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Abstract

Mixture of Softmaxes (MoS) has been shown to be effective
at addressing the expressiveness limitation of Softmax-based
models. Despite the known advantage, MoS is practically
sealed by its large consumption of memory and computa-
tional time due to the need of computing multiple Softmaxes.
In this work, we set out to unleash the power of MoS in
practical applications by investigating improved word coding
schemes, which could effectively reduce the vocabulary size
and hence relieve the memory and computation burden. We
show both BPE and our proposed Hybrid-LightRNN lead to
improved encoding mechanisms that can halve the time and
memory consumption of MoS without performance losses.
With MoS, we achieve an improvement of 1.5 BLEU scores
on IWSLT 2014 German-to-English corpus and an improve-
ment of 0.76 CIDEr score on image captioning. Moreover, on
the larger WMT 2014 machine translation dataset, our MoS-
boosted Transformer yields 29.6 BLEU score for English-to-
German and 42.1 BLEU score for English-to-French, out-
performing the single-Softmax Transformer by 0.9 and 0.4
BLEU scores respectively and achieving the state-of-the-art
result on WMT 2014 English-to-German task.

Introduction
Sequence-to-Sequence model (seq2seq) (Sutskever, Vinyals,
and Le 2014; Bahdanau, Cho, and Bengio 2014) has led to
significant research progress on language generation over
the last few years. A typical seq2seq model employs an auto-
regressive factorization of the joint distribution and outputs
the conditional probability of each token given the previ-
ous tokens. A standard approach to calculate the conditional
probability is to apply the Softmax function over the logits.

Though seq2seq models with a standard Softmax output
function are largely effective, Yang et al. (2018) show that
the standard Softmax formulation limits the expressiveness
of the generation model and results in the Softmax bottle-
neck. They propose Mixture of Softmaxes (MoS) to address
this issue and demonstrate improved performances on lan-
guage modeling. However, MoS poses a non-negligible bur-
den on the computation time and the memory consumption.
Specifically, MoS outputs a weighted average of K Soft-
max components, where computing each Softmax involves
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a huge dot-product between the hidden state and the em-
bedding matrix, costing a considerable amount of time and
memory.

To address the aforementioned drawbacks, a natural idea
is to improve the time- and memory-efficiency of comput-
ing each Softmax. On a high level, we aim at an encoding
mechanism of the vocabulary so that each word can be rep-
resented as a code sequence. Then, computing a single Soft-
max reduces to the product of a sequence of conditional code
distributions. Given a code dictionary size, the number of
possible words that can be represented increases exponen-
tially w.r.t. the code sequence length, while the computa-
tion and memory cost only increases linearly. Hence, such
an encoding scheme can theoretically reduce the time and
memory consumption exponentially. Clearly, some encod-
ing schemes must have better statistical properties than oth-
ers and thus lead to better empirical performances. Ideally,
the encoding could be learned directly from the data.

In this work, we investigate two algorithms for these
purposes: The first one is called Hybrid-LightRNN, which
learns a encoding mechanism from the data based on the
language modeling objective. The other one is Byte Pair En-
coding (BPE) (Gage 1994; Sennrich, Haddow, and Birch
2016), which was originally proposed to help with trans-
lating rare words. When evaluated on machine translation
(MT) and image captioning, both of these approaches can
effectively reduce the time and memory consumption of
MoS with no performance losses. Specifically, utilizing MoS
brings a performance gain of up to 1.5 BLEU scores on
IWSLT 2014 German to English and 0.76 CIDEr scores
on image captioning. On WMT 2014 machine translation
benchmarks, we achieve a BLEU score of 29.6 on English-
to-German and 42.1 on English-to-French, leading to a state-
of-the-art result on the WMT 2014 English-to-German task.

Our contribution is two-fold. Firstly, we propose to
use Hybrid-LightRNN and BPE to make MoS time- and
memory-efficient. Secondly, we demonstrate the empirical
effectiveness of MoS on sentence generation by improved
results on machine translation and image captioning.

Background: Mixture of Softmaxes
Mixture of Softmaxes (MoS) (Yang et al. 2018) is intro-
duced to address the expressiveness limitations of Softmax-
based models. In this section, we briefly review the motiva-
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tion and the formulation of MoS.
With the autoregressive factorization, a generation model

estimates the distribution of the next token x given the con-
text c. In language modeling, the context is composed of
previous words of x. In conditional generation tasks such as
MT or image captioning, the context also contains the source
sentence or the image. Let P ∗(X | ci) denote the ground-
truth distribution of the next token given context c. Then the
standard Softmax function computes the probability distri-
bution Pθ(x | c) as

Pθ(x | c) =
exp h>c wx∑
x′ exp h>c wx′

where hc is the context vector or the RNN hidden state
and wx is the word embedding.

Softmax Bottleneck Yang et al. (2018) show the expres-
siveness limitation of the Softmax function from a ma-
trix factorization perspective. Specifically, suppose that the
number of valid contexts is finite. We list all contexts as
c1, c2, · · · , cN . Let A ∈ RN×V ,W ∈ RV×d,H ∈ RN×d
denote the log probability of the ground-truth distribution,
the word embedding matrix and the context representation
matrix respectively, where N is the number of contexts, V
is the vocabulary size and d is the dimensionality of the
embedding vector and the context vector. In other words,
Ai,j = logP ∗(xj | ci),Wj = wxj ,Hi = hci .

Let F (A) denote all matrices obtained by applying row-
wise shifting to A. Since all matrices in F (A) result in the
same probability distribution due to the normalization term
in the Softmax, the Softmax function can output the ground-
truth distribution P ∗ if and only if the factorization HW>

approximate any matrix in F (A).
However, in language generation tasks, matrices in F (A)

cannot be approximated by HW> because of the differ-
ences in their matrix ranks. More specifically, the rank of
HW> is limited by the embedding vector dimensionality d.
In comparison, as shown in Yang et al. (2018), A and any
other matrices within F (A) have similar high ranks since
different contexts result in highly different probability dis-
tributions of the next token. Consequently, the ground-truth
distribution P ∗ cannot be approximated by the Softmax dis-
tribution Pθ, which results in the Softmax Bottleneck.

MoS To tackle the Softmax bottleneck problem, MoS for-
mulate the distribution as the weighted average of K Soft-
max components:

Pθ(x | c) =

K∑
k=1

πc,k
exp h>c,kwx∑
x′ exp h>c,kwx′

(1)

where πc,k is the mixture weight of the k-th Softmax compo-
nent and hc,k is the k-th context vector. On language mod-
eling, it has been shown empirically that such a formulation
leads to a high rank matrix. Note that since all Softmaxes
share the same word embedding matrix, the number of pa-
rameters do not increase rapidly with more mixtures, pre-
venting overfitting.

The mixture weight and the context vectors are computed
as

πc,k =
exp g>w

(π)
k∑K

k′=1 exp g>w
(π)
k′

hc,k = tanh(W
(h)
k g)

(2)

where g denotes a vector representation of the context c.
w(π) and W(h) denote the parameters of the mixture weight
and the parameters of the context vector with a slight abuse
of notation.

In our machine translation experiments, the attention
model (Bahdanau, Cho, and Bengio 2014) is employed to
obtain an context vector of the source sentence. g is obtained
by passing the concatenation of the context vector and the
RNN hidden state through an MLP. In the captioning case,
the decoder is a vanilla RNN and the vector representation
g is the decoder’s hidden state.

Time and Memory Cost As shown in Eqn. 1, MoS com-
putes K Softmaxes and output the weighted average of
the K probability distributions. Though MoS effectively in-
creases the expressiveness of a generation model, it also in-
curs a large time and memory cost since it needs to perform
K Softmax operations on the whole vocabulary. The time
and memory costs not only hinder rapid algorithm develop-
ments but also limit the mixture number when resources are
limited, restricting the power of MoS.

Encoding Words for Efficient MoS
In this section, we introduce two word encoding algorithms
to reduce the memory and time consumptions of MoS. We
aim to obtain an encoding mechanism of each word where
the number of potential codes is much smaller than the vo-
cabulary size. In theory, given a code dictionary, the number
of possible words that can be represented increases expo-
nentially w.r.t. the code sequence length, while the compu-
tation cost only increases linearly. Then a generation model
is trained to output a code sequence to generate a sentence.
By decomposing words into shared codewords, the Soft-
max in the generation model only needs to be computed
over the code dictionary. However, the encoding function
need to be optimized to reflect semantic correlations be-
tween words since the semantic representations of words are
shared through the embeddings of the codes.

Background: Learning Encoding Mechanisms
Using Optimal Transport
We first provide an optimal transport (OT) (Peyré and Cu-
turi 2017) perspective of learning the encoding mechanism.
Broadly speaking, optimal transport is the assignment prob-
lem between probability distributions. In the case of learn-
ing encoding mechanisms, the probability distributions are
simply the delta distribution for each word and each code
sequence. We define the following Wasserstein distance be-
tween the word space and the code sequence space.
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min
T

∑
1≤i≤|V |, s∈S

Ci,sTi,s

s.t. Ti,s ∈ {0, 1}∑
i

Ti,s = 1,
∑
j

Ti,s = 1

(3)

where i enumerates words in the vocabulary V and S is
the set of all code sequences. Ti,s is an indicator function of
whether word x̄i is assigned to code sequence s. The con-
strains over T ensures that each word is only mapped to a
code sequence and that each code sequence is only mapped
to a word. Hence a valid T would naturally result in a de-
sired bijection mapping. Ci,s is the cost of assigning word
x̄i to code sequence s and

∑
1≤i≤V,s∈S Ci,sTi,s is the over-

all cost and the optimization objective. For simplicity, we
assume that the number of possible code sequences |S| is
equal to the vocabulary size, since we can always add un-
used tokens to the vocabulary and assign them to redundant
code sequences.

Hybrid-LightRNN
As mentioned earlier, the encoding function should be
learned so that words can effectively share semantics
through common codes. More importantly, since the encod-
ing function is used in language generation tasks, it is de-
sirable to have encoded sequences that are easy to model
by current RNN-based models. As language modeling can
be used to measure the difficulty of modeling the code se-
quences, we propose Hybrid-LightRNN that optimizes the
encoding function according to the language modeling ob-
jective.

To compute the probability of a sentence under the cur-
rent encoding function, we replace each sentence x by its
code sequence and compute the log probability of its cor-
responding code sequence. Formally, let g(x̄) = s =
(s1, s2, · · · , sM ) be the encoding function which maps a
word x̄ into a code sequence s. The log probability of a sen-
tence is as follows when an encoding function is employed:

logPΘ(x) =
∑
k

logPΘ(xk | x1, · · · , xk−1)

=
∑
k

∑
j

logPΘ(g(xi)j | Zk,j)
(4)

where Zk,j = g(x1)1, · · · , g(x1)M , · · · , g(xk)1, · · · ,
g(xk)j−1 is the concatenation of code sequences of the con-
text and Θ is the parameters of a neural language model.
Then the optimal encoding function is defined as:

argmin
g

min
Θ

∑
x∈X
− logPΘ(x) (5)

where X is the training corpus.

Optimization Ideally, for each encoding function g(·), we
would like to find the optimal language modeling cost. How-
ever, it is too computationally heavy to enumerate the com-
binatorial possibilities of encoding function and evaluate the

language modeling performance. Instead, we would like to
jointly optimize the encoding function g(·) and the language
model parameters Θ. However, the encoding function g(·)
is represented by discrete parameters, hence we resort to an
approximated algorithm. The high-level idea of the approx-
imated algorithm is to iteratively optimize one of the lan-
guage model parameters Θ and the encoding function g(·)
while keeping the other one fixed. Since all language model
parameters in Θ are fully differentiable, we can simply uti-
lize SGD to optimize them. Then, the core difficulty lies in
the step of optimizing the discrete parameters of g(·), during
which, ideally, we want the following two properties to hold

• The encoding function remains valid. In other words, the
mapping between words and code sequences remains bi-
jections.

• The language modeling objective function is decreased.

At first glance, this optimization problem seems in-
tractable since there are combinatorially many possible g(·).
However, since finding the optimal mapping is naturally an
assignment problem, we can rely on existing algorithms of
optimal transport if we can approximate the language mod-
eling loss function by the Wasserstein distance defined in
Eqn. 3. The key idea here is to decompose the corpus level
likelihood to the encoding decisions of each word. More
specifically, in the language modeling objective, for each
word, we are measuring the likelihood of its current code
sequence for each occurrence in the training data. Naturally,
we can define the cost of assigning the word to the corre-
sponding code sequences by the likelihood of other code se-
quences.

Formally, the cost of assigning word x̄i to code sequence
s can be defined as

∑
x∈X

∑
k I(x̄i = xk) log−P (s |

Zk,1) where I(·) is the indicator function. Here, since the
context is encoded by the original encoding function, we
implicitly assume the independence between the costs of
different words’ mapping. We further assume the indepen-
dence between codes and approximate log−P (s | Zk,1)
as
∑
j log−P (sj | Zk,j) to avoid evaluating the language

model for |S| times. Finally, we obtain the cost function as
follows:

Ci,s =
∑
x∈X

∑
k

I(x̄i = xk)
∑
j

log−P (sj | Zk,j) (6)

Note that, when we use the original encoding function,
i.e., Ti,s = I(g(x̄i) = s), the optimal transport objec-
tive equals to the current language modeling likelihood, i.e.,∑
i,s Ci,sTi,s =

∑
x∈X − logP (x). Hence the Wasserstein

distance will always be lower than the current language
modeling cost. However, because of the independence as-
sumptions, the language modeling loss is not guaranteed to
decrease after optimizing the encoding function.

A canonical solution to the optimal transport problem
is the minimum cost maximum flow (MCMF) algorithm
(Ahuja et al. 1993). However, the computation complexity
of the MCMF is O(|V |3). Following LightRNN (Li et al.
2016), we adopt an 1

2 -approximation algorithm (Preis 1999),
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which has a complexity of O(|V |2). With the approxima-
tion algorithm, the time consumption of solving the optimal
transport problem only constitutes a small proportion of the
whole LightRNN algorithm when taking the time of training
the neural language model into account.

Increasing the Capacity for Frequent Words Although
the algorithm does not require the maximum code sequence
length M to be small, in our experiments, we set M to 2

since the dictionary size can already be reduced toO(
√
|V |)

if the first code and the second code can take
√
|V | values

respectively. However, if we only uses O(
√
|V |) number of

codes to model all words in the vocabulary, though the effi-
ciency is improved greatly, the capacity of the model is hurt
significantly, since each word is forced to share embeddings
with 2 ×

√
|V | − 1 words which share the first code or the

second code with it.
As a result, the encoding function should assign exclu-

sive codes to important words. Since frequent words have
a large impact on the overall performance, we set the en-
coding function so that the codes of the most frequent K
words are not shared with other words. Specifically, for word
x̄i (i < K), we manually specify their code sequences to
be a length 1 sequence (i). For all other words, their code
sequences do not contain code i and are learned using the
optimal transport objective.

Since the code sequence has maximum length two, we can
use the following table to represent the encoding function,
where the row and column denotes the first and the second
respectively:

A =

[
D UNK

UNK L

]
where the matrix D is a sparse diagonal matrix to which
frequent words are assigned. L ∈ Zd1×d2 is a dense matrix
learned through optimal transport. To fit V words into the
table, the dimensions of D and L should satisfy K + d1 ×
d2 ≥ |V |.

LightRNN (Li et al. 2016) is a special case of Hybrid-
LightRNN where they do not model frequent words sepa-
rately. We will show in the experiments that it is very im-
portant to model frequent words separately. Furthermore,
LightRNN defines the dimension of the first code to be equal
to the dimension of the second code d1 = d2 =

√
V for

best efficiency. However, when one dimension is larger, the
model can have more embedding vectors and has a larger ca-
pacity, which also results in an encoding mechanism similar
to the hierarchical Softmax (Morin and Bengio 2005).

Byte Pair Encoding (BPE)
Byte Pair Encoding (BPE) (Gage 1994; Sennrich, Haddow,
and Birch 2016) was introduced to address the difficulties of
translating rare words and out-of-vocabulary words in ma-
chine translation. BPE is of interest here since it can reduce
the vocabulary size effectively and can speedup the compu-
tation of Softmaxes.

In the encoding learned by the BPE, each code is a sub-
word. Formally, BPE learns the code dictionary S as fol-

lows: We initialize the code dictionary as the set of all possi-
ble characters and break all words into sequences of codes.
Then we iteratively run the following steps to add new codes
to the dictionary:

1. Count the frequency of all code pairs within training data.
Find out the most frequent pair/bigram of codesA andB.

2. Add the new code AB to the dictionary. Replace all oc-
currence of pair (A,B) with AB.

3. End the iteration if the dictionary size reaches a threshold.
Otherwise go to step 1.

BPE is an algorithm based on heuristics. However, the
strong inductive bias of BPE always gives more capacity to
frequent words when it comes to the tradeoff between effi-
ciency and capacity if we vary the subword unit dictionary
size, since the more frequent words will be segmented into
fewer parts, which will lead to more exclusive embeddings
instead of shared embeddings.

When we use a larger code dictionary, more frequent
words and subwords are added to the dictionary and their
semantics are modeled by separate embedding vectors, lead-
ing to a larger model capacity. On the other hand, the model
efficiency is improved with a smaller subword dictionary.

Related Work
Apart from the previously mentioned related works, mix-
ture of Softmaxes is closely related to works that mix rep-
resentation vectors (Eigen, Ranzato, and Sutskever 2013;
Shazeer et al. 2017). Yang et al. (2018) show that this ap-
proach does not solve the softmax bottleneck problem.

Hierarchical Softmax (Morin and Bengio 2005) is an
extensively studied technique to improve the efficiency of
Softmaxes. Morin and Bengio (2005) uses the synsets in
the WordNet to build the hierarchical tree. Mnih and Hin-
ton (2009) propose to learn the hierarchical tree with a
clustering algorithm. The idea of separately modeling fre-
quent words is also explored in Adaptive Softmax (Grave
et al. 2016). Although hierarchical Softmax can reduce the
time and memory consumptions during training, it still re-
quires computing the Softmax over the whole vocabulary
during testing. Noise Contrastive Estimation (Gutmann and
Hyvärinen 2012; Mnih and Teh 2012) and Negative Sam-
pling (Mikolov et al. 2013) can also speed up Softmax dur-
ing training.

Experiments
In this section, we describe our experiments on machine
translation and image captioning and study our models
quantitatively and qualitatively.

Experiment Settings
Machine Translation We first evaluate our models on the
IWSLT 2014 German to English (DE-EN) dataset (Cettolo
et al. 2014).

We employ an LSTM (Hochreiter and Schmidhuber
1997) seq2seq model with the dot-product attention (Bah-
danau, Cho, and Bengio 2014; Luong, Pham, and Manning
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Machine Translation (IWSLT) Image Captioning (MSCOCO)
Model # Softmaxes BLEU BLEU-4 METEOR CIDEr

Baseline 1 27.41 ± 0.15 29.64 ± 0.20 23.60 ± 0.12 88.50 ± 0.47
Hybrid-LightRNN-MoS 9 28.79 ± 0.23 30.02 ± 0.16 23.87 ± 0.18 88.96 ± 0.21

BPE-MoS 9 28.91 ± 0.06 30.06 ± 0.10 24.00 ± 0.24 89.26 ± 0.11

Table 1: Overall performance comparisons on IWSLT and MSCOCO

Model EN-DE EN-FR

Wu et al. (2016) 26.30 41.16
Shazeer et al. (2017) 26.03 40.56
Gehring et al. (2017) 26.43 41.62
Vaswani et al. (2017) 28.4 41.8
Dehghani et al. (2018) 28.9 N/A
Shaw, Uszkoreit, and Vaswani (2018) 29.2 41.5
Ott et al. (2018) 29.3 43.2

Our Transformer (Base) 27.4 38.2
Transformer-MoS (Base) 28.0 39.1

Our Transformer (Big) 28.7 41.7
Transformer-MoS (Big) 29.6 42.1

Table 2: Experiment results on the WMT 2014 English-
German (EN-DE) and English-French (EN-FR) where
Transformer-MoS denotes the Transformer model with
MoS.

2015) as the baseline. We build the baseline using the Py-
Torch code from Dai, Xie, and Hovy (2018). For Hybrid-
LightRNN, we set K to 9, 652 and set d1 and d2 to 174 to
represent a total of 30K words. As model performances ex-
hibit small variances on IWSLT, we run each experiment for
five times with different random seeds and report the average
performance and the standard deviation.

We also test our best model on the standard WMT 2014
English-to-German (EN-DE) and English-to-French (EN-
FR) benchmarks, consisting of 4.5M and 36M sentence
pairs respectively. We follow the preprocessing steps of
ConvS2S (Gehring et al. 2017) for the EN-FR task. We em-
ploy BPE with 32K merge operations for both tasks. The
Transformer model (Vaswani et al. 2017) is employed as our
baseline. Our configuration largely follows the configuration
of Vaswani et al. (2017), except that we multiply the orig-
inal learning rate by 0.8 for the Transformer equipped with
MoS. Specifically, we test both the Base configuration and
Big configuration, which respectively have embeddings of
dimension 512 and 1024, the dimension of the inner layer
2048 and 4096 and the number of attention heads 8 and 16.
We used the Adam optimizer (Kingma and Ba 2014) with
β1 = 0.9, β2 = 0.98, and ε = 10−9. We set the mixture
number to 9. We use the corpus-level BLEU score (Papineni
et al. 2002) as the evaluation metric. Our Transformer train-
ing and evaluation code is based on an open source toolkit
THUMT (Zhang et al. 2017).

Image Captioning We conduct experiments on the
MSCOCO dataset (Lin et al. 2014) and follow the same

preprocessing procedure and the train/validation/test split as
used in Karpathy and Fei-Fei (2015). We use the Neural Im-
age Caption (NIC) model (Vinyals et al. 2015) as the base-
line model. Following Dai, Xie, and Hovy (2018), we em-
ploy a pretrained 101-layer ResNet (He et al. 2016) instead
of a GoogLeNet to extract a feature vector from an input
image. We employ an LSTM of size 512 as the decoder.
We report BLEU-4, METEOR and CIDERr scores using the
scripts provided by Chen et al. (2015).

Experiment Details For the BPE and Hybrid-LightRNN,
we set the code dictionary sizes to 10K for IWSLT and 3K
for MSCOCO. We measure the speed and memory usage on
a Titan X with PyTorch version v0.3.1 and CUDA 9.0.

Main Results
In our experiments, we denote Hybrid-LightRNN-MoS and
BPE-MoS as the seq2seq models with MoS which em-
ploy Hybrid-LightRNN and BPE respectively. The baseline
seq2seq model without MoS is denoted as Baseline.

Overall Performances on IWSLT and MSCOCO We
show the comparison between a standard LSTM seq2seq
model with the Hybrid-LightRNN-MoS and BPE-MoS in
Tab. 1. Hybrid-LightRNN-MoS and BPE-MoS both outper-
form the baseline on both tasks. Specifically, on machine
translation, BPE-MoS can outperform the baseline by a
BLEU score of 1.5. On image captioning, BPE-MoS outper-
forms the baseline by 0.42, 0.4 and 0.76 in terms of BLEU-
4, METEOR and CIDEr respectively.

This experiment shows that MoS can effectively improve
the expressiveness of generation models by learning a high-
rank log probability matrix. As expected, the improvement
is larger on MT than on image captioning, which can be ex-
plained by the differences of language complexities used in
these two tasks. Specifically, on image captioning, the cap-
tions largely share similar patterns, resulting in a lower-rank
probability matrix and a smaller improvement space.

Performances on WMT 14 EN-DE and EN-FR Since
BPE is better than Hybrid-LightRNN with a small margin
on IWSLT, we only test BPE-MoS on WMT. As shown
in Tab. 2, we achieve 29.6 and 42.1 BLEU scores respec-
tively on WMT 14 EN-DE and EN-FR, improving the Trans-
former model by 0.9 and 0.4 BLEU scores. We achieve the
state-of-the-art result that does not employ data augmen-
tation on WMT 14 EN-DE. Note that data augmentation
can also effectively improve the machine translation perfor-
mance (Edunov et al. 2018).
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# Softmaxes Model Machine Translation (IWSLT) Image Captioning (MSCOCO)
Memory Speed BLEU Memory Speed BLEU-4

1
Baseline 5.18 40.38 27.41 ± 0.15 0.96 13.29 29.64 ± 0.20

Hybrid-LightRNN-Baseline 3.61 33.57 27.43 ± 0.21 0.73 10.35 29.69 ± 0.15
BPE-Baseline 3.52 32.78 27.37 ± 0.17 0.70 9.96 29.68 ± 0.12

3
MoS 10.24 89.94 28.42 ± 0.14 1.39 25.66 29.91 ± 0.14

Hybrid-LightRNN-MoS 5.37 49.19 28.36 ± 0.11 1.01 15.49 29.93 ± 0.14
BPE-MoS 5.27 46.83 28.47 ± 0.16 0.99 15.03 29.96 ± 0.08

Table 3: Memory and time efficiency comparisons on MT and image captioning when using the same number of Softmaxes.
Bold faces highlight the best in the corresponding category. The shown memory is in GB and the speed is in ms/batch.

Memory (GB) Speed (ms/batch) Model # Mixtures BLEU

5.3 45.5
Baseline 1× 30k 27.41 ± 0.15

Hybrid-LightRNN-MoS 3× 10k 28.36 ± 0.11
BPE-MoS 3× 10k 28.47 ± 0.16

10.4 90.4
MoS 3× 30k 28.42 ± 0.14

Hybrid-LightRNN-MoS 9× 10k 28.79 ± 0.23
BPE-MoS 9× 10k 28.91 ± 0.06

Table 4: Comparisons on IWSLT under the same memory and time budget. The Softmaxes size is number of Softmaxes ×
Softmax dictionary size. Bold faces highlight the best in the corresponding category

Memory and Time Efficiency We study the memory
consumption and efficiency of Hybrid-LightRNN-MoS and
BPE-MoS. As shown in Tab. 3, when applying on the Base-
line model and the MoS model, BPE and Hybrid-LightRNN
can reduce the time and memory usage with no performance
losses. In addition, on MT where the vocabulary is large,
they can halve the time and memory consumption when ap-
plied on MoS with 3 mixtures. When there are more mix-
utres, the improvements will continue to grow since com-
puting Softmaxes take a larger proportion of time.

Comparisons under the Same Computation Budget
When computational resources are limited, BPE and
LightRNN enable the use of more Softmaxes, leading to
potentially higher rank probability matrices. Hence, we
study the performances of BPE-MoS, Hybrid-LightRNN-
MoS and MoS given the same computation budget. As
shown in Tab. 4. BPE-MoS and Hybrid-LightRNN-MoS
consistently outperform the baseline and the MoS model.

Analysis
In this section, we perform extensive studies to better under-
stand our models.

Number of Softmaxes Since a larger mixture number
would likely to lead to a higher rank log probability ma-
trix, we verify whether a larger mixture number leads to a
better performance. We vary the number of mixture in the
BPE-MoS model and compare their performances on MT.
As shown in Fig. 1, more Softmax components clearly lead
to better performances. However, the improvement margin
exhibits a diminishing return effect, which means that sev-
eral Softmaxes are enough to learn a high-rank matrix.

1 2 3 5 7 9 18
# Softmax Components

27.0

27.5

28.0

28.5

29.0

29.5

30.0

30.5
B

LE
U
Test
Dev

Figure 1: BPE-MoS’s average validation performance over
multiple runs on IWSLT with various numbers of mixture
components.

Hybrid-LightRNN Ablation Study We further study the
importance of the learned table and the importance of the
model’s capacity in Hybrid-LightRNN. Firstly, we vary the
dictionary size to investigate whether it is necessary to give
enough capacity to frequent words.

As shown in Tab. 7, larger dictionary sizes consistently
lead to better performances. Secondly, when compared with
LightRNN, Hybrid-LightRNN achieves an improvement of
2.68 BLEU score, which shows that it is necessary to em-
ploy extra capacities for frequent words. Thirdly, as a sanity
check of whether the table learning is necessary, we com-
pare the table learned by LightRNN with the table obtained
by simply sorting words based on their frequency and the
table with random word allocations. The table learned by
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Memory (GB) Speed (ms/batch) Model Softmaxes Size BLEU-4 METEOR CIDEr

1.0 14.6
MoS 1× 10k 29.64 ± 0.20 23.60 ± 0.12 88.50 ± 0.47

Hybrid-LightRNN-MoS 3× 3k 29.93 ± 0.14 23.74 ± 0.29 88.52 ± 0.18
BPE-MoS 3× 3k 29.96 ± 0.08 23.67 ± 0.34 88.61 ± 0.27

4.3 26.4
MoS 3× 10k 29.91 ± 0.14 23.69 ± 0.20 88.84 ±0.66

Hybrid-LightRNN-MoS 9× 3k 30.02 ± 0.16 23.87 ± 0.18 88.96 ± 0.21
BPE-MoS 9× 3k 30.06 ± 0.10 24.00 ± 0.24 89.26 ± 0.11

Table 5: Comparisons on image captioning under the same memory and time budget. The Softmaxes size is number of Soft-
maxes × Softmax dictionary size. Bold faces highlight the best ones in each category.

row words

45 700 3.3 28 19 7 86 35 ...
48 around between by into down for off ...
54 mined imaged advised pickled outfitted filled withheld ...
91 bristol chinatown rochester kingston guangdong guangzhou chongqing ...
93 pursuing posing proposing reacting replacing blogging pointing ...

Table 6: Example mapping table where the row denotes the first code and the column denotes the second code. Numbers and
places are grouped together in row 45, 91. Syntactically similar words are also grouped together in row 48, 54 and 93.

Mapping Table Table Size Learned Table BLEU

Hybrid-LightRNN 10k
Yes

30.07
Hybrid-LightRNN 5k 29.69
Hybrid-LightRNN 1k 28.73

LightRNN 0.2k Yes 27.39

Frequency table 0.2k No 25.84
Random table 0.2k 24.98

Table 7: Average validation BLEU on IWSLT of Hybrid-
LightRNN-MoS using different mapping tables.

Model OOV Translation BLEU

BPE-MoS Yes 30.19
BPE-MoS No 30.14

Hybrid-LightRNN-MoS No 30.07

Table 8: Ablation study on the importance of translating
OOV words. The BLEU score are evaluated on the valida-
tion set of IWSLT.

LightRNN outperforms models with the random table or the
frequency-based table by BLEU scores of 2.41 and 1.55 re-
spectively, which means that optimizing a language model-
ing objective learns an effective encoding function.

Is BPE-MoS better because of modeling OOVs? As in-
dicated in Tab. 1, BPE-MoS is slightly better than Hybrid-
Light-MoS on MT and image captioning. In principle, both
Hybrid-LightRNN and BPE can model the semantics of all
frequent words and rare words in the training set by shar-
ing embeddings with other words. One exclusive advantage
of BPE is the ability to generate out-of-vocabulary (OOV)
words. A natural question to ask is “how much performance

difference would OOVs cause?” To investigate the impor-
tance of modeling OOVs, We take the best BPE-MoS model,
replace all generated OOV words with UNK and test its per-
formance.

The comparison is shown in Tab. 8. Removing the gener-
ated OOV words do lead to a performance decrease of 0.05
BLEU score. However, when both Hybrid-LightRNN and
BPE are disabled from translating OOV, BPE is still better
than Hybrid-LightRNN by a gap of 0.07 BLEU score. This
result indicates that the encoding function learned by BPE
better captures the data statistics than the encoding learned
by Hybrid-LightRNN, showing that Hybrid-LightRNN has
a lot of potentials for improvements.

Mapping Table Qualitative Study In Hybrid-LightRNN,
words in the same column/row share the same column/row
embedding vector. Intuitively, it is important to group
semantically-similar or syntactically-similar words into the
same column/row. We examine whether the learned table
have this property in Tab. 6. We find that most words
within the same row are either semantically-similar or
syntactically-similar to each other.

Conclusions and Discussions
In this work, we investigate two algorithms, i.e., Byte Pair
Encoding and Hybrid-LightRNN, to reduce the vocabulary
size so as to improve the memory- and time-efficiency of
MoS. We evaluate these two methods on machine transla-
tion and image captioning and show improved performances
over the baseline system without MoS. Further, both of these
methods effectively speed up the training process and re-
duce the memory consumption of MoS with no performance
losses. We demonstrate the effectiveness of our models by
improved performances on machine translation and image
captioning.
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