
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Exploiting the Ground-Truth: An Adversarial Imitation
Based Knowledge Distillation Approach for Event Detection

Jian Liu,1,2 Yubo Chen,1 Kang Liu1,2

1National Laboratory of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, Beijing, 100190, China

2University of Chinese Academy of Sciences
{jian.liu, yubo.chen, kliu}@nlpr.ia.ac.cn

Abstract
The ambiguity in language expressions poses a great chal-
lenge for event detection. To disambiguate event types, cur-
rent approaches rely on external NLP toolkits to build knowl-
edge representations. Unfortunately, these approaches work
in a pipeline paradigm and suffer from error propagation
problem. In this paper, we propose an adversarial imita-
tion based knowledge distillation approach, for the first time,
to tackle the challenge of acquiring knowledge from raw-
sentences for event detection. In our approach, a teacher mod-
ule is first devised to learn the knowledge representations
from the ground-truth annotations. Then, we set up a stu-
dent module that only takes the raw-sentences as the input.
The student module is taught to imitate the behavior of the
teacher under the guidance of an adversarial discriminator.
By this way, the process of knowledge distillation from raw-
sentence has been implicitly integrated into the feature en-
coding stage of the student module. To the end, the enhanced
student is used for event detection, which processes raw texts
and requires no extra toolkits, naturally eliminating the error
propagation problem faced by pipeline approaches. We con-
duct extensive experiments on the ACE 2005 datasets, and the
experimental results justify the effectiveness of our approach.

Introduction
With the rapid development in the fields of Text Mining
(TM) and Natural Language Processing (NLP), the study on
Event Detection (ED) has gained great popularity (Aggar-
wal and Zhai 2012; Hirschberg and Manning 2015). Con-
cretely, ED is a specialized Information Extraction (IE) tech-
nology which aims to identify event instances of speci-
fied types in unstructured texts, and it has shown to be
beneficial for a big variety of real-world applications in-
cluding Information Retrieval (IR) (Allan 2002; Campos
et al. 2014), Question Answering (QA) (Saurı́ et al. 2005;
Kuchmann-Beauger, Aufaure, and Thollot 2015), Automatic
Text Summarization (Ge et al. 2016; Marujo et al. 2017) and
others.

Amongst, a major challenge faced by ED is the ambigu-
ity in natural language expressions (Poon and Vanderwende
2010; Ritter et al. 2012; Li, Ji, and Huang 2013). On the
one hand, the same event can be expressed in a wide varia-
tion; on the other hand, depending on the context, the same
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expression might refer to entirely different events. To illus-
trate, consider the following two sentences (adapted from
the corpus of ACE 20051):
S1: The European Unit is set to release 20 million euros to

Iraq.
S2: The government reports that Anwar ’s earliest release

date is April 14.
It is note that each of the sentences contains a token re-
lease, however, according to the ACE Annotation Guide-
lines2, release expresses completely different events in the
two sentences — in S1, release evokes a Transfer-Money
event; while in S2, release expresses a Release-Parole event.
According to (Liu et al. 2018), 57% of the event triggers
are ambiguous and trigger different events (in the ACE 2005
corpus). This ambiguity might confuse many event detection
systems and lead to a considerable amount of errors.

Previous studies have shown that the chunk knowledge
corresponding to the sentences can provide evidence for
event type disambiguation (Hong et al. 2011; Li, Ji, and
Huang 2013; Feng et al. 2016; Liu et al. 2017). Taking the
above two examples again, if an event detector is aware that
in S1: 1) The European Unit is an ORGANIZATION entity,
and 2) 20 million designates a NUMBER value, then the
detector can guess that S1 might express a financial event
which is related to an organization. These clues help to rec-
ognize the Transfer-money event without ambiguity. As for
S2, if an event detector knows that: 1) Anwar means a PER-
SON entity, and 2) April 14 indicates a DATE value, then
the detector can correctly identify the Release-Parole event
by considering the prior knowledge that — if a sentence
matches the pattern “[PERSON] release [DATE]”, then the
token release is highly probable to express a Release-Parole
event in the sentence.

Unfortunately, how to acquire this chunk knowledge from
the raw-sentences for ED remains a challenge, especially
in the real test scenario where the ground-truth annotations
are missing. Current works usually first use external NLP
toolkits (e.g., a named entity recognizer) to predict chunk
labels and then transform the predicted labels into vector-
ized knowledge representations. These methods operate in

1https://catalog.ldc.upenn.edu/LDC2006T06
2https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/

files/english-events-guidelines-v5.4.3.pdf
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a pipeline paradigm, and consequently, the errors derived
from the NLP toolkits could propagate and harm their final
performance. In our knowledge, there is no current litera-
ture explicitly studies this practice problem in the context of
event detection.

In this paper, to acquire knowledge from raw-sentences
for ED, we propose an adversarial based knowledge distilla-
tion approach. In the training stage, we first learn the knowl-
edge representations on the ground-truth annotations, and
then we incorporate the knowledge distillation process di-
rectly into the feature encoding procedure, through an adver-
sarial imitation strategy. Consequently, in the testing stage,
our model processes raw-sentences and requires no external
NLP toolkits any more, which naturally eliminates the error
propagation problem faced by pipeline approaches.

Methodologically, in our approach, we first build a teacher
module, which cat take full advantages of ground-truth an-
notations to learn knowledge representations. Note that we
cannot directly use the teacher module for testing since usu-
ally the golden annotations are missing in the real test sce-
nario. Then, we set up a student module, which only takes
raw texts as the input and will be used for testing in the future
time. The plain “student” performs relatively poorly since it
cannot utilize any chunk knowledge. The idea behind our
approach is to enhance the “student” by forcing it to imi-
tate the behavior of the teacher module, by proposing an ad-
versarial imitation strategy. To achieve this goal, we employ
a discriminator, which measures the similarity between the
“student” and the “teacher”. During training, the discrim-
inator manages to discriminate between the “student” and
the “teach” by examining their outputs, meanwhile, the “stu-
dent” tries to “fool” the discriminator by producing vector-
ized outputs that appear to come from the “teacher” (i.e., to
imitate the “teacher”). The contest between the discrimina-
tor and the “student” composes a dynamic adversarial game,
which helps the two modules to improve each other. We as-
sume at a time point, a skilled discriminator still cannot iden-
tify the “student” out, then using the current “student” for
testing can yield rival performance as using the teacher mod-
ule. Since the student module only processes raw-sentences
and is not aware of any explicit forms of chunk knowl-
edge, we say the process of knowledge distillation from raw-
sentence has been implicitly integrated into its feature en-
coding stage. To the end, our final model requires no exter-
nal NLP toolkits in the testing phase and avoids the error
propagation problem faced by current pipeline approaches
naturally.

Our contributions are summarized as follows:
1) In this paper, for the first time, we design a new ad-

versarial imitation based knowledge distillation approach,
to tackle the challenge of acquiring knowledge from raw-
sentences for event detection task.

2) Our approach learns to incorporate the knowledge dis-
tillation process into feature encoding stage in a implicit
manner, which requires no external NLP toolkits for testing
and avoids the error propagation problem faced by current
pipeline approaches naturally.

3) The extensive experiments on the ACE 2005 datasets
justify the effectiveness of our approach.

Figure 1: The illustration of Generative Adversarial Net-
works (GANs) and adversarial training.

Preliminaries
Task Description
The evaluation of event detection is defined in the Automatic
Content Extraction (ACE) program3. We next introduce the
definitions of several ACE terminologies to facilitate the un-
derstanding of the task.

• Entity: an object in one of the interested semantic cate-
gories (e.g., PERSON, ORGANIZATION).

• Entity mention: a reference to an Entity, which is typi-
cally a noun phrase.

• Event mention: a phrase or sentence within which a cer-
tain event is described. An event mention contains an
Event trigger and some Event arguments if any.

• Event trigger: the word that most clearly expresses the
event mention, which is most often a single verb or noun.

• Event argument: an entity mention, temporal expression
or value (e.g., Job-Title) that serves as a participant with
a specific role in the event mention.

For a sentence: “The boy died in the hospital”, the overall
Event Extraction (EE) evaluation defined in ACE program
requires to extract a Die event along with the event trigger
died and the two event arguments: The boy (Role=Victim)
and the hospital (Role=Place). Unlike the overall EE eval-
uation, the ED evaluation only cares about event type and
event trigger. That is, for the above sentence, ED requires to
locate the event trigger died and identify the event type Die.

Adversarial Training
The most influential idea of adversarial training is the Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.
2014). As shown in Figure 2, GANs are usually imple-
mented as a hybrid system that consists of two neural net-
works contesting each other: one generative network (re-
ferred to as G) generates candidates and the other discrim-
inative network (referred to as D) evaluates them. During
training,G aims to increase the error rate ofD, i.e., to “fool”
D by producing novel synthesized instances that appear to
come from the true data distribution, while D manages to
discriminate the synthesized data out. Back-propagation is
applied to both networks for optimization, and in the end,

3http://projects.ldc.upenn.edu/ace/
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Figure 2: The overall architecture of our approach. The model consists of four main components: the teacher encoder Etea, the
student encoder Estu, the discriminator D and the event classifier C. During training, we first concatenate Etea and C to learn
discriminative features for event detection. Next, D and Estu contest with each other under the adversarial imitation strategy.
In the final testing stage, we concatenate the enhanced Estu with C to construct the final event detector, which only takes the
raw texts as the input and requires no additional NLP toolkits.

G can produce instances that close to the true data, while D
becomes more skilled at flagging synthetic data.

GANs have been applied to many different domains such
as image generation (Goodfellow et al. 2014), representa-
tive learning (Radford, Metz, and Chintala 2015) and oth-
ers. In the field of NLP, the GAN-style adversarial learn-
ing has been applied to many tasks including text classifi-
cation (Liu, Qiu, and Huang 2017), Chinese word segmen-
tation (Chen et al. 2017), neural response generation (Li et
al. 2017) and others. In particular, our method is highly mo-
tivated by the work of (Qin et al. 2017) using adversarial
mechanism to exploit the annotated connectives for implicit
discourse relation extraction. In the context of event detec-
tion, we design an adversarial imitation approach to acquire
knowledge from raw-sentences for event type disambigua-
tion, which eliminates the error propagation problem faced
by pipeline approaches naturally.

Methodology
Figure 2 presents the overall architecture of our approach. In
the following, we will introduce the details of our model as
well as the training strategy.

Model Component
Our model consists of four main components: the teacher
encoder, the student encoder, the adversarial discriminator
and the event classifier. Specifically,
• The Teacher Encoder takes the full advantage of the

ground-truth chunk annotations and encodes them into
vectorized knowledge representations for feature learn-
ing. During training, the teacher encoder serves as the role
of “teacher” to teach a student module to learn. We denote
the teacher encoder as Etea.

• The Student Encoder takes only raw texts to build rep-
resentations. In the training stage, the student encoder is
forced to produce vectorized outputs that are similar to
the outputs of Etea, under the guidance of an adversarial
discriminator. We denote the student encoder as Estd.

• The Adversarial Discriminator aims to distinguish be-
tween Etea and Estu. If a skilled adversarial discrimina-
tor still cannot tell the difference between Estu and Etea,
then usingEstu for feature learning will yield similar per-
formance as using Etea. We denote the adversarial dis-
criminator as D.

• The Event Classifier takes the vectorized outputs (fea-
tures) produced by either Etea or Estu as the input to
make the final event type classification. We denote the
event classifier as C.

Theoretically, each component can be instantiated with
any learning structure in the machine learning literature. We
present our particular implementations in the following.

Implementation Structures
The implementation structure of each component is pre-
sented in this subsection.

Attention Based Encoder Etea and Estu are imple-
mented with (self-)attention based neural architectures
(Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2017).
The structure of Etea is presented in Figure 3.

A N -token sentence is denoted as s = {w1, ..., wt, ...,
wN}, where we use wt to designate the concerning token
that we want to check whether it is an event trigger and
which event type it evokes. To encode the sentence, we first
give each token in s a real-valued vector as its word embed-
ding (Mikolov et al. 2013; Pennington, Socher, and Manning
2014), and then:

1) For Etea, we further incorporate the manually anno-
tated entity/event-argument labels into the representation.
For each label, we give it a real-valued vector as its embed-
ding. We concatenate the entity/argument embeddings with
the word embedding as the representation of each token.

2) For Estu, we take only the word embedding as the rep-
resentation of each token.

We next employ bidirectional GRU (BiGRU) (Chung et
al. 2014) to encode the entire sentence. After encoding, s is
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Figure 3: The architecture of Etea. In the sentence, release
is the concerning token for assigning an event type.

transferred to a state sequence {h1, ..., hN}, where hi is the
state representation of each token wi. We adopt attention-
based composition strategy to construct the context repre-
sentation ctx(wt) with respect to the concerning token wt:

ctx(wt) =
∑N

i=1
α
(wt)
i ∗ hi (1)

α
(wt)
i =

exp(m
(wt)
i )∑N

j=1 exp(m
(wt)
j )

(2)

where α(wt)
i means the attention weight of hi with respect

to wt; j ranges over the number of tokens in s; m(wt)
i indi-

cates the semantic correlation between wt and wi, which is
computed by:

m
(wt)
i = tanh(Watt · (hi ⊕ ht) + batt) (3)

where ⊕ stands for the concatenation operation; Watt and
batt are attention parameters; hi and ht are state representa-
tions of wi and wt respectively. In the end, we concatenate
ctx(wt) and ht as the input of a non-linear transformation
layer to construct the final representation of the concerning
token wt. Note the non-linear transformation makes Etea

and Estu have the same output dimension. The outputs of
Etea and Estu are denoted as f (wk)

tea and f (wk)
stu respectively.

Binary Classification-Based Discriminator D is imple-
mented as a binary classifier that equips feed-forward neural
networks with a sigmoid output layer. It takes a vectorized
feature f (wt) (either f (wt)

tea or f (wt)
stu ) as the input and yields

a probability p that indicates the probability that D thinks
f (wt) comes from Etea. The probability is computed by:

p = D(f (wt)) = σ(Wh(tanh(Wxf
(wt) + bx)) + bh) (4)

where σ is the multivariate sigmoid function that maps a
real-valued vector to a float number between 0 and 1; Wh,
Wx, bx and bh are model parameters. Ideally, an perfect dis-
criminator would always output 1s for outputs of Etea and
0s for outputs of Estu.

Multi-class Event Classifier The event classifier C is im-
plemented as a multi-class classifier. It also accepts a a vec-
torized feature f (wt) (either f (wt)

tea or f (wt)
stu ) as the input,

and it computes a vector out that indicates the prediction
probabilities of different event types for the concerning to-
ken wt. The prediction probability for the lth event type,
P (l|f (wt),Θ), is computed as:

out = softmax(Wo · f (wt) + bo)) (5)
P (l|f,Θ) = out(l) (6)

whereWo and bo are model parameters ofC; Θ indicates the
overall parameters; out(l) indicates the lth element of out.

The Adversarial Imitation Strategy
This subsection illustrates the adversarial imitation strategy
to train our model. The training process contains one pre-
training stage and one adversarial learning stage.

In the Pretraining Stage:
(1) We concatenate Etea and C to form an event detector

that is aware of ground-truth annotations. The loss function
is defined as:

Jtea(ΘU ) = −
∑K

k=1
P (y(wk)|f (wk)

tea ,ΘU ) (7)

where ΘU={Θtea, ΘC} means the union set of parameters
of Etea and C; k ranges over the number of tokens in the
train set; wk indicates the kth token and f (wk)

tea is the output
of Etea for wk; y(wk) means the ground-truth label of wk.
This substage jointly trains Etea and C.

(2) We next freeze the event classifier C, and we concate-
nateEstu andC to build a raw-sentences event detector. The
loss function of this substage is defined as:

Jstu(Θstu) = −
∑K

k=1
P (y(wk)|f (wk)

stu ,Θstu) (8)

where Θstu indicates only the parameters of Estu; f (wk)
stu

means the vectorized feature of wk computed by Estu. Note
this substage only trains Estu and does not update C.

(3) We next freeze both Etea and Estu, and we treat the
outputs of Etea as positive examples (labeled as 1s) and the
outputs of Estu as negative examples (labeled as 0s) to pre-
train D. Cross-entropy loss is adopted:

JD(ΘD) = −
∑K

k=1
[log(D(f

(wk)
tea ))+

log(1−D(f
(wk)
stu ))]

(9)

where ΘD denotes the parameters of D.
In the end of the pretraining stage, a leave-out test shows

thatD achieves an accuracy of 91.7%, which meansD has a
91.7 percent chance to correctly distinguish Estu and Etea.

In the Adversarial learning Stage:
In this substage, Estu and D contest with each other to

formulate an adversarial game, where Estu tries to “fool”
D by generating outputs that resemble the outputs of Etea,
meanwhile, D manages to discriminate Estu out.

In this substage, the loss function of D is still JD(ΘD)
(defined in Eq.(9)). However, the loss function with re-
spect to Estu should include two aspects: 1) The first part
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Algorithm 1 Adaptive Learning Process

Input: Training data {(wk, y
(wk))k=1,...,K}; Pretrained

modules Etea, Estu, D and C.
1: Keep Etea and C fixed.
2: repeat
3: Update Estu using Eq.(11)
4: if the accuracy of D is lower than a threshold then

Update D using Eq.(9)
5: end if
6: until convergence

Output: The adversarially enhanced Estu.

corresponds to the final classification error, which is still
Jstu(Θstu) (in Eq.(8)); 2) The second part corresponds to
whether Estu has successfully fooled D, and the loss corre-
sponds to this part is defined as:

Jadv(Θstu) =
∑K

k=1
log(1−D(f

(wk)
stu ))

= −
∑K

k=1
log(D(f

(wk)
stu ))

(10)

Jadv(Θstu) gets the minimum value whenD just cannot dis-
cern whether the input vector comes from Estu or Estu.

The overall loss function of Estu in this stage is thus:

Jstu adv(Θstu) = Jstu(Θstu) + λ ∗ Jadv(Θstu) (11)

where λ is a hyper parameter balancing Jstu and Jadv ,
whose value is decided by a grid search on the dev set.

In practice, we note that the alternative updating strategy
proposed by (Goodfellow et al. 2014) in fact leads to an un-
even game in our approach: D tends to be too powerful, and
the accuracy of D always keeps over 85%, i.e., the Estu has
difficulties in cheating D and the imitating cannot proceed.
We come up two heuristic rules to smooth the learning pro-
cess: (1) We set the learning rate of Estu as twice as the
learning rate ofD (to strength Estu). (2) We only update the
parameters of D when we notice its accuracy is lower than
a threshold (0.7 in our approach, to weaken D). Algorithm
1 summarizes the modified updating process.

After the training process converges, we concatenate the
enhanced Estu with the pre-trained event classifier C as the
final event detector, which only takes plain texts as the input
to identify events. For optimization, we adopt mini-batches
updating with Adam rules (Kingma and Ba 2014). Regular-
ization is achieved by dropout (Srivastava et al. 2014) and
L2 norm penalty.

Experiments
Dataset
We take the ACE 2005 corpus for experimental evaluations.
It is a multilingual dataset on which defines 33 types of
events. Following the previous studies (Li, Ji, and Huang
2013; Chen et al. 2015; Nguyen and Grishman 2015), we
add an extra NONE type to designate the non-trigger token,
so the Event Detection task is formulated as a 34-class clas-
sification problem.

Model P R F1

CrossEntity (Hong et al.) 72.9 64.3 68.3
CNNED (Nguyen and Grishman) 71.8 66.4 69.0
DLRNN (Duan, He, and Zhao) 77.2 64.9 70.5
ArgATT (Liu et al.) 78.0 66.3 71.7
Teacher + emb 71.9 66.0 68.8
Teacher + emb + ety 71.6 69.1 70.3
Teacher + emb + agt 76.3 72.4 74.2
Teacher + emb + ety + agt 76.8 72.9 74.8

Table 1: Experimental results on the ACE 2005 English set.
Bold indicates the best performance with respective to each
evaluation metric.

For the English corpus, we use 520 particular documents
for training, 30 particular documents for developing and the
remaining 40 documents for testing, same as previous stud-
ies for comparison. For the Chinese corpus, we adopt the
experimental configuration as (Chen and Ji 2009), in which
569/64/64 documents are used as the train/dev/test sets. We
use the pretrained 300-dimension Glove vectors as English
word embeddings, and we train Chinese embeddings on
NYT corpus. Other hyperparameters are tuned on the dev
set via a grid search strategy. Particularly, the optimized bal-
ance parameter λ is set to 0.05. We adopt the Precision (P),
Recall (R) and F1 score (F1) as evaluation metrics.

We have conducted experiments to verify that: 1) Our
teacher module can effectively leverage the ground-truth an-
notations for knowledge learning. 2) By adopting the ad-
versarial imitation strategy, the student module can achieve
good performance in the real test scenario where the golden
annotations are missing.

Performance on Gold-truth Annotations
To investigate the ability of the teacher module to lever-
age ground-truth annotations for knowledge representation
learning, several state-of-the-art methods are compared:

• CrossEntity is the model proposed in (Hong et al. 2011),
which studied the entity co-occurrence patterns for ED.

• CNNED is the model proposed in (Nguyen and Grish-
man 2015), which employed Convolution Neural Net-
works (CNNs) to learn features for ED.

• DLRNN is the model proposed in (Duan, He, and Zhao
2017), which incorporated document level clues for ED.

• ArgAtt is the model proposed in (Liu et al. 2017), which
payed attention to event arguments for ED.

Our teacher module is denoted as Teacher, and we use
+emb, +ety and +agt to designate the combination with
word, entity and event-argument embeddings respectively.
Table 1 summarizes the comparison.

From the results, when incorporated with all the ground-
truth annotations, the teacher module can outperform other
methods by a large margin (4.9% on the average F1 score),
which justifies the effectiveness of the teacher module for
knowledge representation learning. Additionally, it seems
that the annotations of event arguments provide the most
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Setting Model P R F1

CNNED‡ 71.8 66.4 69.0
Golden ArgATT‡ 78.0 66.3 71.7

Teacher 76.8 72.9 74.8
CNNED‡ 71.9 63.8 67.6

Predicted ArgATT 76.1 66.0 70.7
Teacher 72.4 68.9 70.6

Adv Student-Final 73.4 69.1 71.2

Table 2: Experimental results on ACE 2005 English corpus.
Golden/Predicted means resorting to golden/predicted an-
notations. ‡ indicates taken from the original paper. Bold in-
dicates the best performance.

Setting Model P R F1

CNNED 61.3 58.5 59.9
Golden ArgATT 62.5 58.1 60.2

Teacher 63.0 59.3 61.9
CNNED 60.3 55.5 57.8

Predicted ArgATT 58.1 57.1 57.6
Teacher 59.7 55.1 57.3

Adv Student-Final 58.8 58.2 58.5

Table 3: Experimental results on ACE 2005 Chinese cor-
pus. Golden/Predicted means resorting to golden/predicted
annotations. Bold indicates the best performance.

contributions, which leads to a improvement of 5.4% on
F1 score compared with basic strategy (Teacher+emb+atg
v.s. Teacher+emb). This is sensible, for example, “fire” is
usually an ambiguous event trigger, which can evoke both
of Attack and End-Position events. However, if we know an
event argument with the role Instrument occurs, we can eas-
ily assign the Attack event to the “fired” without ambiguity.
Unfortunately, the event argument information can not be
accessible in the testing stage.

Since the student module is designed to imitate the teacher
module, theoretically the performance of the “student” can-
not exceed the performance of the teacher module — The
performance of the teacher module in fact manifest an
upper-bound of our final approach.

Performance in the Real Testing Scenario
We next investigate the performance of our model in the real
testing scenario, where the golden annotations are missing.
Our model is denoted as Student-Final. We select CNNED
and ArgAtt as the baseline models for comparison and we
also investigate the performance of the “teacher” on pre-
dicted tags. To obtain the predicted labels, we train Bi-
LSTM-CRF taggers of entity and event-argument on the
train set. To the end, the F1 scores on English entities and
event arguments are 83.4% and 65.7% respectively, which
matches the state-of-the-arts (Yang and Mitchell 2017;
Judea and Strube 2017). The same taggers are applied to
Chinese dataset, resulting in 73.5% and 52.3% on F1 scores.

Table 2 and Table 3 summarize the performance on the
ACE corpus. From the results, 1) Compared with using

Model P R F1

Tea (CNN) + Stu (CNN) 73.0 68.7 70.8
Tea (ATT) + Stu (CNN) 68.5 66.9 67.7
Tea (ATT) + Stu (IFR) 69.5 67.7 68.6
Student-Final 73.4 69.1 71.2

Table 4: Results on the ACE 2005 English corpus to investi-
gate the influence of different module architectures.

Model P R F1

Discriminator (none) 69.6 68.8 69.2
Discriminator (mse) 69.5 67.7 68.6
Discriminator (fixed) 70.5 68.9 69.7
Student-Final 73.4 69.1 71.2

Table 5: Results on the ACE 2005 English corpus to investi-
gate the effect of different discriminative strategies.

golden annotations for testing (denoted by “Golden” in the
Table 2, 3), using the predicted tags leads to a significant
drop in performance (on the average -2.3% for the English
ED and -3.1% for the Chinese ED), which manifests the er-
ror propagation problem faced by pipeline approaches. 2)
Our enhanced student modules beats the other approaches
and achieves the best performance (71.2% on F1 for En-
glish ED and 58.5% on F1 for Chinese ED), which justifies
the effectiveness of the adversarial imitation strategy.

Ablation Study
The Effect of Module Architectures We study the effects
of different module implementations in this subsection. Sev-
eral variation systems are proposed, including: 1) A system
that employs CNN structures in both the teacher and stu-
dent modules (Tea (CNN) + Stu (CNN)). 2) A system that
only substitutes the student module with a CNN architecture
(Tea (ATT)+Stu (CNN)). 3) A system that uses a inferior ar-
chitecture that excludes the attention layer in the “student”
(Tea (ATT) + Stu (IFR)).

Table 4 summarizes the performance of each system.
From the results, 1) When both of the “teacher” and “stu-
dent” are implemented with CNNs, the performance is also
satisfied (70.8% on F1). 2) When the teacher and stu-
dent modules have a heterogeneous implementations (e.g.,
the second system), the performance drops significantly
(−3.1% on F1). We guess the heterogeneous implementa-
tions can cause the output spaces of the “teacher” and “stu-
dent” rather different, which fails the imitation strategy. 3)
The third system with a inferior architecture in the “student”
also underperforms our full approach. The reason might be
that, to make the adversarial imitation strategy work, it usu-
ally calls for a sophisticated structure that can capture com-
plex inter-dependency among context words, such as the at-
tentive architecture adopted in our full approach.

The Effect of the Discriminative Strategy We compare
our full approach to several variation systems to study the
effects of the discriminative strategies. 1) The first system
merely ignores the discriminator. We still concatenate the
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Figure 4: The comparison of the output spaces of the
“teacher” and the “student”. Visualization is conducted by
T-SNE (van der Maaten and Hinton 2008).

student module and the pretrained event classifier for fine-
grained tuning, to make it the same as others (denoted as
Discriminator (none)). 2) The second system adopts the
Mean Square Error (MSE) to measure the similarity between
the “teacher” and the “student”, and the MSE loss also gets
backpropagated (denoted as Discriminator (mse)). 3) The
third system employs the same discriminator as ours, but the
discriminator does not continue to update after the pretrain-
ing stage (denoted as Discriminator (fixed)).

Table 5 summaries the performance of each model. From
the results, we observe that: 1) Our full approach outper-
forms all of the variation systems, which justifies the ef-
fectiveness of the adversarial imitation based discrimina-
tive strategy. 2) Static strategies (i.e., the second/third sys-
tem) behave poorly. Particular, compared with Discrimi-
nator (none), MSE strategy even yields an adverse effect
(−0.6% on F1). For Discriminator (fixed) model, after sev-
eral updates, the accuracy of its discriminator reaches 0.5,
i.e., the “student” has learned to “fool” the discriminator
in some particular ways. However, since the discriminator
is fixed, it cannot get further improved to discriminate the
“student” out, making this approach underperform our full
model, though it is still better than Discriminator (none). 3)
Comparing Discriminator (none) with Teacher+emb in Ta-
ble 1, we observe that even the pretrained event classifier
could provide some discriminability to bring a slight im-
provements on the performance (+0.4% on F1 score).

Learning Visualization
Figure 4 visualizes the output spaces ofEstu andEtea at the
different learning epochs to understand the learning process.
As shown, in the beginning, it exists a distinct boundary be-
tween the output spaces of Estu and Etea (left). While, as
the learning proceeds, it reveals some overlaps between the
output spaces (right). Additionally, we examine the discrimi-
nator and find its accuracy fluctuates between 0.55 and 0.70
during the adversarial learning stage. A plausible explana-
tion is that, by adopting the adversarial imitation strategy,
Estu is forced to approach to Etea (the overlapping in out-
put spaces), which brings difficulties for the discriminator to
discern them (the drop in accuracy).

Related Works
The related words include: 1) For Event Detection, various
methods have been proposed. Feature-based approaches in-
clude (Ahn 2006) that examined lexical and syntactic fea-

tures; (Ji and Grishman 2008; Hong et al. 2011; Li, Ji, and
Huang 2013) that examined both local and global features
and others. Representation-based approaches include (Chen
et al. 2015; Nguyen and Grishman 2015) that used Convo-
lution Neural Networks to do automatic feature engineer-
ing; (Feng et al. 2016) that leveraged hybrid networks for
feature learning; (Nguyen, Cho, and Grishman 2016) that
modeled non-continue skip-grams; (Duan, He, and Zhao
2017) that investigated document embedding for ED; (Liu
et al. 2017) that used supervised attention mechanism to ex-
ploit event arguments information for ED; (Sha et al. 2018;
Nguyen and Grishman 2018) that incorporated vectorized
syntactic knowledge and others. Nevertheless, as illustrated,
to acquire chunk knowledge from raw-sentences, most of
these approaches relied on external NLP toolkits and suf-
fered from error propagation problem. 2) For Adversarial
Learning, researchers have studied the idea in various as-
pects such as generative model (Goodfellow et al. 2014),
domain adaptation (Ganin et al. ) and others. In the field of
NLP, it has been applied to many tasks including text clas-
sification (Liu, Qiu, and Huang 2017), Chinese word seg-
mentation (Chen et al. 2017), neural response generation (Li
et al. 2017), implicit discourse relation extraction (Qin et
al. 2017). Knowledge distillation method include (Hinton,
Vinyals, and Dean 2015), which learns from the predicted
labels. This paper provides an easy GAN-style knowledge
distillation approach for the event detection task.

Conclusions and Future Work
In conclusion, we propose a new adversarial imitation based
knowledge distillation approach, to acquire knowledge from
raw-sentences for event detection task. Our model learns
knowledge representation from ground-truth annotations,
and incorporates the knowledge distillation process into fea-
ture encoding stage in a implicit manner. We conduct exten-
sive experiments on the ACE 2005 datasets, and the exper-
imental results justify the effectiveness of our approach. In
the future, we plan to adapt our model to other NLP tasks
where the knowledge acquisition from raw-sentences is also
critical, such as statistical parsing, relation extraction and
others.
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