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Abstract

Target-based sentiment analysis involves opinion target ex-
traction and target sentiment classification. However, most of
the existing works usually studied one of these two sub-tasks
alone, which hinders their practical use. This paper aims to
solve the complete task of target-based sentiment analysis in
an end-to-end fashion, and presents a novel unified model
which applies a unified tagging scheme. Our framework in-
volves two stacked recurrent neural networks: The upper one
predicts the unified tags to produce the final output results of
the primary target-based sentiment analysis; The lower one
performs an auxiliary target boundary prediction aiming at
guiding the upper network to improve the performance of the
primary task. To explore the inter-task dependency, we pro-
pose to explicitly model the constrained transitions from tar-
get boundaries to target sentiment polarities. We also propose
to maintain the sentiment consistency within an opinion tar-
get via a gate mechanism which models the relation between
the features for the current word and the previous word. We
conduct extensive experiments on three benchmark datasets
and our framework achieves consistently superior results.

Introduction
Target-Based Sentiment Analysis (TBSA) aims to detect the
opinion targets explicitly mentioned in sentences and predict
the sentiment polarities over the opinion targets (Liu 2012;
Pontiki 2014). For example, in the sentence “USB3 Pe-
ripherals are noticably less expensive than the Thunder-
Bolt ones”, the user mentions two opinion targets, namely,
“USB3 Peripherals” and “ThunderBolt ones”, and ex-
presses positive sentiment over the first, and negative sen-
timent over the second.

Traditionally, this task can be broken into two sub-tasks,
namely, opinion target extraction and target sentiment clas-
sification. The goal of opinion target extraction is to de-
tect the opinion target mentions in the text, and it has been
extensively studied (Qiu et al. 2011; Liu, Xu, and Zhao
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2013; 2014; Liu, Joty, and Meng 2015; Yin et al. 2016;
Wang et al. 2016a; 2017; He et al. 2017; Li and Lam 2017;
Li et al. 2018b; Xu et al. 2018). The second sub-task, i.e.,
target sentiment classification, performs as a multiplier for
the usefulness of the extracted target mentions, as it can
predict the sentiment polarity of the given opinion targets.
This sub-task has also received a lot of attention in re-
cent years (Dong et al. 2014; Tang, Qin, and Liu 2016;
Wang et al. 2016b; Ma et al. 2017; Chen et al. 2017;
Tay, Luu, and Hui 2017; Ma, Peng, and Cambria 2018;
Hazarika et al. 2018; Li et al. 2018a; Wang et al. 2018;
Xue and Li 2018; He et al. 2018; Li et al. 2019). However,
most existing methods solving the second sub-task assume
that the target mentions are given, which limits their practi-
cal use. To sum up, all the above works aim at solving only
one of the sub-tasks. In order to apply these existing meth-
ods in practical settings, i.e., not only extracting the targets,
but also predicting the target sentiment, one typical way is
to pipeline the methods of the two sub-tasks together.

As observed in some other tasks (Jing et al. 2003; Ng
and Low 2004; Finkel and Manning 2009; Miwa and Sasaki
2014), if two sub-tasks have strong couplings (e.g, NER
and relation extraction), a more integrated model is usu-
ally more effective than a pipline solution. For the TBSA
task, previous researchers have attempted two approaches
to a more integrated solution (Mitchell et al. 2013; Zhang,
Zhang, and Vo 2015). One approach is to make the models
of the two sub-tasks jointly trained, which utilizes a set of
target boundary tags (e.g., B, I, E, S and O) and a set of sen-
timent tags (e.g. POS, NEG, NEU). The “joint” row of Table 1
gives an example of the tagging scheme in this approach.
Another approach is to totally dismiss the boundary of the
two sub-tasks, which utilizes a set of specially-designed tags
(we name it “unified tagging scheme”), namely, B-{POS,
NEG, NEU}, I-{POS, NEG, NEU}, E-{POS, NEG,
NEU}, S-{POS, NEG, NEU}, denoting the beginning of,
inside of, end of, and single-word opinion target with posi-
tive, negative or neutral sentiment respectively, and O denot-
ing NULL sentiment. An example is given in the “unified”
row in Table 1. Unfortunately, these initial attempts did not
result in a more integrated model that can outperform the
pipeline approaches.

Although the importance of solving the complete TBSA
task remains significant, existing studies are relatively less
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Input The AMD Turin Processor seems to always perform much better than Intel .

Joint O B I E O O O O O O O S O
O POS POS POS O O O O O O O NEG O

Unified O B-POS I-POS E-POS O O O O O O O S-NEG O

Table 1: Tagging schemes used in the integrated approaches. “Joint” and “Unified” refers to joint and unified approaches
respectively.

and their findings (Mitchell et al. 2013; Zhang, Zhang, and
Vo 2015), to some extent, discouraged other researchers to
do further explorations. However, we think that research ef-
forts should be paid to explore a more integrated model for
solving this task, because its two sub-tasks are highly cou-
pled together and the potential of a more integrated model is
promising.

In this paper, we investigate the complete task of TBSA
and design a novel unified framework to handle it in an
end-to-end fashion. The proposed framework involves two
stacked Recurrent Neural Networks (RNN). The upper one
produces the final tagging results of the TBSA task based on
the unified tagging scheme. The lower one performs an aux-
iliary prediction of target boundaries with the aim for guid-
ing and providing the information to the upper RNN. Such
design is based on the observation that under the unified tag-
ging scheme, the span information is exactly identical to that
under the boundary tagging scheme. Refer to the example in
Table 1, if a word is at the beginning of a target mention
under the boundary scheme, i.e., having the tag B, it should
also be at the beginning under the unified scheme, i.e., hav-
ing the tag B-POS. In order to explore such inter-scheme
tag dependency, we propose to guide the prediction of the
upper RNN for the complete TBSA task with the bound-
ary prediction from the auxiliary task, corresponding to the
lower RNN. Specifically, we design a component to encode
the dependencies into a transition matrix and use the matrix
to map the probability distribution of the boundary predic-
tion to the unified tag space of the TBSA task. Then, we
determine the proportions of the obtained boundary-based
probability scores in the tagging decision and consolidate
them with the probability scores from the upper RNN for
final predictions.

We also propose to maintain the consistency of the sen-
timent of individual words within the same target mention
based on a simple gate mechanism. The gate mechanism is
designed to explicitly consolidate the features of the current
word and the previous word. Since both of the gate here and
the transition matrix above need to take reliable boundary
prediction for performing well, improving the reliability of
such prediction in the lower RNN is supposed to be useful
for the complete TBSA task. Therefore, we introduce an-
other component to estimate the potential of a word to be a
target word. Note that as defined by the task (Pontiki 2014;
2015; 2016), an opinion target should always co-occur with
opinion words, thus, the words close to the opinion words
are more likely to be target words and we obtain additional
supervision signals for refining boundary information based
on this assumption.

In the experiments, our framework outperforms the state-

of-the-art methods and the strongest sequence taggers on
several benchmark datasets. We conducted detailed ablation
studies to quantitatively demonstrate the effectiveness of the
designed components. With some case analysis, we show
how our framework can handle some difficult cases with the
help of the designed components.

Our Proposed Framework
Task Definition
We formulate the complete Target-Based Senti-
ment Analysis (TBSA) task as a sequence label-
ing problem and employ a unified tagging scheme
YS = {B-POS,I-POS,E-POS,S-POS,B-NEG,I-NEG,
E-NEG,S-NEG,B-NEU,I-NEU,E-NEU,S-NEU} ∪ {O}.
Except O, each tag contains two parts of tagging infor-
mation: the boundary of target mention, and the target
sentiment. For example, B-POS denotes the beginning of
a positive target mention, and S-NEG denotes a single-
word negative opinion target. For a given input sequence
X = {x1, . . . , xT } with length T , our goal is to predict a
tag sequence YS = {yS1 , . . . , yST }, where ySi ∈ YS .

Model Description
Overview As shown in Figure 1, on the top of two stacked
RNNs with LSTM cells, our framework designs three tailor-
made components, depicted in detail with the callouts, to ex-
plore three important intuitions in the task of TBSA. Specifi-
cally, the upper LSTMS is for the complete TBSA task and it
predicts the unified tags as output, while the lower LSTMT

is for the auxiliary task and predicts the boundary tags of
target mentions. The boundary prediction from LSTMT is
used to guide LSTMS to make better predictions over the
unified tags for the complete task.

The three key components are named Boundary Guidance
(BG) component, Sentiment Consistency (SC) component
and Opinion-Enhanced (OE) Target Word Detection compo-
nent. The BG component takes the advantages of the bound-
ary information provided by the auxiliary task to guide the
LSTMS for predicting the unified tags more accurately. The
SC component is empowered with a gate mechanism to ex-
plicitly integrate the features of the previous word into the
current prediction, aiming at maintaining the sentiment con-
sistency within a multi-word opinion target. In order to pro-
vide boundary information of higher quality, the OE compo-
nent, following the oberservation that “opinion targets and
opinion words always co-occur”, performs another auxiliary
binary classification task to determine if the current word is
a target word.
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Figure 1: Architecture of the proposed framework.

Target Boundary Guided TBSA We employ LSTMS

with softmax decoding layer for the prediction of the tag
sequence. It is observed that the boundary tag can provide
important clues for the unified tag prediction. For example,
if the current boundary tag is B, denoting the beginning of
an opinion target, then the corresponding unified tag can
only be B-POS, B-NEG or B-NEU. Thus, we introduce an
additional network LSTMT for the target boundary predic-
tion, where the valid tag set YT is {B, I, E, S, O}. We link
these two LSTM layers so that the hidden representations
generated by the LSTMT can be directly fed to LSTMS as
guidance information. Specifically, their hidden representa-
tions hTt ∈ RdimT

h and hSt ∈ RdimS
h at the t-th time step

(t ∈ [1, T ]) are calculated as follows:

hTt = [
−−−−→
LSTMT (xt);

←−−−−
LSTMT (xt)],

hSt = [
−−−−→
LSTMS(hTt );

←−−−−
LSTMS(hTt )], t ∈ [1, T ].

(1)

The probability scores zTt ∈ R|YT | over the boundary tags
are calculated by a fully-connected softmax layer:

zTt = p(yTt |xt) = Softmax(WT hTt ). (2)

where the Softmax denotes the softmax activation function
and WT is the model parameter. Similarly, the scores over
the unified tags zSt ∈ R|YS | are obtained as below:

zSt = p(ySt |hTt ) = Softmax(WShSt ). (3)

As mentioned above, the boundary information is sup-
posed to be useful for improving the performance of
LSTMS . (Zhang, Zhang, and Vo 2015) incorporated such
boundary information by adding hard boundary constraints
in the decoding step of the CRFs model. However, their pre-
diction results are not promising. One reason is that their
model employs a hard constraint which is prone to propa-
gating the errors from the tagger of the boundary detection
task and thus it decreases the performance of the TBSA tag-
ger. Different from their way of imposing hard constraints,
our proposed BG component can absorb the boundary in-
formation via boundary guided transition and automatically

determine its proportions in the final tagging decision based
on the confidence of the target boundary tagger. Firstly, the
BG component encodes the constraints into a transition ma-
trix Wtr ∈ R|YT |×|YS |. As we have no prior knowledge
about the transition probabilities between the boundary tags
and the unified tags, we initially set them equally as follows:

Wtr
i,j =

{
1
|Bi| , if j ∈ Bi
0, Otherwise

(4)

where Bi is the set of valid unified tags coherent with the
boundary tag i. In this transition matrix, a non-zero element,
e.g., Wtr

B,B-POS, denotes the probabilities of the unified tags
given the boundary tag, and a zero element, e.g., Wtr

B,I-NEG,
suggests that the unified tag cannot be inferred through this
transition. After encoding the constraints, the next step is to
guide the unified tag prediction with the boundary informa-
tion. We directly propagate such information to the TBSA
tagger by mapping the probability scores of the boundary
tag zTt to the unified tag space. The transition-based senti-
ment score zS

′

t ∈ R|YS | is obtained as follows:

zS
′

t = (Wtr)>zTt (5)
where the transition operation is equivalent to the linear
combination of the row vectors in the transition matrix Wtr.
Assuming zTt = [1, 0, 0, 0, 0] (i.e., taking the tag B), the re-
sult of the transition is exactly the row vector Wtr

B,:. As the
unified tag can be partially derived from the boundary tag, a
natural question is how to determine the proportions of the
transition-based unified tagging scores zS

′

t . Intuitively, if the
target boundary score zTt is nearly uniform, suggesting that
the boundary tagger is not confident to its prediction, the
obtained distribution over the unified tags, i.e., zS

′

t , will also
be close to a uniform distribution and has little meaningful
information for the sentiment prediction. To avoid such un-
informative boundary transitions, we calculate a proportion
score αt ∈ R based on the confidence ct of the target bound-
ary tagger:

ct = (zTt )>zTt
αt = εct

(6)
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where the hyper-parameter ε denotes the maximum propor-
tions that the boundary-based scores zS

′

t occupy in the tag-
ging decision. Obviously, ct will be down-weighted if the
boundary scores are uniformly distributed. The maximum
confidence value is reached if zTt is a one-hot vector. The
final scores are obtained by combining the boundary-based
and model-based unified tagging scores:

z̃St = αtz
S

′

t + (1− αt)z
S
t . (7)

Maintaining Sentiment Consistency In the traditional
target sentiment classification task, the sentiments towards
the different words in a given multi-word opinion target are
assumed to be identical. However, in the complete TBSA
task, such sentiment consistency is not guaranteed since the
task is formulated as a sequence tagging/labeling problem.
Taking the sentence in Table 1 as an example, there is still
some possibility that the word “Processor” is labeled with an
E-NEG tag due to the independent tagging decisions made
by LSTMs. To maintain the sentiment consistency within
the same opinion target, we propose to predict the current
unified tag using both of the features from the current and
the previous time steps. Specifically, we design a Senti-
ment Consistency (SC) component with a gate mechanism
to combine these two feature vectors:

h̃St = gt � hSt + (1− gt)� h̃St−1
gt = σ(WghSt + bg)

(8)

where Wg and bg are learnable parameters of the SC com-
ponent, and � denotes the element-wise multiplication. σ is
the sigmoid function. Through the gating, the previous fea-
tures are considered in the current predictions and such indi-
rect bi-gram dependency can help reduce the probability that
the words within the same target hold different sentiments.

Auxiliary Target Word Detection A good boundary tag-
ger for opinion targets is crucial for producing the boundary
information of high quality. Here, we introduce the OE com-
ponent to learn a more robust boundary tagger from another
view of the training data. As defined in (Pontiki 2014; 2015;
2016), opinion targets are always collocated with opinion
words. Inspired by this, we regard the word as a target word
if there is at least one opinion word within the context win-
dow of fixed-size s of this word. Then, we train an aux-
iliary token-level classifier for discriminating target words
and non-target words based on the distantly supervised la-
bels and the boundary representations hTt are further refined
with such supervision signals. The computational process of
the OE component is below:

zOt = Softmax(WohTt )

yOt = argmax
y

zOt
(9)

where Wo is the model parameter.

Model Training
All the components in our framework are differentiable,
thus, the whole framework can be efficiently trained with

Dataset Train Dev Test Total

DL

# POS 883 104 339 1326
# NEG 754 106 130 990
# NEU 404 46 165 615

DR

# POS 2337 270 1524 4131
# NEG 942 93 500 1535
# NEU 614 50 263 927

DT

# POS - 692
# NEG - 263
# NEU - 2244

Table 2: Statistics of the datasets.

gradient-based methods. Word/Token-level cross-entropy
error is employed as the loss function:

LI = − 1

T

T∑
t=1

I(yI,gt ) ◦ log(zIt ) (10)

where I is the symbol of task indicator and its possible val-
ues are T , S , andO. I(y) represents the one-hot vector with
the y-th component being 1 and yI,gt is the gold standard tag
for the task I at the time step t. Then, the losses from the
main TBSA task and the two auxiliary tasks are aggregated
to form the training objective J (θ) of the framework:

J (θ) = LS + LT + LO. (11)

Experiments
Dataset
Our model is evaluated on two product review datasets from
SemEval ABSA challenges (Pontiki 2014; 2015; 2016) and
the Twitter dataset. Table 2 gives the statistics of these
benchmark datasets. DL (SemEval 2014) contains reviews
from the laptop domain and the train-test split is the same
as the original dataset. DR is the union set of the restau-
rant datasets from SemEval ABSA challenge 2014, 2015
and 2016. The new training dataset is obtained by merg-
ing the three years’ training datasets and the new testing
set is built in the same way. DT consists of tweets collected
by (Mitchell et al. 2013). The ground truth of the opinion
target mentions and their sentiments are provided in these
datasets. For DL and DR, we regard 10% randomly held-out
training data as the development set. For DT, we report the
ten-fold cross validation results, as done in (Mitchell et al.
2013; Zhang, Zhang, and Vo 2015), since there is no stan-
dard train-test split for this dataset.

The gold standard boundary annotations are available for
the auxiliary target boundary prediction task. For another
auxiliary task, namely, opinion-based target word detection,
we employ the existing opinion lexicon1 to provide the opin-
ion words.

The evaluation metric measures the standard precision
(P), recall (R) and F1 score based on the exact match, which
means that an output segment is considered to be correct
only if it exactly matches with the gold standard span of the
target mention and the corresponding sentiment.

1http://mpqa.cs.pitt.edu/
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Model DL DR DT
P R F1 P R F1 P R F1

Existing Baselines

CRF-joint 57.38 35.76 44.06 60.00 48.57 53.68 43.09 24.67 31.35
CRF-unified 59.27 41.86 49.06 63.39 57.74 60.43 48.35 19.64 27.86
NN-CRF-joint 55.64 34.48 45.49 61.56 50.00 55.18 44.62 35.84 39.67
NN-CRF-unified 58.72 45.96 51.56 62.61 60.53 61.56 46.32 32.84 38.36

Pipeline Baselines
CRF-pipeline 59.69 47.54 52.93 52.28 51.01 51.64 42.97 25.21 31.73
NN-CRF-pipeline 57.72 49.32 53.19 60.09 61.93 61.00 43.71 37.12 40.06
HAST-TNet 56.42 54.20 55.29 62.18 73.49 67.36 46.30 49.13 47.66

Unified Baselines

LSTM-unified 57.91 46.21 51.40 62.80 63.49 63.14 51.45 37.62 43.41
LSTM-CRF-1 58.61 50.47 54.24 66.10 66.30 66.20 51.67 44.08 47.52
LSTM-CRF-2 58.66 51.26 54.71 61.56 67.26 64.29 53.74 42.21 47.26
LM-LSTM-CRF 53.31 59.4 56.19 68.46 64.43 66.38 43.52 52.01 47.35

OURS

Base model 60.00 46.85 52.61 61.48 66.16 63.73 53.02 41.47 46.50
Base model + BG 58.58 50.63 54.31 67.51 66.42 66.96 52.26 43.84 47.66
Base model + BG + SC 58.95 53.00 55.81 63.95 69.65 66.68 53.12 43.60 47.79
Base model + BG + OE 63.43 49.53 55.62 62.85 66.77 65.22 53.10 43.50 47.78
Full model 61.27 54.89 57.90\,] 68.64 71.01 69.80\,] 53.08 43.56 48.01]

Table 3: Main results of the complete TBSA task. “Base model” refers to the stacked LSTMs. The markers \ and ] refer to our
full model significantly outperforms HAST-TNet and LM-LSTM-CRF respectively.

Compared Models
We compare our framework with the following methods:

• CRF-{pipeline, joint, unified} (Mitchell et al. 2013):
Conditional Random Fields (CRF) based sequence tag-
ger2. “pipeline” denotes the pipeline approach. “joint”
and “unified” are the models following the joint tagging
scheme and unified tagging scheme respectively.

• NN-CRF-{pipeline, joint, unified} (Zhang, Zhang, and
Vo 2015): Enhanced CRF models3 armed with word em-
beddings and neural network feature extractors.

• HAST-TNet: HAST (Li et al. 2018b) and TNet (Li et al.
2018a) are the current state-of-the-art models on the tasks
of target boundary detection and target sentiment classi-
fication respectively. HAST-TNet is the pipline approach
of these two models. We use the officially released codes4

to produce the results.

• LSTM-unified: the standard LSTM model adopting the
unified tagging scheme.

• LSTM-CRF-1 (Lample et al. 2016): LSTM model with
CRF decoding layer and no feature engineering is needed.
We run the officially released code 5 and utilize the unified
tag set to reproduce the results.

• LSTM-CRF-2 (Ma and Hovy 2016): LSTM-CRF-2 is
similar to LSTM-CRF-1. The difference is that LSTM-
CRF-2 employs CNN rather than LSTM to learn the
character-level word representations. We run the released
code6 to reproduce the results.

2http://www.m-mitchell.com/code/index.html
3https://github.com/SUTDNLP/NNTargetedSentiment
4Available at: https://github.com/lixin4ever/HAST and

https://github.com/lixin4ever/TNet respectively.
5https://github.com/glample/tagger
6https://github.com/XuezheMax/NeuroNLP2

• LM-LSTM-CRF (Liu et al. 2018): Language model en-
hanced LSTM-CRF model. It is a competitive model in
several sequence tagging tasks. We rerun their code7 and
report the tagging results based on the unified tagging
scheme.

Experiment Settings

Word Embeddings We use GloVe.840B.300d 8 re-
leased by (Pennington, Socher, and Manning 2014) to ini-
tialize the word embeddings, fine-tuned during training. The
embeddings of the out-of-vocabulary words are sampled
from the uniform distribution U(-0.25, 0.25) (Kim 2014).

Weight Initializations The weight matrices in the LSTM
units are initialized by following the Glorot Uniform strat-
egy (Glorot and Bengio 2010) and the others are randomly
sampled from the uniform distribution U(-0.2, 0.2). Besides,
all biases are initialized as 0’s.

Optimization Our models are trained up to 50 epochs
with Adam (Kingma and Ba 2014), with β1 = β2 = 0.9,
and the initial learning rate η0 = 10−3. The decay rate is
kept the same as the setting in (Lample et al. 2016). We ap-
ply dropout on word embeddings and the ultimate features
for prediction. The dropout rates are empirically set as 0.5.
The model obtaining the best F1 score on the development
set is selected for producing the testing results.

Others Both of the dimension of the hidden representa-
tions dimTh and dimSh are 50. The maximum proportion ε
of the boundary-based scores is 0.5. The size of the context
window s in the opinion-based target word detection com-
ponent is 3. The tuning details of ε and s are given later.

7https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
8https://nlp.stanford.edu/projects/glove/
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Input Base model Base model + BG Full model
Target Complete Target Complete Target Complete

1. And the fact that it comes with an [i5
processor]POS definitely speeds things up i5 processor [processor]POS (7) i5 processor [i5 processor]POS i5 processor [i5 processor]POS

2. There were small problems with [mac
office]NEG . mac office [mac]NEG (7) mac office [mac office]NEG mac office [mac office]NEG

3. The [teas]POS are great and all the
[sweets]POS are homemade teas, sweets [teas]POS,

[sweets]POS

teas, sweets,
homemade
(7)

[teas]POS,
[sweets]POS,
[homemade]POS (7)

teas, sweets [teas]POS,
[sweets]POS

4. I love the [form factor]POS NONE NONE NONE NONE form factor [form factor]POS

5. I blame the [Mac OS]NEG . Mac OS [MacNEG OSNEU]
(7) Mac OS [MacNEG OSPOS] (7) Mac OS [Mac OS]NEG

6. Also, I personally wasn’t a fan of the
[portobello and asparagus mole]NEG .

portobello
and
asparagus
mole

[portobelloNEG
andNEG
asparagusNEG
moleNEU] (7)

portobello
and
asparagus
mole

[portobelloNEG
andNEG
asparagusNEU
moleNEU] (7)

portobello
and
asparagus
mole

[portobello and
asparagus mole]NEG

Table 4: Case analysis. The “Target” column contains the results from the auxiliary task of target boundary detection. The
“Complete” column presents the output of the complete TBSA task, but note that we only show the sentiment part of the unified
labels (i.e., POS, NEG, and NEU) and use brackets to indicate the boundary. The marker 7 denotes the incorrect prediction.

Results and Analysis

Main Results Table 3 presents our comparisons with other
methods for the complete TBSA task. To make the compar-
ison fair, we use GloVe.840B.300d as the pre-trained
word embeddings for all the baselines requiring word em-
bedding input on all of the datasets. Besides, we align the
train/dev/test configurations for all methods. The experi-
mental results suggest that our proposed framework consis-
tently gives the best F1 score across all datasets and signifi-
cantly outperforms the strongest baselines in most cases.

Compared to HAST-TNet, the pipeline of two state-of-
the-art models, our proposed framework achieves 2.6%,
2.4% and 0.40% absolute gains on DL, DR and DT re-
spectively, suggesting that a carefully-designed integrated
model can be more effective than the pipeline approaches
on the TBSA task. Three competitive unified sequence tag-
gers (see the third block in Table 3) are also introduced
into the comparative study. Again, our framework outper-
forms the best of them by 1.7%, 3.4% and 0.5% on the
benchmark datasets. We notice that the improvement of
our framework on the Twitter dataset is marginal in con-
trast with the unified baselines. The small gap is reason-
able since these models employ additional component (e.g.,
LSTM or CNN) to learn the character-level word represen-
tations, whose capability for representing out-of-vocabulary
words has been verified in (Santos and Zadrozny 2014;
Kim et al. 2016), while our framework only utilizes the
word-level features provided by the pre-trained word em-
beddings. Similar observation is captured in the comparison
with HAST-TNet. We attribute this to the superior model-
ing power of the CNN applied in TNet when processing the
ungrammatical sentences such as tweets and micro-blogs, as
pointed out in (Li et al. 2018a).

We also notice that the performances of the CRF-based
models, especially the recall (R) scores, are quite poor.
Armed with the pre-trained word embeddings and neural
network feature extractor, the models are slightly improved
but the scores are still not promising.

Effectiveness of the Proposed Components To investi-
gate the effectiveness of the designed components, we con-
duct ablation study on the proposed framework and the re-
sults are listed in the last block of the Table 3. Let us start
the discussion from the base model, namely, the stacked
LSTMs. We find that the base model always gives superior
performance compared to the LSTM-unified. This result in-
dicates that the boundary information predicted by the aux-
iliary LSTM indeed increases the F1 score of the complete
TBSA task. With the help of the BG component, the per-
formances are improved more significantly and the way we
impose the boundary constraints proves effective for yield-
ing more true positives. Another interesting finding is that
introducing the component SC or OE individually into the
“Base model + BG” does not bring in too much gains on F1
measure and even hurts the prediction performance on DR.
But putting them together, i.e., the “Full model”, leads to the
new state-of-the-art result. This result illustrates the neces-
sity of both of the SC and OE components in the boundary
guided TBSA. Considering the “Base model + BG + SC”,
the quality of the boundary information may not be accu-
rate without the clues from the OE component, and thus,
the SC component tends to incorrectly align the sentiments
of both the target words and non-target words. For the “Base
model + BG + OE”, the quality of the boundary information
obtained from the LSTMT is improved but the sentiments
of the words within the same target are not fully consistent
compared to the “Full model” armed with SC component.
In summary, the SC component and the OE component are
complementary to some extent when they are added into the
boundary-guided “Base model + BG”.

Case Analysis Table 4 gives some prediction examples of
the base model (i.e., the stacked LSTMs) and the models
empowered with our proposed components. As observed in
the first input and the second input, the “Base model” cor-
rectly predicts the target boundary but it fails to produce
the right target sentiments, suggesting that linking the two
LSTMs for the target boundary prediction and the TBSA
task is still insufficient for exploiting the boundary informa-
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tion to improve the performance of the complete TBSA. The
“Base model+BG” and the “Full model”, where the bound-
ary constraints are properly imposed via our BG component,
can correctly handle these two cases. Although the bound-
ary information can guide the model to predict the sentiment
more accurately, there is the possibility that only using the
BG component (i.e., “Base model+BG”) inherits the errors
from the lower boundary detection task, e.g., the third and
the fourth input. Thus, the boundary information of high
quality is crucial for improving the upper TBSA task and
our OE component can serve as a simple but effective so-
lution. Besides, we find that maintaining sentiment consis-
tency within the same target mention, especially for whose
with several words (e.g., “portobello and asparagus mole”
in the last input), is difficult for the “Base model” and “Base
model+BG”, while our “Full model” alleviates this issue by
employing the SC component to make predictions based on
the features from the current and the previous time step.

Impact of ε and s Here, we investigate the impacts of the
maximum proportion ε of the boundary-based scores and the
window size s on the prediction performance. Specifically,
the experiments are conducted on the development set of
DR, the largest benchmark dataset. We vary ε from 0.3 to
0.7, increased by 0.1, and two extreme values 0.0 and 1.0
are also included. The range of the window size s is 1 to
5. According to the results given in Figure 2, we observe
that the best results are obtained at ε=0.5. The ε value ba-
sically affects the importance of the sentiment scores from
the BG component in the final tagging decision and 0.5 is a
good trade-off between absorbing boundary information and
eliminating noises. We also observe that a moderate value of
s (i.e., s = 3) is the best for the TBSA task, probably be-
cause too large s may enforce the model to attend the larger
context and increase the possibility of associating with irrel-
evant opinion words, on the other hand, too small s is likely
not sufficient to involve the potential opinion words.

Related Works
As mentioned in Introduction, Target-based Sentiment Anal-
ysis are usually divided into two sub-tasks, namely, the
Opinion Target Extraction task (OTE) and the Target Sen-
timent Classification (TSC) task. Although these two sub-
tasks are treated as separate tasks and solved individually
in most cases, for more practical applications, they should
be solved in one framework. Given an input sentence, the
output of a method should contain not only the extracted
opinion targets, but also the sentiment predictions towards
them. Some previous works attempted to discover the rela-
tionship between these two sub-tasks and gave a more inte-
grated solution for solving the complete TBSA task. Con-
cretely, (Mitchell et al. 2013) employed Conditional Ran-
dom Fields (CRF) together with hand-crafted linguistic fea-
tures to detect the boundary of the target mention and predict
the sentiment polarity. (Zhang, Zhang, and Vo 2015) further
improved the performance of the CRF based method by in-
troducing a fully connected layer to consolidate the linguis-
tic features and word embeddings. However, they found that
a pipeline method can beat both of the model with joint train-

Figure 2: F1 scores (%) on the development set of DR with
different ε and s values.

ing and the unified model. In this paper, we reexamine the
task, and proposed a new unified solution which outperforms
all previous reported methods.

Conclusions
We investigate the complete task of Target-Based Senti-
ment Analysis (TBSA), which is formulated as a sequence
tagging problem with a unified tagging scheme in this pa-
per. The basic architecture of our framework involves two
stacked LSTMs for performing the auxiliary target bound-
ary detection and the complete TBSA task respectively.
On top of the base model, we designed two components
to take the advantage of the target boundary information
from the auxiliary task and maintain the sentiment consis-
tency of the words within the same target. To ensure the
quality of the boundary information, we employ an auxil-
iary opinion-based target word detection component to re-
fine the predicted target boundaries. Experimental results
and case studies well illustrate the effectiveness of our pro-
posed framework, and a new state-of-the-art result of this
task is achieved. We publicly release our implementation at
https://github.com/lixin4ever/E2E-TBSA.
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