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Abstract

Many idiomatic expressions can be used figuratively or lit-
erally depending on the context. A particular challenge of
automatic idiom usage recognition is that idioms, by their
very nature, are idiosyncratic in their usages; therefore, most
previous work on idiom usage recognition mainly adopted a
“per idiom” classifier approach, i.e., a classifier needs to be
trained separately for each idiomatic expression of interest,
often with the aid of annotated training examples. This pa-
per presents a transferred learning approach for developing
a generalized model to recognize whether an idiom is used
figuratively or literally. Our work is based on the observation
that most idioms, when taken literally, would be somehow
semantically at odds with their context. Therefore, a quanti-
fied notion of semantic compatibility may help to discern the
intended usage for any arbitrary idiom. We propose a novel
semantic compatibility model by adapting the training of a
Continuous Bag-of-Words (CBOW) model for the purpose of
idiom usage recognition. There is no need to annotate idiom
usage examples for training. We perform evaluative experi-
ments on two corpora; results show that the proposed gener-
alized model achieves competitive results compared to state-
of-the-art per-idiom models.

1 Introduction
Idioms appear frequently in languages. Many idioms can be
interpreted figuratively or literally depending on the context
(Fazly, Cook, and Stevenson 2009). For example, the idioms
“play with fire” and “get wind” are used differently in the
instances below:
#1 [lit.]Kids playing with fire: experts warn parents to look
out for danger signs.
#2[fig.]The UN is playing with fire over North Korea crisis.
#3[lit.]Here in Portland we’re just gonna get rain, the coast
is gonna get wind. Stay safe!
#4[fig.]FAA will get wind of that crooked airways’ shady
dealings.

The ability to automatically distinguish whether a poten-
tial idiomatic phrase is used literally or figuratively is ben-
eficial to many natural language processing (NLP) appli-
cations such as machine translation and sentiment analy-
sis (Salton, Ross, and Kelleher 2014; Williams et al. 2015).
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A particular challenge for automatic idiom usage recogni-
tion is that idioms, by their very nature, are idiosyncratic
in their usages. For example, the proposition “of” following
“get wind” often indicates the idiom is used figuratively (as
in instance #4), while for idiom “play with fire”, one might
need more complicated linguistic clues to infer its usage,
such as a violation of selectional preference (as in instance
# 2). Therefore, the majority of previous work on idiom
usage detection adopted a “per idiom” classifier approach;
i.e., a classifier needs to be trained separately for each id-
iomatic expression of interest, often with the aid of anno-
tated training examples (Rajani, Salinas, and Mooney 2014;
Peng, Feldman, and Vylomova 2014; Liu and Hwa 2017).
Since there are a large number of idioms in the text, we
aim to build an efficient generalized idiom usage recognizer
without supervision.

The insight underlying the method we propose is that
when the literal interpretation of a potential idiomatic ex-
pression is not compatible with the context, it typically indi-
cates that the idiom is used figuratively. For instance, in ex-
ample #4 above, the word “wind” is semantically far away
from most surrounding words; the literal sense of “get wind”
does not fit well with the context. In general, this seman-
tic incompatibility is a strong indicator that the idiom has a
non-literal interpretation in the context. This paper presents
a method for building a general idiom usage recognizer by
determining the semantic compatibility between the literal
meanings of idioms and their contexts.

This notion of semantic compatibility is reminiscent of
the training objective of negative sampling in word2vec,
which is originally used for learning low dimensional word
embeddings (Mikolov et al. 2013b; 2013a). Its Continuous
Bag-of-Words (CBOW) variant internally tries to maximize
the probability of positive (compatible) context-word pairs
and minimize the probability of randomly sampled nega-
tive (incompatible) pairs. Thus, if CBOW can successfully
capture the semantic compatibility feature in text, it is also
possible that we can apply it to determine the semantic com-
patibility between an idiom and its context.

However, the CBOW model mainly uses semantic com-
patibility as a roundabout way to learn useful vectors for
words. The post-hoc evaluations of the model concentrate
on the learned embeddings of words (Mikolov et al. 2013a;
Levy, Goldberg, and Dagan 2015); whether the learned
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Figure 1: The overview of our idiom usage recognition model in a transfer learning fashion: the CBOW is adapted for semantic
compatibility measurement which can be trained on raw large corpus; the learned representations and parameters are then used
for idiom usage recognition. [] indicates target word or idiom.

model can be directly applied to measure semantic compati-
bility is understudied. In this work, we analyze the potential
limitations of the standard CBOW model in terms of seman-
tic compatibility measurement (see Section 3.1). We further
propose a novel semantic compatibility model by adapting
the standard CBOW in two ways. First, we introduce several
alternatives for context representation. We exploit bidirec-
tional LSTM (Graves, Jaitly, and Mohamed 2013) to model
the sequential information in context and two self-attention
mechanisms (Vaswani et al. 2017) to capture the critical con-
text words. Second, we add a multilayer perceptron layer to
relax CBOW’s constraint on contextual similarity and tailor
it for capturing semantic compatibility.

The overview of our method is shown in Figure 1. Here,
the semantic compatibility model is used in a transfer
learning fashion: (1) the model is first trained on large raw
text corpora (such as Wikipedia) with the aim of predict-
ing the semantic compatibility between context and a single
word; (2) the learned model can then be applied to deter-
mine an idiom’s intended usage by measuring the seman-
tic compatibility between the idiom’s literal sense and the
context. Since most idioms are multi-word expressions, we
treat each idiom as a single semantic unit and build a lit-
eral representation for it; this enables a seamless reuse of
the semantic compatibility model for usage recognition. The
advantages of our model are: (1) there is no need for an-
notated idiom usage examples since the core component of
our usage recognition model (i.e., the semantic compatibil-
ity model) is trained on raw text corpora; (2) the model is
general; i.e., it can be applied to different idioms without
further parameter tuning. We conduct experiments on two
benchmark idiom corpora; results suggest that the proposed
generalized model achieves competitive results compared to
state-of-the-art per-idiom models.

2 Continuous Bag-of-Words Revisited
The CBOW training procedure using negative sampling is
presented in (Mikolov et al. 2013a). It defines two sets of
embeddings: the “official” word embeddings and a second
set of context embeddings for each word in the vocabulary.

The embeddings in the two sets are K-dimensional vectors
which are tuned iteratively by scanning huge amounts of
texts by a sliding window. The model internally tries to pre-
dict a target word using context words in the window based
on a heavily trimmed neural network. For each observed pair
of context and target word, the model samples several “neg-
ative” words which are not compatible with the context. The
training objective is to maximize the probability of positive
(compatible) context-word pairs and minimize the probabil-
ity of negative (incompatible) pairs generated from a known
noise distribution.

Specifically, the loss function used in CBOW is:

log σ(v
′

wvc) +
∑

Wj∈Wneg

log σ(−v
′

wj
vc) (1)

where vc is the context embedding, vw and vwj
are the word

embeddings of positive and negative target words respec-
tively. Since the sliding window usually contains more than
one words, vc is represented as the average of context em-
beddings of words within the window. The sigmoid func-
tion σ(v

′

wvc) can be considered as a semantic compatibility
measurement; the model will update the context embeddings
and word embeddings iteratively so as to assign high score
to positive (compatible) pairs and lower score the negative
(incompatible) pairs.

3 A Generalized Idiom Usage Recognition
Model

We want to develop a generalized model for idiom usage
recognition based on semantic compatibility. In this section,
we first analyze the potential limitations of CBOW for se-
mantic compatibility measurement. Then we present how
we adapt the CBOW for semantic compatibility. Finally, we
describe how we exploit the adapted model for idiom usage
recognition.

3.1 Limitations of CBOW for Semantic
Compatibility

CBOW uses semantic compatibility as an auxiliary task to
learn useful vectors for words to capture their similarity in
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a hidden semantic space. An interesting question is whether
the learned context embeddings and the word embeddings,
together with the sigmoid function, can be directly applied
as a measurement of semantic compatibility. Although it
seems plausible at first glance, we argue that there are three
potential limitations of CBOW that impede its use as a se-
mantic compatibility measurement.

1) A lack of sequential information To represent the
context, CBOW simply uses the average of all the context
embeddings, thus the order information is not preserved.

2) Not all words are equal In CBOW, all words con-
tribute equally to the context representation. This limita-
tion might not significantly impact the quality of the learned
word embeddings, but could be problematic for semantic
compatibility. In many cases, a few key context words are
critical clues to determine the semantic compatibility be-
tween the context and a word.

3) A paradox of transitivity In CBOW, the direct dot
product between context representation and target word em-
bedding is used to model their semantic compatibility. How-
ever, a dot product operation is not appropriate for encod-
ing semantic compatibility relation; the dot product aims to
capture a similarity relation (≈) between two embeddings,
which could lead to a paradox of transitivity in the case
of semantic compatibility because a word often appears in
very different contexts. For example, in John Lennon wrote
a [song] called “Working Class Hero” and I like to listen
to the same [song] on repeat, the semantics of the two con-
texts of “song” are very different. Let C1 and C2 denote em-
beddings of two different contexts, i.e., C1 6≈ C2. A target
word T could be compatible with bothC1 andC2 (as shown
in the above example). If we use the direct dot product to
model their compatibility, we can get T ≈ C1 and T ≈ C2

in the embedding space since T is compatible with both C1

and C2. Based on the transitive property of similarity rela-
tion, C1 ≈ C2 can be inferred, which contradicts with the
premise C1 6≈ C2.

3.2 Adapting CBOW for Semantic Compatibility
We have discussed the potential limitations of CBOW for
semantic compatibility. The first two limitations are re-
lated to context representations, while the third limitation
is about the dot product operation. We propose to adapt
the CBOW model to better capture semantic compatibil-
ity relation. In terms of context representation, we addi-
tionally use a special bidirectional Long Short-Term Mem-
ory network (LSTM) (Hochreiter and Schmidhuber 1997) to
encode sequence information. Meanwhile, we exploit self-
attention mechanism (Lin et al. 2017; Vaswani et al. 2017;
Li et al. 2016) to give more weight to important words when
encoding context. Finally, instead of the simple dot product,
a semantic evaluation layer is used to overcome the afore-
mentioned paradox of transitivity.

Context Representation In standard CBOW, the context
representation is the average of the embeddings of context
words (denoted as ACE). Apart from ACE, we also exploit
bidirectional LSTM for context representation, which has
been shown to be effective for modelling sequential data

(Graves, Jaitly, and Mohamed 2013; Melamud, Goldberger,
and Dagan 2016; Peters et al. 2018). The overview of our
architecture is illustrated in Fig. 2

Figure 2: Bidirectional LSTM for context representation

Our architecture is not the same as standard Bidirectional
LSTM (Graves, Jaitly, and Mohamed 2013). In our model,
the two LSTMs gravitate toward the target words: a forward
LSTM will generate a hidden representation for each word
before the target word and a reversed LSTM will generate
a hidden representation for each word following the target
word; we do not feed the LSTMs with the target word itself.
Let h be the hidden representation of wordw (i.e., the output
of the LSTMs), the context representation of the target word
at position i is the concatenation of the hidden representa-
tions of the two neighboring words, i.e.,

ci = [hi−1;hi+1] (2)

Attention Layer In both ACE and the LSTM based context
representation, we do not explicitly consider the importance
of words. In this paper, we exploit attention mechanism to
enable our model to automatically identify those important
words for semantic compatibility.

Attention mechanisms have generally been used to allow
for an alignment of the input and output sequences, e.g.
the source and target sentence in machine translation (Bah-
danau, Cho, and Bengio 2014), or for an alignment between
two input sentences as in question answering (Santos et al.
2016; Xiong, Zhong, and Socher 2016). In our work, we ap-
ply the idea of attention to a rather different kind of scenario,
in which we only have the raw input sentence. We propose
two self-attention (or intra-attention) models: global atten-
tion and local attention. The first one uses a vector to cap-
ture all the words that are important globally. As semantic
compatibility usually involves the local interaction between
words, our second attention model captures those words that
have strong semantic relation with the other words in the
context.

Global Attention Figure 3 illustrates the global attention
architecture when using bidirectional LSTM for context en-
coding. Assume v is the attention vector. The attention layer
will generate an importance score gi for each word wi based
on the dot product between v and its hidden representation
hi:

gi = v · hi + b (3)
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Here the attention vector v is a parameter to be learned in the
training process, which can be considered as a global vari-
able trying to “memorize” those critical words in a sentence
based on the current context. The importance score is then
normalized using softmax:

ai =
egi∑n
p=1 e

gp
. (4)

The attention-based context representation is a weighted
sum of hidden states of LSTMs:

vc =

n∑
i=1

hiai. (5)

Note that this global attention models can also be applied
to the ACE for context representation. The only difference
is the input to the attention layer: we only need to replace hi
in Equation 3 and 5 with the word embedding wi.

Figure 3: The global attention architecture when using bidi-
rectional LSTM for sequential encoding

Local Attention While global attention is useful, we ar-
gue that it might not fully capture the semantic compatibil-
ity information in a sentence. A word that is important for
semantic compatibility globally or in other sentences might
not be important for the target sentence. Semantic compati-
bility usually involves the interactions among words within a
sentence. We introduce a diagonal relevance matrix A with
values Ai,j = f(wi, wj) to characterize the strength of se-
mantic interaction between words wi and wj . The scoring
function f is computed as the inner product between the
embeddings of wi and wj . If a word has a strong seman-
tic relation with another word, it is highly possible that this
word is important. So we apply a max operation over the
row of A (excluding the value in the diagonal because it is
the relevance score between a word and itself) to select the
largest value as the importance score for each word; i.e.,

li = max
j
Ai,j (6)

Following the global attention, a softmax layer is applied
to normalize the raw score li; the final context representation
is a weighted sum of hidden states of LSTMs. The overview

of local attention is illustrated in Figure 4. Similarly, when
applying local attention to ACE, the final context represen-
tation is a weighted sum of word embeddings.

Figure 4: The local attention architecture when using bidi-
rectional LSTM for sequential encoding

Semantic Compatibility Evaluation Layer To quantify
the semantic compatibility between a context and a target
word, standard CBOW uses the direct dot product between
context embedding and target word embedding as the met-
ric. We have argued that the direct dot product operation may
lead to a paradox of transitivity. To address this limitation,
we feed the context representation into a multilayer network
of perceptrons with a ReLu nonlinearity activation function:

L(vc) = f2(relu(f1(vc))) (7)
where f1 and f2 denote fully connected layer. Then we use
the following formula to measure the semantic compatibility
between a context and a word:

σ(v
′

lL(vc)) (8)
Recall the main reason of paradox of transitivity is that

a word can appear in very different contexts; the direct dot
product between word embedding and context representa-
tion would, however, force these different contexts being
similar to each other. This paradox is avoided by the mul-
tilayer perceptron network L since it relaxes the contextual
similarity constraints, i.e., it can map the context represen-
tations that are different originally to similar embeddings
which are close to the target word. We refer the whole map-
ping and measuring schema as the semantic compatibility
evaluation layer.

Training We train our adapted CBOW on the Wikipedia
corpus 1 using negative sampling. The loss function is:

log σ(v
′

wL(vc)) +
∑

Wj∈Wneg

log σ(−v
′

wj
L(vc)) (9)

The model is trained end-to-end using the Adam optimizer
(Kingma and Ba 2015). Standard CBOW scans the whole
corpus using a sliding window of a fixed size. Alternatively,
we train the model sentence by sentence because using all
the context words in a sentence can yield more precise con-
text representation, which is essential for semantic compati-
bility.

1https://dumps.wikimedia.org
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3.3 Idiom Usage Recognition based on Semantic
Compatibility

We have described how we adapt the standard CBOW for
semantic compatibility measurement and train it on a large
corpus. Given a context representation and a word embed-
ding, the learned model is expected to tell us whether they
are compatible. However, we want to measure the semantic
compatibility between a context and an idiom, which is usu-
ally a multi-word expression. To reuse the learned model,
we first build a representation of the literal sense of the id-
iom. Then we use the semantic compatibility layer to evalu-
ate whether the literal representation is compatible with the
context.

Literal Representation of Idiom We experiment with the
following two representations of the literal sense of idiom:

AWE, the average of the embeddings of words forming
the idiom. The intuition is that the literal sense of idiom is
compositional.

AKWE, the average of the embeddings of key words in
the idiom. This representation might lose partial informa-
tion of the literal interpretation of idiom, but we hypothe-
size it could benefit our task. The intuition is that one or two
words in idiom will be the crucial clue that indicates whether
a figurative or literal sense was intended. Consider the fig-
urative example of “get wind” in the Introduction section,
the word “wind” does not fit well with the context and this
incompatibility serves as a strong signal of the intended us-
age, while the word “get” provides less information. In this
paper, for verb-noun combinations, we only choose the noun
as the keyword; for noun-noun combination, we choose both
nouns as the keywords; for the other types of idiom, the non-
stop words are selected as the keywords.

Usage Classification Given a context representation vc
and the literal representation of idiom vl, we calculate their
compatibility score using the following formula:

σ(v
′

lL(vc) + bu) (10)
where bu is a bias term, which is tuned based on a develop-
ment dataset. If the score is larger than 0.5, the instance will
be classified as literal usage. Otherwise, it will be labeled as
figurative usage.

4 Evaluation
We conduct experiments to address the following questions:

1. How effective is our overall approach? How does it
compare against previous work?

2. How effective is the standard CBOW for idiom usage
recognition?

3. Does our model effectively address the limitations of
CBOW?

4.1 Experimental Setup
Baselines We compare our models with three unsupervised
models: Sporleder and Li (2009), Li and Sporleder (2009)2

2Due to the query frequency restriction on the API of Normal-
ized Google Distance (NGD), we replace NGD with word embed-
dings to measure the semantic relatedness among words.

and Fazly, Cook, and Stevenson (2009). For supervised
models, we compare our models with Rajani, Salinas, and
Mooney (2014) and Liu and Hwa (2017) (using 5-fold cross
validation). All these models are per-idiom models except
the one presented in (Sporleder and Li 2009).
Our models We experiment with two base context repre-
sentations: ACE and bidirectional LSTM, over which we
additionally propose two attention models: local and global
attention. Therefore we have four variants for context rep-
resentations. In terms of the representation of literal sense
of idiom, we experiment with AWE and AKWE. So our full
models have eight variants.
Parameter setting To train the adapted CBOW, we follow
the standard training procedure in word2vec using negative
sampling. To increase the training speed, we uniformly sam-
pled a set of sentences from Wikipedia to build a corpus of
100M tokens. We find using a corpus of this size is sufficient
to train a reliable model so we do not use the full corpus. All
tokens with a frequency of less than 50 are trimmed. The
hyperparameters are summarized in Table 1.

When applying the adapted CBOW model to idiom usage
recognition, we need to set the bias term bu in Equation 10
with value in a reasonable range. We picked 10 idioms that
are different from the evaluation set, collected 50 instances
from the web for each idiom, and labeled them ourselves.
We find that bu in the range of [0.06, 0.15] yield good results.

Parameter Value
word embedding size 200

context embedding size 200
LSTM hidden size 200
f1 input/output size 200/400
f2 input/output size 400/200

negative samples 15
epoch 10

batch size 500
learning rate 0.001

Table 1: Hyperparameters of our network.

Evaluative Data We compare all the methods using two
publicly available corpora of idiomatic usages: SemEval
2013 Task 5B corpus (Korkontzelos et al. 2013) and Verb-
Noun Combination (VNC) dataset (Cook, Fazly, and Steven-
son 2008). Some idioms from the VNC dataset have very
few figurative (or literal) instances; this presents a problem
for supervised baselines. To facilitate full comparisons, we
select the subset of idioms from the VNC corpus whose
number of literal and figurative instances are both higher
than 10.

4.2 Experimental Result
Table 2 provides a detailed comparison of our mod-
els with previous approaches. We can observe that
ACE+LocalAtt+AKWE gets an F-score of 0.76 (accuracy
of 0.75) on SemEval corpus and 0.75 (accuracy of 0.73)
on VNC corpus, which outperforms the per-idiom mod-
els from Rajani, Salinas, and Mooney (2014), Li and
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SemEval VNC
Type Model Avg. Ffig Avg.Acc Avg. Ffig Avg.Acc

Rajani et al., 2014 0.71* 0.75 0.69* 0.7
Per-Idiom Li and Sporleder, 2009 0.64* 0.62* 0.67* 0.66*

Fazly et al., 2009 - - 0.73 0.74
Liu and Hwa, 2017 0.77 0.77 0.75 0.75

Generalized Sporleder & Li 0.58* 0.52* 0.61* 0.57*
ACE + GlobalAtt + AWE 0.72 0.69 0.71 0.7
ACE + GlobalAtt + AKWE 0.74 0.7 0.73 0.7
ACE + LocalAtt + AWE 0.74 0.73 0.76 0.73

Our Model ACE + LocalAtt + AKWE 0.76 0.75 0.75 0.73
Bidirectional LSTM + GlobalAtt + AWE 0.68 0.68 0.67 0.67
Bidirectional LSTM + GlobalAtt + AKWE 0.72 0.72 0.69 0.7
Bidirectional LSTM + LocalAtt + AWE 0.69 0.68 0.7 0.69
Bidirectional LSTM + LocalAtt + AKWE 0.73 0.72 0.72 0.71

Table 2: The performances of different models. Avg. Ffig denotes average figurative F-score, Avg.Acc denotes average accu-
racy. * indicates the difference is significant with our model ACE+LocalAtt+AKWE at the 95% confidence level. Since the
method from Fazly, Cook, and Stevenson (2009) restricted their experiment to VNC type, we only report their performance on
the VNC corpus.

Sporleder (2009) and the generalized model from Sporleder
and Li (2009). Moreover, the model is competitive to the su-
pervised per-idiom model from Liu and Hwa (2017), which
is state-of-the-art in this task.

4.3 Detailed Analysis
Using Standard CBOW for Idiom Usage Recognition
In this study, we experiment with using standard CBOW for
idiom usage recognition, in which ACE is used as the con-
text representation and the direct dot product between con-
text representation and target word representation is used as
a measurement of semantic compatibility. The training and
evaluation procedures are the same as those used for our full
models.

Model Avg. Ffig Avg.Acc
CBOW+AWE 0.63 0.62

CBOW+AKWE 0.65 0.63

Table 3: The results of CBOW for idiom usage recognition.
Results are averaged across all the idioms in the two corpora.

Table 3 shows the performance of CBOW for idiom usage
recognition, which is significantly worse than our adapted
models. Arguably, CBOW is insufficient to capture the se-
mantic compatibility information in text. To illustrate this
point, we compare the CBOW and our adapted model (we
use the bidirectional LSTM + Local Attention for context
representation) to select the most compatible words based
on a given context. We find the results of CBOW remains to
be of wildly varying quality. Considering the example “can
you see the [] i try to make?”, the top 10 most compatible
words to fill in the bracket predicted by the two models are
shown in Table 4.

As we can see, CBOW has a fairly poor semantic compati-
bility measurement; all the words tend to make little sense in
the context. In contrast, the adapted model has much better

CBOW Adapted CBOW
please stuff
want positives
you ripples
hear ones
how things
try changes

sure figures
wish pictures
know dilema

do negatives

Table 4: Top 10 most compatible words in “can you see the
[] i try to make?”

results. Since our idiom usage recognition heavily relies on
the underlying model’s ability of measuring semantic com-
patibility, this could potentially explain why CBOW has a
worse performance in the downstream task.

To better understand the effectiveness of sequential infor-
mation, the attention mechanism and the semantic compati-
bility layer, we did an ablation study. The results are shown
in Table 5. Since AKEW tends to outperform AWE as shown
in Table 2, we only experimented with AKEW as the literal
representation of idiom.

Sequential Information We find that the importance of
sequential information is closely related to the attention
model. In Table 2, we observe that our full non-sequential
models (ACE variants) generally outperform the sequential
models (Bidirectional LSTM variants). Without attention,
however, sequential information can significantly boost the
performance of our model; Bidirectional LSTM + AKEW
achieves F-score of 0.7 while ACE + AKEW only gets 0.66
as shown in Table 5. Intuitively, with the aid of attention, our
model can identify those critical words, which enhances the
expressiveness of context representation by simple weighted
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Model Avg. Ffig Avg.Acc
ACE+GlobalAtt+AKEW 0.74 0.7
- w/o Semantic Layer 0.66 0.64
ACE+LocalAtt+AKEW 0.76 0.74
- w/o Semantic Layer 0.67 0.66
- w/o attention 0.66 0.67
Bidirectional LSTM+GlobalAtt+AKEW 0.71 0.71
- w/o Semantic Layer 0.65 0.64
Bidirectional LSTM+LocalAtt+AKEW 0.73 0.72
- w/o Semantic Layer 0.66 0.66
- w/o attention 0.7 0.69

Table 5: The results of ablation study. Results are averaged
across all the idioms in the two corpora.

averaging.

Attention In Table 5, we observe that the removal of the
attention layer can result in a performance drop for both
the ACE and Bidirectional LSTM variants. This shows the
effectiveness of our attention model in terms of context
representations. Moreover, global attention is not as com-
petitive as local attention. For example, the Bidirectional
LSTM+LocalAtt+AKEW model achieves an averaged F-
score of 0.73 on the two corpora while the Bidirectional
LSTM+GlobalAtt+AKEW model gets 0.71. This observa-
tion aligns with our intuition that semantic compatibility
usually involves local interactions among words within the
sentence. In Figure 5 we visualize the attention layer us-
ing the first example in the Introduction section. The global
attention tends to assign higher weights to non-stop words
such as “kids”, “experts” and “sign”, while the local atten-
tion tends to assign higher weights to words with strong se-
mantic relation, such as “warn” and “danger”.

Figure 5: Visualization of attention layer

The semantic compatibility layer We have argued that a
direct dot product between context representation and target
word embedding could lead to a paradox of transitivity. To
address this problem, we add a multilayer perceptron net-
work over the context representation so as to map different
contexts to embeddings that are close to the target word.

In Table 5, we observe that the performances of
our models decrease significantly without the seman-
tic compatibility layer. Among all the full models, the
ACE+LocalAtt+AKEW has the most severe performance
drop: from 0.76 to 0.67 in terms of F-score and 0.74 to 0.66
in terms of accuracy. This suggests that the semantic com-
patibility layer is essential to our model.

5 Related Work
5.1 Idiom Usage Recognition
Most previous work on idiom usage detection adopted a
“per idiom” classifier approach (Birke and Sarkar 2006;
Fazly, Cook, and Stevenson 2009; Li and Sporleder 2009;
Peng, Feldman, and Vylomova 2014; Liu and Hwa 2017).
For example, Fazly, Cook, and Stevenson(2009) hypothe-
sized that idiomatic usages of an expression tend to occur
in a small number of canonical form(s). For each idiom,
they proposed a probabilistic method to automatically ex-
tract the canonical forms from large corpus for idiom usage
recognition. Rajani, Salinas, and Mooney (2014) extracted
all non-stop words as features and used them to train a L2
regularized Logistic Regression (L2LR) classifier (Fan et al.
2008). While previous works generally ignored the linguis-
tic properties of idiomatic expression and their interaction
with context representations, Liu and Hwa (2017) presented
an adaptive method that applies supervised ensemble learn-
ing to select representations for different idioms.

Sporleder and Li (2009) proposed a generalized method
by building a cohesion graph to include all content words in
the context; if removing the idiom improves cohesion, they
assumed the instance is figurative. Continuing on this work,
Li and Sporleder (2009) used their cohesion graph method
to label a subset of the test data with high confidence. This
subset is then used as the training data for a downstream
supervised classifier based on a set of linguistic features.

5.2 Attention
In recent years, there has been a growing research inter-
est in the attention mechanism. Instead of using all avail-
able information, the attention mechanism aims at softly se-
lecting the most important information in the learning pro-
cess. It has been successfully applied to tasks such as ma-
chine translation (Bahdanau, Cho, and Bengio 2014), sen-
tence summarization (Rush, Chopra, and Weston 2015) ,
question answering (Santos et al. 2016) and image caption-
ing (Xu et al. 2015). In these models, attentions have been
typically used for alignment between two sources of infor-
mation. Cheng, Dong, and Lapata (2016) introduced a self-
attention (or intra-attention) to induce relations among to-
kens in a single sequence. Vaswani et al. (2017) showed that
self-attention could also be applied directly on raw word em-
beddings for machine translation. The other applications of
self-attention include question answering (Li et al. 2016) and
sentiment analysis(Lin et al. 2017).

6 Conclusion
This paper presents a generalized model to recognize
whether an idiom is used figuratively or literally based on the
idea of semantic compatibility. We analyze the limitations of
CBOW in terms of semantic compatibility measurement and
propose a novel semantic compatibility model by adapting
the training of CBOW for the purpose of idiom usage recog-
nition. Experiments on two benchmark idiom usage corpora
show that the proposed generalized model achieves compet-
itive results compared to state-of-the-art per-idiom models.
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