above in a unified framework. Our objective is three-fold:

Input ⼆⼗六岁 男司机 被困 车内 ，由 到场 的 消防员 救出 。

REF The 26-year-old driver was trapped inside the car after the 
impact and was rescued by the firemen.

NMT The 26-year-old driver was trapped inside the vehicle.

(a) Example of human (REF) and generated (NMT)
translations.
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REF The 26-year-old driver was trapped inside the car after the 
impact and was rescued by the firemen.

NMT The 26-year-old driver was trapped inside the vehicle.

(b) Examples of covered source words (i.e. shadow
boxes).

Figure 1: An example to illustrate coverage difference ratio.

1. We solve the exposure bias problem by modeling the
translation as a stochastic policy in reinforcement learn-
ing (RL) and directly performing policy gradient update.

2. The RL reward is estimated on a complete sequence,
which correlates well with either sequence-level BLEU
or a more adequacy-oriented metric, as described below.

3. We design a sequence-level metric – Coverage Differ-
ence Ratio (CDR) – to explicitly measure translation ade-
quacy which focuses on the commonly-cited weaknesses
of NMT models: producing fluent yet inadequate transla-
tions. We expect that the model can benefit from linguis-
tic insights that correlate well with human intuitions.

Coverage Difference Ratio (CDR) We measure transla-
tion adequacy by the number of under-translated words via
comparing generated translation with human translation. We
take an example to illustrate how to measure translation ad-
equacy in terms of coverage difference ratio. Figure 1(a)
shows one inadequate translation. Following (Luong, Pham,
and Manning 2015; Tu et al. 2016), we extract only one-
to-one alignments (hard alignments) by selecting the source
word with the highest alignment for each target word from
the word alignments produced by NMT models.1 A source
word is considered to be translated when it is covered by the
hard alignments, as shown in Figure 1(b). Comparing source
words covered by generated translation with those covered
by human translation, we can find that the two sets are very
different for inadequate translation. Specifically, the differ-
ence generally lies in the untranslated source words that
cause inadequate translation problem, indicating that cover-
age difference ratio is a good way to measure the adequacy
of generated translation.

1For generated translations, we directly use the attention prob-
ability distributions from decoding procedure; for human transla-
tions, we obtain attention distributions by force decoding the target
sentences with the same NMT model.
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NMT Model G

ŷ2ŷ1Hyp: ŷ ŷI’

x2x1Source: x xJ

Discriminator D

Orientator O

CDR Score

TranslateForce Decode

y2y1 yIRef: y

Coverages

estimated reward

Figure 2: Architecture of adequacy-oriented NMT. The
newly added orientator O reads coverages of generated and
human translations to generate a CDR score for each gener-
ated translation, which guides the discriminator D to differ-
entiate good generated translations from bad ones.

Formally, we calculate the CDR score of a given generated
translation ŷ by

CDR(ŷ|y,x) = 1− |Cref \Cgen|
|Cref |

(5)

where Cref and Cgen is the set of source words covered
by human translation and generated translation, respectively.
Cref \Cgen denotes the covered source words in Cref but
not in Cgen. We use Cref as the reference coverage to elim-
inate the effect of null-aligned source words which are not
aligned to any target word. As seen, CDR(ŷ|y,x) is a num-
ber between 0 and 1, where 1 means “completely adequate
translation” and 0 means “completely inadequate transla-
tion”. Taking Figure 1(b) as an example, the CDR score is
1− (7− 4)/7 = 0.57.

Architecture
As shown in Figure 2, the proposed model consists of a gen-
erator, a discriminator, and an orientator.

Generator The generator G generates the translation ŷ
conditioned on the input sentence x. Because we need word
alignments to calculate adequacy scores in terms of CDR, an
attention-based NMT model is employed as the generator.

Orientator The orientator O reads the word alignments
produced by NMT attention model when generating (or
force decoding) the two translations and outputs an ade-
quacy score for the generated translation in terms of the
aforementioned CDR score. Then, the orientator is used to
guide the discriminator to distinguish adequate translation
from inadequate ones. Accordingly, adequate translations
with higher CDR scores would contribute more to parameter
tuning, as described in the following section.

Discriminator We employ a RNN-based discriminator to
differentiate generated translation from human translation,
given the input sentence. The discriminator reads the in-
put sentence x and its translation (either y or ŷ), and use
two RNNs to summarize the two sentences individually. The
concatenation of the two summarized representation vectors
is fed into a fully-connected neural network.

Adequacy-Oriented Training
In order to train the system efficiently and effectively, we
employ a periodical training strategy, which is commonly
used in adversarial training (Goodfellow et al. 2014; Wu et
al. 2017). Specifically, we optimize two networks with two
objective functions and periodically freeze the parameters of
each network during training.

Train Generator and Freeze Discriminator Follow-
ing Wu et al. (2017), we use the REINFORCE algo-
rithm (Williams 1992) to back-propagate the error signals
from D to G, given the discretely generated ŷ from G. The
objective of the generator is to maximize the expected re-
ward:

L = E(x,ŷ)∈Gθ
[D(x, ŷ)] (6)

whose gradient is

Oθ = E(x,ŷ)∈Gθ
[D(x, ŷ)Oθ logGθ(ŷ|x)] (7)

The gradient is approximated by a sample from G using the
REINFORCE algorithm (Williams 1992):

Oθ ≈ Ôθ = D(x, ŷ)Oθ logGθ(ŷ|x) (8)

where Oθ logG(ŷ|x) is the standard NMT gradient which
is calculated by the maximum likelihood estimation. There-
fore, the final update function for the generator is:

θ = θ − ηÔθ (9)

where the η is the learning rate. Based on the update func-
tion, when the D(x, ŷ) is large (i.e., ideally, the generated
translation ŷ has a high adequacy score) , the larger reward
the NMT model will get, and thus parameters are updated
more based on the adequate training instance (x, ŷ).

Train Discriminator Oriented by Adequacy and Freeze
Generator Ideally, a good translation ŷ should be as-
signed a high adequacy score D(x, ŷ) and thus contribute
more to updating the generator. Therefore, we expect the
discriminator to not only differentiate generated translations
from human translations but also distinguish bad generated
translations from good ones. Therefore, a new objective of
discriminator is to assign a precise score for each generated
translation, which is consistent with their adequacy score:

min
D
|CDR(ŷ|x,y)−D(x, ŷ)|2 (10)

where CDR(ŷ|x,y) is the coverage difference ratio of ŷ.
As seen, a well trained discriminator would assign a distinct
score to each generated translation, which can better mea-
sure its adequacy.

6620



Related Work
This work is related to modeling translation as policy gra-
dient and adequacy modeling. For the former, we take min-
imum risk training, reinforcement learning and adversarial
learning as representative strategies.

Minimum Risk Training In response to the exposure bias
and word-level loss problems of MLE training, Shen et
al. (2016) minimize the expected loss in terms of evaluation
metrics on the training data. Our simplified model is anal-
ogous to their MRT model, if we directly use CDR as the
reward to update parameters:

Ôθ = CDR(ŷ|x,y))Oθ logGθ(ŷ|x) (11)

The simplified model differs in that (1) we use adequacy-
oriented metric (i.e., CDR) while they use sequence-level
BLEU, and (2) we only need to sample one candidate to
calculate reinforcement reward while they generate multiple
samples to calculate the expected risk. In addition, our dis-
criminator gives a smoother and dynamically-updated ob-
jective compared with directly using the adequacy-oriented
metric, because the latter is highly sensitive to the slight cov-
erage difference (Koehn and Knowles 2017).

Reinforcement Learning Recent work shows that max-
imum likelihood training could be sub-optimal due to the
different conditions between training and test modes (Ben-
gio et al. 2015; Ranzato et al. 2016). In order to address the
exposure bias and the loss which does not operate at the se-
quence level, Ranzato et al. (2016) employ the REINFORCE
algorithm (Williams 1992) to decide whether or not tokens
from a sampled prediction could contribute to a high task-
specific score (e.g., BLEU). Bahdanau et al. (2017) use the
actor-critic method from reinforcement learning to directly
optimize a task-specific score.

Adversarial Learning Recently, adversarial learn-
ing (Goodfellow et al. 2014) has been successfully
applied to neural machine translation (Wu et al. 2017;
Yang et al. 2018; Cheng et al. 2018). In the adversarial
framework, NMT models generally serve as the generator
which defines the policy to generate the target sentence
y given the source sentence x. A discriminator tries to
distinguish the translation result ŷ = G(x) from the
human-generated one y, given the source sentence x.

If we remove the orientator O, our model is roll-backed to
the adversarial NMT, and the training objective of the dis-
criminator D is rewritten as

max
D
{logD(x,y) + log(1−D(x, ŷ))} (12)

The goal of the discriminator is try to maximize the likeli-
hood of human translation D(x,y) to 1 and minimize that
of generated translation D(x, ŷ) to 0.

As seen, the discriminator uses a binary classification by
uniformly treating all generated translations as negative ex-
amples (i.e., labeling “0”) and all human translations as posi-
tive examples (i.e., labeling “1”), regardless of the quality of

the generated translations. However, intuitively, high-quality
translations and low-quality translations should be treated
differently by the discriminator, otherwise, inaccurate re-
ward signals would be propagated back to the generator. In
our proposed architecture, this problem can be alleviated by
replacing the simple binary outputs with the more informa-
tive adequacy-oriented metric CDR, which is calculated by
directly comparing generated and human translations.

Adequacy Modeling Inadequate translation problem is a
commonly-cited weakness of NMT models (Tu et al. 2016).
A number of recent efforts have explored ways to allevi-
ate this problem. For example, Tu et al. (2016) and Mi
et al. (2016) employ coverage vector as a lexical-level in-
dicator to indicate whether a source word is translated or
not. Zheng et al. (2018) and Meng et al. (2018) move one
step further and directly model translated and untranslated
source contents by operating on the attention context vec-
tor. He et al. (2017) use a prediction network to estimate
the future cost of translating the uncovered source words.
Our approach is complementary to theirs since they model
the adequacy learning at the word-level inside the genera-
tor (i.e., NMT models), while we model it at the sequence-
level outside the generator. We take the representative cover-
age mechanism (Tu et al. 2016) as another stronger baseline
model for its simplicity and efficiency, and experimental re-
sults show that our model can further improve performance.

In the context of adequacy-oriented training, Tu et
al. (2017) introduce an auxiliary objective to measure the
adequacy of translation candidates, which is calculated by
reconstructing generated translations back to the original in-
puts. Benefiting from the flexible framework of reinforce-
ment training, we are able to directly compare generated
translations with human translations and define a more
straightforward metric, i.e., CDR to measure adequacy of
generated sentences.

Experiments
Setup
We conduct experiments on the widely-used Chinese (Zh)
⇒English (En) and German (De) ⇔English (En) trans-
lation tasks. For Zh⇒En translation, the training corpus
contains 1.25M sentence pairs extracted from LDC cor-
pora. NIST 2002 (MT02) dataset is the validation set and
the test data consists of NIST 2003 (MT03), NIST2004
(MT04), NIST 2005 (MT05) and NIST 2006(MT06). For
De⇔En translation, to compare with the results reported
by previous work (Shen et al. 2016; Bahdanau et al. 2017;
Wu et al. 2017; Vaswani et al. 2017), we use both the IWSLT
2014 and WMT 2014 data. The former contains 153K sen-
tence pairs and the latter consists of 4.56M sentence pairs.
The 4-gram NIST BLEU score (Papineni et al. 2002) is used
as the evaluation metric and sign-test (Collins, Koehn, and
Kučerová 2005) is employed to test statistical significance.

For training all neural models, we set the vocabulary size
to 30K for Zh⇒En, for IWSLT 2014 De⇒En, we follow the
preprocessing procedure as used in Ranzato et al. (2016)
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# Model # Para. Speed MT03 MT04 MT05 MT06 All
1 RNNSEARCH 86.7M 1.4K 36.00 38.26 35.88 35.98 36.76
2 + MRTBLEU +0M 0.3K 37.32 39.41 36.78 37.22 37.92‡

3 + DCNN +0.23M 1.0K 37.11 38.84 35.97 37.36 37.54‡

4 + DRNN +0.17M 1.2K 36.96 38.92 36.13 37.54 37.59‡

5 + OBLEU +0M 1.1K 37.02 38.49 36.62 36.21 37.44†

6 + OCHRF3 +0M 1.1K 37.91 39.80 36.57 35.95 37.75†

7 + OCDR +0M 1.0K 37.42 39.52 36.86 37.34 38.02‡

8 + DRNN + OCDR +0.17M 0.8K 37.61 40.05 37.58 36.87 38.42‡

9 RNNSEARCH-COVERAGE +1.03M 1.2K 38.04 41.09 38.73 36.52 39.13
10 + DRNN + OCDR +1.20M 0.7K 38.62 41.98 39.39 37.42 39.81†

Table 1: Evaluation of translation performance on Zh⇒En translation. “D” denotes discriminator and “O” denotes orientator.
“MRT” indicates minimum risk training (Shen et al. 2016), and “DCNN” indicates adversarial training with a CNN-based dis-
criminator (Wu et al. 2017). “# Para.” denotes the number of parameters, and “Speed” denotes the training speed (words/second).
“†” and “‡” indicate statistically significant difference (p < 0.05 and p < 0.01 respectively) from the corresponding baseline.

and for WMT 2014 En⇒De, preprocessing method de-
scribed in Vaswani et al. (2017) is borrowed. We pre-train
the discriminator on translation samples produced by the
pre-trained generator. After that, the discriminator and the
generator are trained together, and the generator is updated
by the REINFORCE algorithm mentioned above. We also
follow the training tips mentioned in Shen et al. (2016) and
Wu et al. (2017). The hyper-parameter α which could con-
trol the sharpness of the generator distribution in our system
is 1e-4, which could also be regarded as a baseline to re-
duce the variance of the REINFORCE algorithm. We also
randomly choose 50% minibatches trained with our objec-
tive function and the other with the MLE principle. In MRT
training strategy (Shen et al. 2016), the sample size is 25, the
hyper-parameter α is 5e-3 and the loss function is negative
smoothed sentence-level BLEU.

We validate our models on two representative model
architectures, namely RNNSEARCH and TRANSFORMER.
For the RNNSEARCH model, mini-batch size is 80, the
word-embedding dimension is 620, and the hidden layer size
is 1000. We use a neural coverage model for RNNSEARCH-
COVERAGE and the dimensionality of coverage vector is
100. The baseline models are trained for 15 epochs, which
are used as the initial generator in the proposed framework.
For the TRANSFORMER model, we implement our proposed
approach on top of an open source toolkit THMUT (Zhang
et al. 2017). Configurations in Vaswani et al. (2017) are used
to train the baseline models.

Chinese-English Translation Task
Table 1 lists the results of various translation models on
Zh⇒En corpus. As seen, all advanced systems significantly
outperform the baseline system (i.e., RNNSEARCH), al-
though there are still considerable differences among differ-
ent variants.

Architectures of Discriminator (Rows 3-4) We evaluate
two architectures for the discriminator. The CNN-based dis-
criminator is composed of two convolution layers with 3×3
window, two max-pooling layers with 2 × 2 window and

one softmax layer. The feature map size is 10 and the feed-
forward hidden size is 20. The RNN-based discriminator
consists of two two-layer RNN encoders with 32 LSTM
units and a fully-connected neural network with 32 units.
We find that the RNN discriminator achieves similar perfor-
mance with its CNN counterpart (37.59 vs. 37.54), while has
a faster training speed (1.2K vs. 1.0K words/second). The
main reason is that the CNN-based discriminator requires
high computation and space cost to utilize multiple layers
with convolution and pooling from a large input matrix.

Adequacy Metrics for Orientator (Rows 5-7) As afore-
mentioned, the CDR score can be directly used as a re-
ward to update the parameters, which is in analogy to the
MRT (Shen et al. 2016) except that we use 1-best sam-
ple while they use n-best samples. For comparison, we also
used the word-level BLEU score (Row 5) and character-level
CHRF3 score (Popović 2015) (Row 6) as the rewards.

As seen, this strategy consistently improves translation
performance, without introducing any new parameters. The
extra computation cost is mainly from generating translation
sentence and force decoding the human translation with the
NMT model. We find that CDR not only outperforms its 1-
best counterpart “OBLEU” and “OCHRF3”, but also surpasses
“MRTBLEU” using 25 samples. We attribute this to the fact
that CDR can better estimate the adequacy of the transla-
tion, which is the key problem of NMT models, and go be-
yond the the simple low-level n-gram matching measured by
BLEU and CHRF3.

Combining Them Together (Row 8) By combining ad-
vantages of both reinforcement learning and adequacy-
oriented objective, our model achieves the best perfor-
mance, which is 1.66 BLEU points better than the baseline
“RNNSEARCH”, up to 0.98 BLEU points better than us-
ing single component and significantly improve the perfor-
mance of “MRTBLEU” model. One more observation can be
made. “+D+O” outperforms its “+O” counterpart (e.g., 8 vs.
7), which confirms our claim that the discriminator gives a
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System Model De⇒En
Existing end-to-end NMT systems

(Ranzato et al. 2016) CNN encoder + Sequence level objective 20.73
(Bahdanau et al. 2017) CNN encoder + Actor-critic 22.45
(Wiseman and Rush 2016) RNNSEARCH + Beam search optimization 25.48
(Wu et al. 2017) RNNSEARCH + Adversarial objective 26.98

Our end-to-end NMT systems

this work

RNNSEARCH 26.51
+ MRTBLEU 27.29†

+ DCNN 27.24†

+ OCDR 27.31†

+ DRNN + OCDR 27.79‡

Table 2: Comparing with previous works of applying reinforcement learning for NMT on IWSLT 2014 De⇒En translation task.
“†” and “‡” indicate statistically significant difference (p < 0.05 and p < 0.01 respectively) from the RNNSEARCH model.

Model BLEU
GNMT + RL (Wu et al. 2016) 26.30
ConvS2S (Gehring et al. 2017) 26.43
Transformer (Base) (Vaswani et al. 2017) 27.3
Transformer (Big) (Vaswani et al. 2017) 28.4
TRANSFORMER-BASE 27.30

+ OCDR 27.80
+ DRNN + OCDR 28.01†

TRANSFORMER-BIG 28.35
+ OCDR 28.63
+ DRNN + OCDR 28.99†

Table 3: BLEU scores on WMT 2014 En⇒De testset us-
ing the state-of-the-art TRANSFORMER model. ‘†” indicates
statistically significant difference (p < 0.05) from the corre-
sponding TRANSFORMER baseline model.

smoother and dynamically-updated score than directly using
the calculated one.

Working with Coverage Model (Rows 11-12) Tu et
al. (2016) propose a coverage model to indicate whether a
source word is translated or not, which alleviates the inad-
equate translation problem of NMT models. We argue that
our model is complementary to theirs, because we model the
adequacy learning outside the generator by using an addi-
tional adequacy-oriented discriminator, while they model it
inside the generator. Experimental results validate our hy-
pothesis: the proposed approach further improves perfor-
mance by 0.58 BLEU points over the coverage-augmented
model RNNSEARCH-COVERAGE.

English-German Translation Tasks
To compare with previous work of applying reinforcement
learning for NMT (Ranzato et al. 2016; Bahdanau et al.
2017; Wiseman and Rush 2016; Wu et al. 2017), we first
conduct experiments on IWSLT 2014 De⇒En translation
task. As listed in Table 2, we reproduce the results of adver-
sarial training reported by Wu et al. (2017) (27.24 vs. 26.98).
Furthermore, the proposed approach consistently outper-

Model MAN 4 CDR 4
RNNSEARCH 3.31 ±0.70 – 0.68 –

+ D 3.57 ±0.61 7.9% 0.71 4.4%
+ O 3.69 ±0.48 11.5% 0.75 10.3%
+ D + O 3.79 ±0.47 14.5% 0.80 17.6%

Table 4: Adequacy scores on randomly selected 100 sen-
tences on Zh⇒En task, which are measured by CDR and
human evaluation (“MAN”).

forms previous works, demonstrating the effectiveness of
our models.

We also evaluate our model on the recently proposed
TRANSFORMER model (Vaswani et al. 2017) on WMT 2014
En⇒De corpus. As shown in Table 3, our models signifi-
cantly improve performances in all cases. Combining with
previous results, our model consistently improve translation
performance across various language pairs and NMT archi-
tectures, demonstrating the effectiveness and universality of
the proposed approach.

Analysis
To better understand our models, we conduct extensive anal-
yses on the Zh⇒En translation task.

Adequacy Evaluation To better evaluate the adequacy,
we randomly choose 100 sentences from the test set, and
ask two human evaluators to judge the quality of generated
translations. Five scales have been set up, i.e., {1, 2, 3, 4, 5},
where “1” means that it is irrelevant between the source sen-
tence and the translation sentence, and “5” means that from
semantic and syntactic aspect, the translation sentence and
the source sentence is completely equivalent.

Table 4 lists the results of human evaluation and the pro-
posed CDR score. First, our models consistently improve
the translation adequacy under both human evaluation and
the CDR score, indicating that the proposed approaches in-
deed alleviate the inadequate translation problem. Second,
the relative improvement on CDR is consistent with that on
subjective evaluation. The Pearson Correlation Coefficient
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Figure 3: BLEU and CDR scores of the translations with re-
spect to the input lengths.

between CDR and manual evaluation score is 0.64, indicat-
ing that the proposed CDR is a reasonable metric to measure
translation adequacy.

Length Analysis We group sentences of similar lengths
and compute both the BLEU score and CDR score for each
group, as shown in Figure 3. The four length spans contain
1386, 2284, 1285, and 498 sentences, respectively. From the
perspective of the BLEU score, the proposed model (i.e.,
“+D+O”) outperforms RNNSEARCH in all length segments.
In contrast, using discriminator only (i.e., “+D”) outper-
forms RNNSEARCH in most cases, except long sentences
(i.e., > 45). One possible reason is that it is difficult for the
discriminator to differentiate generated translations from hu-
man translations for long source sentences, thus the genera-
tor cannot learn well about these instances due to the “mis-
taken” rewards from the discriminator. Accordingly, using
the CDR score (i.e., “+O”) alleviates this problem by pro-
viding a sequence-level score, which better estimates the
adequacy of the translations. The final model combines the
advantages of both a smoother and dynamically-updated ob-
jective from the discriminator (“+D”), and a more accurate
objective specifically designed for the translation task from
the orientator (“+O”).

The CDR scores for all models degrade when the length
of source sentence increases. This is mainly due to that
inadequate translation problem is more serious on longer
sentences for NMT models (Tu et al. 2016). The adver-
sarial model (i.e., “+D”) improves CDR scores while the
improvement degrades faster with the increase of sentence
length. However, our proposed approach consistently im-
proves CDR performance in all length segments.

Input
美国 线上 时代华纳 董事长 凯斯 今晚 宣布 他 将 在 五
⽉ 辞职 , 他 说 , 此 举 「 对 公司 ⽽ ⾔ 是 最 好 的 」 。

REF
Steve case chairman of AOL time warner announced tonight 
that he will resign in May, he said that his move is the best 
interest of the company.

BASE
The chairman of the board of time warner of the united 
states announced tonight that he will resign in May.                               

(CDR: 0.56; BLEU: 36.18)

OURS
Chairman of AOL time warner announced tonight that he 
will resign in May, he said this is the best thing for the 
company.                                     (CDR: 0.88; BLEU: 58.82)

Figure 4: Example translations on Zh⇒En test set.

Effect of the Discriminator Koehn and Knowles (2017)
point out that the attention model does not always corre-
spond to word alignment and may considerably diverge. Ac-
cordingly, the attention matrix-based CDR score may not al-
ways correctly reflect the adequacy of generation sentences.
However, our discriminator is able to give a smoother and
dynamically-updated objective, and thus could provide more
accurate adequacy scores of generation sentences. From the
above quantitative and qualitative results, the discriminator
indeed leads to better performance (i.e., “+D+O” vs. “+O”).

Case Study To better understand the advantage of our pro-
posed model, we show a translation case in Figure 4. Spe-
cially, we provide a Zh⇒En example with two translation
results from the RNNSearch and Adequacy-NMT models
respectively, as well as the corresponding CDR and BLEU
scores. We emphasize on their different parts with bold
fonts which lead to different translation quality. As seen,
the latter part of the source sentence is not translated by the
RNNSearch model while our proposed model correct this
mistake. Accordingly, our model improves both CDR and
BLEU scores.

Conclusion
In this work, we propose a novel learning approach for RL-
based NMT models, which integrates into the policy gradi-
ent with an adequacy-oriented reward designed specifically
for translation. The proposed approach combines the advan-
tages of both sequence-level training of reinforcement learn-
ing, as well as a more accurately estimated reward by con-
sidering the translation adequacy in terms of coverage dif-
ference ratio (CDR). Experimental results on different lan-
guage pairs show that our proposed approach not only sig-
nificantly outperforms standard NMT models, but also fur-
ther improves performance over those using the policy gra-
dient and the adequacy-oriented reward individually. In ad-
dition, the proposed approach is also complementary to the
coverage models (Tu et al. 2016), because the two models
aim to alleviate the inadequate translation problem from two
different perspectives (i.e., sequence-level vs. word-level).

Future directions include validating our approach on other
architectures such as CNN-based NMT models (Gehring
et al. 2017) and improved TRANSFORMER models (Shaw,
Uszkoreit, and Vaswani 2018; Shen et al. 2018), as well as
combining with other advanced techniques in reinforcement
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learning and adversarial learning (Bahdanau et al. 2017;
Yu et al. 2017; Yang et al. 2018).
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