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Abstract

In this paper, we propose a novel Human-like Semantic Cog-
nition Network (HSCN) for aspect-level sentiment classifica-
tion, motivated by the principles of human beings’ reading
cognitive process (pre-reading, active reading, post-reading).
We first design a word-level interactive perception module to
capture the correlation between context words and the given
target words, which can be regarded as pre-reading. Second,
to mimic the process of active reading, we propose a target-
aware semantic distillation module to produce the target-
specific context representation for aspect-level sentiment pre-
diction. Third, we further devise a semantic deviation metric
module to measure the semantic deviation between the target-
specific context representation and the given target, which
evaluates the degree we understand the target-specific context
semantics. The measured semantic deviation is then used to
fine-tune the above active reading process in a feedback reg-
ulation way. To verify the effectiveness of our approach, we
conduct extensive experiments on three widely used datasets.
The experiments demonstrate that HSCN achieves impressive
results compared to other strong competitors.

Introduction
Sentiment analysis has attracted increasing attention re-
cently due to its broad applications. The majority of liter-
ature addressed the sentiment for a whole piece of text, such
as a document, a sentence etc. (Liu 2012). However, in real
world, people may mention several target entities in one doc-
ument/sentence. For example, the sentence “although the
service is not that great, I still like the food” is positive re-
garding the food of the restaurant, but negative with regard to
its service. Considering merely the overall sentiment of the
sentence fails to capture the aspect-level sentiments. When
inferring the sentiment in response to a given aspect, it is
essential to effectively capture the relatedness of the aspect
with its context words. Several recent studies have been pro-
posed to build aspect-level sentiment classifiers with atten-
tion mechanisms and explicit memory. For example, Tang,
Qin, and Liu (2016) developed deep memory networks to
capture importance of context words. Wang et al. (2016)

∗Corresponding author
†Tsinghua-Berkeley Shenzhen Institute

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proposed to learn an embedding vector for each aspect, and
these aspect embeddings were used to calculate the atten-
tion weights to capture important information with regard
to a given aspect. As far as our knowledge, human-beings’
reading cognitive process has rarely been explored in aspect-
level sentiment classification.

When human-beings read and comprehend text, their ex-
ploration of the reading process organizes itself most natu-
rally into an examination of three phrases: pre-reading, ac-
tive reading (i.e., during-reading), and post-reading (Press-
ley M 1995; Avery and Graves 1997; Toprak and Al-
macıoğlu 2009). In the pre-reading stage, humans set the
purpose of reading and preview the text with prior knowl-
edge to form the initial reading cognition. Active reading is
a complex cognitive process by which the reader constructs
meaning from text. During the active reading stage, good
readers use skimming ability to find relevant information to
specific target by locating distinguishable target-related con-
text, instead of thorough reading. It is beneficial to eliminate
the distraction of irrelevant information so as to focus on the
target-specific information.

As more information becomes available, the readers will
evaluate their understanding of the text and revise their
hypothesis when necessary. This post-reading stage (re-
reading) creates opportunities for deeper understanding and
error correction. If one desires to create a machine intel-
ligence imitating such a reading comprehensive skill of
humans, studying these three-stage human-beings’ reading
cognitive process is quite necessary.

In this paper, we propose a novel Human-like Seman-
tic Cognition Network (HSCN) to simulate human-beings’
reading cognitive process. HSCN consists of three compo-
nents corresponding to the three stages in the human-beings’
reading cognitive process (pre-reading, active reading, and
post-reading). Concretely, we first design a word-level inter-
active perception module to capture the correlation between
words in the context and the given target words, which can
be regarded as pre-reading. Second, to mimic the process
of active reading, we propose a target-aware semantic dis-
tillation module to produce the target-specific context repre-
sentation for aspect-level sentiment prediction. Specifically,
we devise a target-aware skip-reading mechanism to select
target-related words from the context, acting as skimming.
Then these target-related words are fed into the semantic
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composition module to encode the target-specific context
representation. Third, we further design a semantic deviation
metric module to measure the semantic deviation between
our target-specific context representation and the given tar-
get, which evaluates the degree we understand the target-
specific context semantics. The measured semantic devia-
tion is then used to fine-tune the above active reading pro-
cess in a feedback regulation way.

The main contributions can be summarized as follows:
• We propose HSCN, a human-like semantic cognition net-

work to simulate the three stages in human-beings’ read-
ing cognitive process: pre-reading, active reading, and
post reading.

• To fully model human-beings’ reading cognitive process,
our proposed HSCN is a hierarchical semantic network,
including the word-level interactive perception module,
target-aware semantic distillation module, semantic feed-
back module.

• To verify the effectiveness of our approach, we conduct
extensive experiments on three widely used datasets. The
experimental results demonstrate that our model achieves
impressive results compared to other strong competitors.

Related work
Sentiment analysis is commonly explored at three levels:
document level, sentence level and entity level. In this pa-
per, we mainly focus on entity level sentiment classifica-
tion. In order to capture the sentiments towards target en-
tities, there are a variety of approaches being proposed for
target-dependent or aspect-level sentiment classification. In
(Hu and Liu 2004), the features of a product were considered
to predict the sentiment polarity towards the target entity.
Kiritchenko et al. (2014) trained one multi-class SVM clas-
sifier with two copy features, where each feature had two
copies f general (for all the aspect categories) and f c (for
the specific category). Tang et al. (2015) extended LSTM by
considering the target word. Inspired by the recent success of
attention-based neural networks (Bahdanau, Cho, and Ben-
gio 2014; Yang et al. 2016), Wang et al. (2016) proposed
an attention-based LSTM method to learn an aspect embed-
ding for each aspect and made aspects participate in com-
puting attention weights, and Liu and Zhang (2017) also de-
signed an attention module for targeted sentiment classifi-
cation. Tang, Qin, and Liu (2016) developed a deep mem-
ory network for aspect level sentiment classification which
learned the importance of each context word and then uti-
lized this information to calculate continuous text repre-
sentation. Chen et al. (2017) employed a position-weighted
memory network to capture sentiment features separated
by a long distance. Ma et al. (2017) proposed the interac-
tive attention networks (IAN) to interactively learn attention
weights in the contexts and targets. Wang and Lu (2018)
proposed a segmentation attention based LSTM model to
effectively capture the structural dependencies between the
target and the sentiment expressions with a linear-chain con-
ditional random field (CRF) layer. Li et al. (2018) proposed
a transformation network to model target-oriented senti-
ment classification by overcoming the drawbacks of atten-

tion mechanism and convolution neural networks. Xue and
Li (2018) proposed a model based on convolutional neural
networks and gating mechanisms.

Currently, some researchers began to attempt introduc-
ing human cognitive behaviors into their researches (Lake,
Salakhutdinov, and Tenenbaum 2015; Zhao et al. 2017;
Guo and Zhu 2018). To date, no work exploits the human-
beings’ reading cognitive process in aspect-level sentiment
classification. Our work takes the lead in this topic.

Methodology
Overview
As discussed in Section 1, human-beings’ reading cogni-
tive process mainly consists of three phases: pre-reading,
active reading, and post-reading. Accordingly, we propose
a Human-like Semantic Cognition Network (HSCN) to sim-
ulate human-beings’ reading cognitive process, which also
consists of three components: word-level interactive percep-
tion module, target-aware semantic distillation module, and
semantic feedback module.

Our goal is to strengthen the target-specific context repre-
sentation learning through simulating human-beings’ read-
ing cognitive process. First, the word-level interactive per-
ception module pre-reads text content and the given target to
form an initial cognition, which captures the correlation be-
tween words in the context and the given target words. After
initial perception, a target-aware skip-reading mechanism is
proposed to select target-related words of the context. With
the selected target-related words as inputs, we design a se-
mantic composition module to obtain the target-specific con-
text representation. Finally, we design a semantic feedback
module to perform post-reading, which measures the seman-
tic deviation between the target-specific context representa-
tion and the representation of the given target. This seman-
tic deviation, to a certain extent, reflects the degree that we
understand the semantics of the context. We use the seman-
tic deviation to fine-tune the above active reading process
in a feedback regulation way. In this section, we elaborate
the three components in detail. To prevent conceptual con-
fusion, we use a superscript “c” to indicate the variables that
are related to context and a superscripts “t” to indicate the
variables that are related to the given target for each context.

Word-level Interactive Perception Module
The word-level interactive perception module acts as the
pre-reading in human-beings’ reading cognitive process. It
captures the correlation between the context words and the
given target words by calculating the mutual information
between them. The detailed implementation is similar with
(Seo et al. 2017; Lei, Yang, and Yang 2018).

Assuming that a context xc with n words can be denoted
as xc = [wc1, w

c
2, ..., w

c
n] and a target xt containing m words

can be represented as xt = [wt1, w
t
2, ..., w

t
m]. Here, each w

represents a specific word. First, Each word w was embed-
ded into a low-dimensional and dense vector space e(w) ∈
Rd, where e(·) denotes the embedding operation and d
refers to the dimension of the word vector. Accordingly, The
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Figure 1: The overall Framework of Human-like Semantic Cognition Network (HSCN)

embeddings of the context xc and the corresponding target
xt can be obtained as e(xc) = [e(wc1), e(wc2), ..., e(wcn)]
and (xt) = [e(wt1), e(wt2), ..., e(wtm)], respectively.

Then, we compute the correlation matrix M to represent
the relatedness between the context and the target, as follow:

M = e(xc)
T · e(xt) ∈ Rn×m (1)

where each element Mi,j in the correlation matrix refers to
the relevance between the wci in the context and the wtj in
the target.

Then, we perform mean-pooling operation on the values
of each row of S and obtain a column vector of size n. This
obtained column vector is fed into a softmax layer, produc-
ing an attention vector for the context:

ρρρ = softmax(

∑m
i=1M [:, i]

m
) (2)

Similarly, a row vector of sizem can be obtained by com-
puting the average values of each column of S. We use the
row vector as the input of a softmax layer to get an attention
vector for the target words:

σσσ = softmax(

∑n
j=1M [j, :]

n
) (3)

Finally, with the context embedding matrix e(xc) and the
attention vector ρρρ as inputs, we can compute the target-
enhanced context representation matrix W c ∈ Rk×n as fol-
lows:

W c = ELU(U c(e(xc) + (ed ⊗ ρρρ)� e(xc))) (4)

where U c is a projection parameter, ed = [1, 1, .., 1]T repre-
sents a d-dimensional all-ones vector, ed ⊗ ρρρ = [ρρρ;ρρρ; ...;ρρρ]
denotes the kronecker product operation between ed and ρρρ,
� refers to the element-wise multiplication, and exponen-
tial linear unit (ELU) (Clevert, Unterthiner, and Hochreiter
2016) is a nonlinear activation function. In the same way, we
can also obtain the contextual enhanced target representation
matrix W t ∈ Rk×m as follow:

W t = ELU(U t(e(xt) + (ed ⊗ σσσ)� e(xt))) (5)

where U t is a projection parameter, ed = [1, 1, .., 1]T de-
notes a d-dimensional all-ones vector, ed⊗σσσ = [σσσ;σσσ; ...;σσσ]
denotes the kronecker product operation between ed and σσσ.

The Eq. (1-5) can help establish the relatedness between
the context and the target and thus we call the process as
word-level interactive perception module, which is benefi-
cial for the following active reading process.

Target-aware Semantic Distillation Module
As depicted in Figure 1, the target-aware semantic distilla-
tion module contains two parts: the skip-reading module for
selecting target-related words and the semantic composition
module for encoding the target-specific context representa-
tion. In the following, we will elaborate the two parts in de-
tail.

Skip-reading Module After the pre-reading procedure,
we design a target-aware skip-reading module to compre-
hend the target-specific context and select out the crucial
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target-related words from the context. Specifically, with the
context representation matrix W c and the target represen-
tation matrix W t as inputs, we build a semantic decision-
making scheme to extract target-related information and de-
termine whether a word in the context should be deleted or
retained. Formally, we formulate this process as follows:

γγγ = softmax(Uγγγ{W t}TW c) (6)

g = argmax(γTγTγT ) (7)

where Uγγγ is a learnable parameter, γγγ ∈ R2×n denotes a
skip-reading state matrix with two dimensions indicating the
probability of being skipped and not be skipped respectively,
g ∈ Rn is a gate-controlled vector with each element value
being 0 or 1. The value being 0 denotes that the correspond-
ing word should be deleted while the value being 1 denotes
that the corresponding word should be retained.

Note that the argmax operation is a hard-decision pro-
cess and non-differentiable, direct application of the gradient
propagation may be difficult. For the gradient estimation of
discrete variables, some feasible approaches achieve unbi-
ased gradient estimation using the REINFORCE algorithm
(Williams 1992; Ke et al. 2018). However, the REINFORCE
algorithms suffer from high variance of the gradient esti-
mation, model instability, and hard training (V et al. 2015;
Maddison, Mnih, and Teh 2017). We instead use a Gumbel-
Softmax distribution (Gumbel and Lieblein 1954; Seo et al.
2018) to approximate Equation (7), which is fully differen-
tiable. The approximate implementation g̃ of g is shown as
follow:

g̃ =
exp((log(γγγT ) + δδδ)/τ)∑
exp((log(γγγT ) + δδδ)/τ)

(8)

where δδδ is an independent sample from Gumbel(0,1)=-log(-
log(Uniform(0,1))) and τ is the temperature coefficient, an
inherent hyper-parameter of Gumbel-Softmax function to
adjust the approximation degree towards one-hot sampling.
Note that when τ → 0, the gumbel-softmax operation ap-
proximately approaches discrete one-hot sampling, namely
the argmax operation. Generally, τ <= 0.1 can obtain a
sharper distribution and τ = 0.5 ∼ 1 can obtain a more
smoothing distribution.

Given g̃1 as the final gate-controlled vector, we formulate
the distilled representation matrix W r of the context that is
composed of the selected target-related words, as follow:

W r = W cT � (ek ⊗ g̃) (9)

where ek = [1, 1, .., 1]T denotes a k-dimensional all-ones
vector,� denotes the element-wise multiplication, and ek⊗
g̃ denotes the kronecker product operation between ek and
g̃.

Semantic Composition Module After obtaining the
target-related words in the context, we devise an appropriate
semantic composition module to encode the target-specific
context representation. To be specific, with the distilled con-
text representation matrix W r as inputs, we first employ

1To simply, We randomly choose any one of the two dimension
of g̃ as the final g̃ to participate in the following calculation.

GRU networks (Chung et al. 2015) to obtain the hidden
states Hr of the context,

Hr = GRU(W r) (10)

Then, motivated by the superiority of attention models in
sentence semantic composition (Lin et al. 2017; Shen et al.
2018; Shaw, Uszkoreit, and Vaswani 2018), we also design
a target-aware attention mechanism to learn the composi-
tional weights about the hidden states of the context words.
Concretely, we first encode the contextual enhanced target
representation matrix W t to obtain its hidden representation
Ht. Then we execute the mean-pooling operation over Ht.
Finally, we utilize the result of mean-pooling operation as
attention source to learn the attention weights over the con-
text. The detailed process can be summarized as follows:

Ht = GRU(W t) (11)

zt =

m∑
i=1

Ht[i, :]/m (12)

ϕϕϕ = softmax(f(Û [Hr; (en ⊗ zt])) (13)

o = {Hr}Tϕϕϕ (14)

where Û is a learnable parameter, ϕ refers to the attention
weights for the target-related context words, f denotes the
nonlinear activation function. Here, we may choose tanh,
elu, or relu as f . Ht[i, :] denotes the i-th row vector of Ht

and o is the final target-specific context representation.

Semantic Feedback Module
After obtaining the target-specific context representation, we
design a semantic deviation metric module to measure the
semantic deviation between our target-specific context rep-
resentation and the given target, which models the degree
we understand the target-specific context semantics. In par-
ticular, we adopt a fully connection network to project the
target-specific context representation to the target seman-
tic space. In the target semantic space, we directly use the
residual vector between the projected context vector and the
target vector as semantic comprehension deviation. The ob-
tained semantic residual vector is then used to fine-tune the
aforementioned skip-reading step in a feedback regulation
way. The detailed implementation process is formulated as
follow.

∆r = zt − tanh(Uoo + bo) (15)

γ̂̂γ̂γ = softmax(Ur∆rTHr) (16)
γ̃̃γ̃γ = γγγ + ηγ̂̂γ̂γ (17)

where ∆r is the semantic comprehending deviation, γ̂̂γ̂γ is
the incremental skip-reading state matrix via semantic de-
viation, γ̃̃γ̃γ is the final augmented skip-reading state ma-
trix by fine-tuning the pervious skip-reading result γ, and
Uo, Ur,bo are projection parameters,η is the hyperparame-
ter, which can be set as 1 in this paper.

Finally, with the augmented skip-reading state matrix γ̃̃γ̃γ,
the Equation (8-14) (noted as SR) can be performed once
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again to obtain the regulated final enhanced centext seman-
tics o1 via rereading as follow.

o1 = SR(γ̃̃γ̃γ) (18)

where SR denotes the entire transformation process of one-
turn rereading. In real world, human beings may perform
multi-turn rereading to determine the final semantics of the
sentences.

Sentiment Classifier
The final context representation õ = [o,o1] can be fed to a
softmax function to predict sentiment polarity distribution:

ŷ = softmax(UTo õ + bo) (19)

where ŷ is the predicted sentiment polarity distribution, Uo
and bo are learned parameters. Suppose that a training corpus
contains N training samples (xi, yi), we can train the entire
networks by minimizing the following loss function.

L(ŷ, y) = −
N∑
i=1

C∑
j=1

yji log(ŷji ) + λ(
∑
θ∈Θ

θ2) (20)

where yji is the ground truth sentiment polarity, C is the
number of sentiment polarity categories, ŷji denotes the pre-
dicted sentiment probabilities, θ represents each parameter
to be regularized, Θ is a collection of all parameters, λ is the
weight coefficient for L2 regularization.

Experimental Setup
Datasets
SemEval-14 This data is constructed for the aspect based
sentiment analysis task (SemEval-2014 Task 4)2. Two
domain-specific datasets for restaurants (S-res.) and laptops
(S-laptop) have been provided for training and testing. Table
1 shows the statistics of these two datasets. There are five
aspect categories in the restaurants dataset, including price,
food, service, ambience, anecdotes/miscellaneous. Since the
laptop dataset does not have the aspect-specific polarities,
we modified the dataset to include annotations for aspect
categories and their sentiment polarities (i.e., positive, neg-
ative, neutral). The tags of the aspect category field for the
laptop dataset are performance, price, quality, appearance.

Tweets
The original dataset is a collection of tweets from Twitter
by (Dong et al. 2014), using keywords (e.g., “bill gates”,
“google”) to query the Twitter API. Each tweet has a manu-
ally labeled sentiment polarity (i.e., positive, neutral or nega-
tive) for the target entity (keywords). The training data con-
sists of 6,248 tweets, and the testing data has 692 tweets.
The percentages of positive, negative and neutral tweets in
both the training set and the test set are 25%, 25%, 50%,
respectively.

2http://alt.qcri.org/semeval2014/

Dataset Pos. Neg. Neu. Total
S-res. (train) 2164 807 637 3608
S-res. (test) 728 196 196 1120

S-laptop (train) 994 870 464 2238
S-laptop (test) 341 128 169 638

Table 1: Statistics of SemEval-14 dataset.

Baselines
In the experiments, we evaluate and compare our model with
several baseline methods, including SVM-feature (Kir-
itchenko et al. 2014), LSTM, TD-LSTM (Tang et al. 2015),
ATAE-LSTM (Wang et al. 2016), MemNet (Tang, Qin, and
Liu 2016),RAM (Chen et al. 2017),IAN (Ma, Yuan, and Wu
2017), SA-LSTM-P (Wang and Lu 2018),PRET+MULT
(He et al. 2018). For more details, please refer to the cor-
responding references.

Implementation Details
Model hyper-parameters are set by a grid search. To avoid
overfitting, we use a dropout strategy (Wager, Wang, and
Liang 2013) to randomly omit part of the feature detec-
tors on each training case. Meanwhile, to reduce the vul-
nerability of neural networks, we adopt the label smooth-
ing technique (Szegedy et al. 2016), which replaces out-
put vectors ylabel = [1, 0, 0, 0, ..., 0] with ylabel = [1 −
ε, ε
C−1 ,

ε
C−1 ,

ε
C−1 , ...,

ε
C−1 ], where ε is smoothing coeffi-

cient.
In our experiments, we use 300-dimensional GloVe3 vec-

tors to initialize the word embeddings for words in the con-
text and target words, and all out-of-vocabulary words are
initialized by sampling from the uniform distribution U(-
0.25,0.25). We initialize all the weight matrices as random
orthogonal matrices, and all the bias vectors are initialized
to zero. The dimension of GRU hidden states is set as 10. We
conduct mini-batch (with size 40) training using RMSprop
optimization algorithm to train the model. The dropout rate
is set to 0.5, and the coefficient λ of L2 normalization is set
to 10−5. Label smoothing coefficient ε is set as 0.01.

Experimental Results
Main Results
In our experiments, the evaluation metrics are classification
accuracy and Macro-averaged F1 (D. Manning, Schtitze,
and Lee 2002). We report the best results and the average
results by running our model five times. The mean and the
standard deviation of our model is also shown in Table 2.

We summarize the experimental results in Table 2. As is
shown in Table 2, SVM-feature obtains an impressive re-
sult in Laptop and Restaurant datasets. But it needs labor-
intensive feature engineering works and an amout of ex-
tra linguistic resources, which limits its advantage. The
LSTM performs poorly since they do not consider the target-
specific information when deciding the sentiment polar-
ity of different aspects. TD-LSTM obtains a better result

3http://nlp.stanford.edu/projects/glove
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Methods Laptop Restaurant Tweets
Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

SVM-feature 70.5 NA 80.2 NA 63.4* 63.3*
LSTM 66.5 60.1 74.3 63.0 66.5 64.7

TD-LSTM 68.1 63.9 75.6 64.5 66.6* 64.0*
ATAE-LSTM 68.7 64.2 77.6 65.3 67.7 65.8

MemNet 68.9# 62.8# 76.9# 66.4# 68.5 66.9
RAM 72.1# 68.4# 78.5# 68.5# 69.4 67.3
IAN 72.1 NA 78.6 NA NA NA

SA-LSTM-P 75.1 NA 81.6 NA 60.9 NA
PRET+MULT 71.2 67.5 79.1 69.7 NA NA

HSCN 76.1
(74.9± 1.0)

72.5
(70.9± 1.1)

77.8
(77.1± 0.6)

70.2
(70.0± 0.3)

69.6
(68.8± 0.8)

66.1
(65.4± 0.7)

Table 2: Evaluation results. The best result on each dataset is in bold. The results with ∗ are retrieved from (Chen et al. 2017),
and the results with # are retrieved from (He et al. 2018). For HSCN, the upper results represent the best performance for the
model and the lower are the mean and the standard deviation when running the model five times.

than LSTM because it considers the left and right con-
text with target when modeling the sentence representa-
tion. The attention-based models such as ATAE-LSTM and
IAN consistently perform better than LSTM and TD-LSTM.
This may be because that these attention-based models cap-
ture the important information in response to the given as-
pect. Memory-based methods such as MemNet and RAM
also obtain comparable results, which verifies the effec-
tiveness of integrating memory into sentiment modeling.
Our model performs even better than the strong attention-
based or memory-based competitors by simulating human-
beings’ reading cognitive process. For example, for the Lap-
top dataset, the average classification accuracy increases by
2.8% and the average Macro-F1 also increases by 2.5% than
RAM, the strongest baselines until 2017. As for the Restau-
rant dataset, the average Macro-F1 also obtains the start-of-
the-art result compared with other methods. For Tweets, our
model can also get a comparable result, which verifies our
model’s effectiveness to some extent.

Quantitative Analysis
The Effect of Each Component To further investigate the
effect of each component of the HSCN model, we also con-
duct the ablation test of HSCN in terms of discarding word-
level interactive perception module (denoted as HSCN-I),
skip-reading module (denoted as HSCN-II), semantic com-
position module (denoted as HSCN-III), and semantic feed-
back module (denoted as HSCN-IV). The results are re-
ported in Figure 3. Generally, all four factors contribute,
and semantic composition module contributes most. This is
within our expectation since the third component refers to
the final context semantics comprehension that plays most
important role in target-specific text understanding. The pre-
reading component also makes great contribution to aspect-
level sentiment classification. We believe this is because that
the pre-reading module, establishing the correlation relation
between the target and the content, is the basis of the latter
comprehension stages. This also inspires us in the future text
modelling, pre-reading and semantic composition should be
paid more attention.

Effect of the Number of Readings

Number of Readings Acc F1 Runtime(s)
1 75.6 71.8 7
2 76.1 72.5 9
3 76.1 71.7 13
4 75.5 70.5 15
5 75.1 70.4 18

Table 3: The experimental results for the models with the
different numbers of readings on the Laptop dataset. Run-
time denotes the running time for each training epoch.

One may wonder how many times of readings is appropri-
ate for a reader. Therefore, we study the performance of the
models with different times of reading in this part. Specifi-
cally, we implement the HSCN model with different num-
ber of copies of semantic feedback module based on the
same network infrastructure and run them on the same CPU
server. The detailed results are shown in Table 3. We can find
that, with reading times increasing from 1 to 3, the classifi-
cation accuracy increases from 75.6 to 76.1 and the runtime
of each training epoch also increases from 7s to 13s. This
verifies that rereading can really enhance our understanding
for context semantics but suffers expensive time cost. When
reading times surpasses 3, we find that the performance de-
clines instead to some extent but the runtime still increases
by a certain margin. We infer that one possible reason is
that the model is over-fitting with the increasing of hyper-
parameters when the number of reading times increases. In
our experiment, taking into account the performance and the
runtime, we choose only reread once.

Case Study
We use an exemplary case which is randomly selected from
the test set of SemEval-14 restaurant data to demonstrate
the reading comprehension process of our model by visu-
alizing the attention results of each step. The selected con-
text is “The falafal was rather over cooked and dried but the
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Figure 2: Ablation Test results

chicken was fine.”, and the corresponding target is “falafal”.
Our model successfully predicts the sentiment polarity to-
wards “falafal” as negative. Figure 3 shows how attention
weights vary with the influence of a given target in the read-
ing cognitive process (i.e., pre-reading, active reading, post-
reading). The color depth indicates the importance degree
of the attention. The darker the color, the more important
the word. Figure 3(I) denotes the attention weights of the
context words toward the given target after performing pre-
reading. We reveal that the context words related to the tar-
get “falafal” such as “falafal”, “over”, “cooked”, “dried”
are paid much more attention than the irrelevant words such
as “the”, “and”. This verifies that pre-reading can estab-
lish the initial correlation between the target and the context.
Then, active reading process locates the most important fea-
tures and ignores the rest. As shown in 3(II), the importance
of target-related words are risen, while the target-irrelevant
words are ignored. This step can be regarded as skimming
in the process of the reading comprehension, which elim-
inates the distractions of irrelevant words and obtains the
distilled if. Finally, post reading is performed to fine tune the
active reading process. Figure 3(III) shows that the attention
weights after post reading (rereading) sightly. In particular,
some new target-related words such as ”rather”,”dried” are
added while some selected irrelevant words are discarded.
This verifies that post reading (rereading) creates the oppor-
tunities for deeper understanding of the text and error cor-
rection.

Figure 3: Case Study

Conclusion and Future Work
In this paper, motivated by the principles of human being’s
reading cognitive process, we proposed a novel Human-like
Semantic Cognition Network (HSCN) for aspect-level sen-
timent classification. HSCN consists of three components,
including word-level interactive perception module, target-
aware semantic distillation module, and semantic feedback
module. To the best of our knowledge, we take the lead to
concretely exploit human-beings’ reading cognitive process
for aspect- level sentiment analysis. Experiments on three
widely used datasets showed the superiority of HSCN.

As for future work. we will work on the two aspects: one
is that we will explore more proper ways to model the hu-
man reading cognition process, and the other is that we will
attempt applying our model in longer text to further verify
the effectiveness of human reading cognition process.

Acknowledgements
We sincerely thank all the anonymous reviewers for their
valuable comments to improve this paper. This work was
supported in part by the National Key Research and De-
velopment Program of China (No. 2017YFC1601004), and
Shenzhen special fund for the strategic development of
emerging industries (No. JCYJ20170412170118573 and
JCYJ20160331104524983). Zeyang Lei and Jun Guo were
partly supported by the 2018 Tencent Rhino-Bird Elite
Training Program. Min Yang was sponsored by CCF-Tecent
Open Research Fund.

References
Avery, P. G., and Graves, M. F. 1997. Scaffolding young
learners’ reading of social studies texts. Social Studies &
the Young Learner 9:10–14.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
Computer Science.
Chen, P.; Sun, Z.; Bing, L.; and Yang, W. 2017. Recurrent
attention network on memory for aspect sentiment analysis.
In EMNLP, 452–461.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2015.
Gated feedback recurrent neural networks. Computer Sci-
ence 2067–2075.

6656



Clevert, D.-A.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and accurate deep network learning by exponential linear
units (elus).
D. Manning, C.; Schtitze, H.; and Lee, L. 2002. Re-
view: Foundations of statistical natural language processing,
christopher d. manning and hinrich schütze.
Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; and Xu,
K. 2014. Adaptive recursive neural network for target-
dependent twitter sentiment classification. In ACL, 49–54.
Gumbel, E. J., and Lieblein, J. 1954. Statistical theory of
extreme values and some practical applications: a series of
lectures.
Guo, J., and Zhu, W. 2018. Partial multi-view outlier de-
tection based on collective learning. In Proc. AAAI Conf.
Artificial Intell. (AAAI), 298–305.
He, R.; Lee, W. S.; Ng, H. T.; and Dahlmeier, D. 2018.
Exploiting document knowledge for aspect-level sentiment
classification. In Proceedings of ACL(2).
Hu, M., and Liu, B. 2004. Mining and summarizing cus-
tomer reviews. In SIGKDD, 168–177.
Ke, N. R.; Zolna, K.; Sordoni, A.; Lin, Z.; Trischler, A.; Ben-
gio, Y.; Pineau, J.; Charlin, L.; and Pal, C. 2018. Focused
hierarchical rnns for conditional sequence processing. In
Proceedings of ICML.
Kiritchenko, S.; Zhu, X.; Cherry, C.; and Mohammad, S.
2014. Nrc-canada-2014: Detecting aspects and sentiment in
customer reviews. In International Workshop on Semantic
Evaluation, 437–442.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350(6266):1332–1338.
Lei, Z.; Yang, Y.; and Yang, M. 2018. Saan: A sentiment-
aware attention network for sentiment analysis. In Proceed-
ings of SIGIR.
Li, X.; Bing, L.; Lam, W.; and Shi, B. 2018. Transforma-
tion networks for target-oriented sentiment classification. In
Proceedings of ACL.
Lin, Z.; Feng, M.; dos Santos, C. N.; Yu, M.; Xiang, B.;
Zhou, B.; and Bengio, Y. 2017. A structured self-attentive
sentence embedding. In ICLR.
Liu, J., and Zhang, Y. 2017. Attention modeling for tar-
geted sentiment. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational
Linguistics.
Liu, B. 2012. Sentiment analysis and opinion mining. Syn-
thesis Lectures on Human Language Technologies 1–167.
Ma, D.; Li, S.; Zhang, X.; and Wang, H. 2017. Interactive
attention networks for aspect-level sentiment classification.
In IJCAI, 4068–4074.
Ma, B.; Yuan, H.; and Wu, Y. 2017. Exploring perfor-
mance of clustering methods on document sentiment anal-
ysis. Journal of Information Science 43(1):54–74.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2017. The
Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables. In ICLR.

Pressley M, A. P. 1995. Verbal protocols of reading: The
nature of constructively responsive reading.
Seo, M.; Kembhavi, A.; Farhadi, A.; and Hajishirzi, H. 2017.
Bidirectional attention flow for machine comprehension. In
Proceedings of ICLR.
Seo, M.; Min, S.; Farhadi, A.; and Hajishirzi, H. 2018. Neu-
ral speed reading via skim-rnn. In Proceedings of ICLR.
Shaw, P.; Uszkoreit, J.; and Vaswani, A. 2018. Self-attention
with relative position representations. In NAACL.
Shen, T.; Zhou, T.; Long, G.; Jiang, J.; Pan, S.; and Zhang, C.
2018. Disan: Directional self-attention network for rnn/cnn-
free language understanding. In AAAI.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In CVPR, 2818–2826.
Tang, D.; Qin, B.; Feng, X.; and Liu, T. 2015. Target-
dependent sentiment classification with long short term
memory. Computer Science.
Tang, D.; Qin, B.; and Liu, T. 2016. Aspect level sentiment
classification with deep memory network. In EMNLP, 214–
224.
Toprak, E. L., and Almacıoğlu, G. 2009. Three reading
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