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Abstract

Recently, a large number of neural mechanisms and models
have been proposed for sequence learning, of which self-
attention, as exemplified by the Transformer model, and
graph neural networks (GNNs) have attracted much atten-
tion. In this paper, we propose an approach that combines
and draws on the complementary strengths of these two meth-
ods. Specifically, we propose contextualized non-local neu-
ral networks (CN3), which can both dynamically construct a
task-specific structure of a sentence and leverage rich local
dependencies within a particular neighbourhood.
Experimental results on ten NLP tasks in text classification,
semantic matching, and sequence labelling show that our pro-
posed model outperforms competitive baselines and discov-
ers task-specific dependency structures, thus providing better
interpretability to users.

Introduction
Learning the representation of sequences is a fundamental
task, which requires deep understanding of both the com-
plex structure of sentences (Biber, Conrad, and Reppen
1998) and the contextualized representation of words (Pe-
ters et al. 2018). Recent successful approaches replace the
classical compositional functions in neural networks (i.e.
CNNs or RNNs) with mechanisms based on self-attention,
of which the most effective model is the Transformer, hav-
ing achieved state-of-the-art performance on machine trans-
lation (Vaswani et al. 2017) and parsing (Kitaev and Klein
2018). The success of Transformer can be attributed to its
non-local structure bias, in which dependencies between any
pair of words can be modelled (Baerman 2015, Wang et al.
2017). This property allows it to dynamically learn both
the syntactic and semantic structures of sentences (Vaswani
et al. 2017). Despite its success, the lack of local bias (lo-
cal dependencies that exist over adjacent words (Baerman
2015, Futrell 2017)) limits its capacity for learning contex-
tualized representations of words1.

In contrast to Transformer, another line of work aims
to model sequences with graph neural networks (GNNs).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our experiments also show that Transformer performs worse
than the models with local bias, especially on sequence labeling
tasks.

Challenges Bias G. T. Ours

Com-Structure Non-local × X X
Con-Representation Local X × X

Table 1: Com-Structure denotes “complicated struc-
tures of sentences” while Con-Representation denotes
“contextualized representations of words”. G. and T.
represent graph neural network and Transformer respec-
tively. The first two columns shows main challenges for sen-
tence learning and corresponding required bias: Non-local
bias: dependencies can be built with any neighbor (Baerman
2015, Wang et al. 2017). Local bias: local dependencies
exist over adjacent word (Baerman 2015, Futrell 2017). The
last three columns list comparison of typical sequence learn-
ing approaches for incorporating local and non-local bias.

While GNNs are capable of learning local contextual infor-
mation flexibly by encoding attribute features (Battaglia et
al. 2018), it is less clear how to effectively utilize GNNs for
sequence learning, since there is no single structural repre-
sentation of a sentence that is well suited to all tasks.

A common choice is to use the syntactic dependencies be-
tween words in a sentence to determine the sentential graph
structure, which reduces the model to a tree-structured neu-
ral network (Tai, Socher, and Manning 2015). Inspired by
Transformer (Vaswani et al. 2017), we aim to improve upon
this fixed structure by learning a task-dependent graphical
representation, which should better capture the dependen-
cies that matter for the end task.

In this paper, we draw from both lines of research and pro-
pose a model which can benefit from their complementary
strengths. On the one hand, the success of Transformer mo-
tivates us to explore dynamic “GRAPH” construction. Rather
than defining a hard-coded graph for the sentence, we incor-
porate non-local bias into GNNs, learning the sentence struc-
ture dynamically on different tasks. On the other hand, the
advantage of the graph neural network framework itself is to
provide rich local information by encoding node or edge at-
tributes, which can make up for the deficiency in Transformer.

Consequently, we propose a contextualized non-local net-
works by extending self-attention (Transformer) to GNNs,
which support highly flexible representations in two ways.
First, the representations of attributes (feature encodings of
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nodes and edges); second, the structure of the graph itself
(dynamic learning of task-dependent structures). Notably,
these two advantages of the proposed model enable us to
better learn the representation of sequences in terms of con-
textualized representation of words and complicated struc-
tures of sentences.

We conduct extensive experiments on ten sequence learn-
ing tasks, from text classification and semantic matching,
to sequence labelling. Experimental results show that our
proposed approach outperforms competitive baselines or
achieves comparable results in all tasks. Additionally, we
are able to discover task-dependent structures among words
and provide better interpretablility to users.

We summarize our contributions as below:

1. We analyze two challenges for sequence learning (struc-
ture of sentences and contextualized word representa-
tions) from the perspective of models’ locality biases,
which encourages us to find the complementarity be-
tween Transformer and graph neural networks.

2. We draw on the complementary strengths of Transformer
and GNNs, proposing a contextualized non-local neural
network (CN3), in which structures of sentences can be
learned on the fly and words in sentence can be contextu-
alized flexibly.

3. We perform a comprehensive analysis of existing se-
quence learning approaches in a unified way and con-
duct extensive experiments on a number of natural lan-
guage understanding tasks. Experimental results show
that our proposed models achieve comparable results in
these tasks as well as offer better interpretability to users.

Related Work
In this paper, we propose to utilize the locality bias to sys-
tematically analyze existing sequence learning models in a
unified way. Here, the locality bias is one kind of induc-
tive bias that local dependencies exist over adjacent words,
which is first well established in phonology (van der Lely
2005) and then also be explored in natural language (Baer-
man 2015, Futrell 2017). Typically, local and non-local bias
are two common locality biases implicitly existing in differ-
ent models for sequence learning.

Next, we will elaborate on explanations following related
lines and as shown in Table 2, we present a summary of ex-
isting models by highlighting differences among interaction
methods for different words, locality bias, as well as the eli-
gible Tasks that corresponding methods can handle.

Neural network-based Sequence Modelling. Neural net-
works provide an effective way to model the dependen-
cies between different words via parameterized composi-
tion functions. Some examples of composition functions in-
volve recurrent neural networks with long short-term mem-
ory (LSTM) (Liu et al. 2015), convolutional neural net-
works (CNN) (Kalchbrenner, Grefenstette, and Blunsom
2014), and tree neural networks (Tai, Socher, and Manning
2015, Zhu, Sobhani, and Guo 2015). There are two ma-
jor differences between these methods: one is the scope in

which words can interact with each other. The other is the
compositional functions they used. For example, LSTMs
can explicitly model the dependencies between the current
word and previous ones, and words can interact with others
within the same window. More examples can be found in
Table 2.

Attention-based Sequence Modelling. Several attention-
based mechanisms have been introduced to expand the inter-
action scope, enabling more words to interact with each to-
gether. For example, Yang et al., Lin et al. [2016, 2017] uti-
lize a learnable query vector to aggregate the weighted infor-
mation of each word, which can be used to get sentence-level
representations for classification tasks. Cheng, Dong, and
Lapata [2016] augment neural networks with a re-reading
ability while processing each word. Vaswani et al. [2017]
proposes to model the dependencies between words based
entirely on self attention without any recurrent or convo-
lutional layers. The so-called Transformer (SelfAtt3) has
achieved state-of-the-art results on a machine translation
task. In contrast with previous work, we introduce different
locality biases to learn complex structure of sentences and
leverage rich local dependencies within a particular neigh-
bourhood.

In computer vision community, Wang et al. [2017] also in-
corporate non-local bias into neural network for image rep-
resentation. However, in this work, we focus on sequence
learning, which is different from image processing and re-
quires rich contextual information.

Graph Convolutional Neural Network. Graph convolu-
tional neural networks (GCNN) have been used to learn the
representations of graph structure data. Gilmer et al. [2017]
propose a general neural message passing algorithm to pre-
dict the properties of molecule structures. Velickovic et al.
[2017] proposes graph attention networks to model graph-
structure data, such as protein and citation networks. While
“GRAPH” has been well-studied in above areas, it’s still less
clear how to build a graph for a sentence. Besides, our work
is different from (Velickovic et al. 2017) lying in the follow-
ing aspects: 1) We propose to incorporate non-local bias into
GNNs while Velickovic et al. [2017] aims to combine atten-
tion with GNNs. 2) We focus on sentence understanding,
which also calls for contextualized word representations.
Some existing works Marcheggiani and Titov [2017] try
to construct a graph from a sequence based on pre-defined
structures, such as syntactic dependencies, which are not fit
to the complexity of sentences’ structures since in a specific
task, the true dependency structures among the words in a
sentence can significantly differ from the given input struc-
tures (Vaswani et al. 2017). In this paper, we integrate non-
local bias into GNNs aim to learn the structures of sentences
on the fly based on different tasks.

Contextualized Non-local Neural Networks
(CN3)

To better learn the representation of sequences in terms of
contextualized representations of words (Peters et al. 2018)
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Models
Interaction Locality Bias Eligible Tasks

Scope Functions
BOW
(Fan et al. 2008) None None Local T-Sent & T-Word

S-Graph

(Mihalcea and Tarau 2004) All pairs of
words PMI(wi,wj) Non-Local T-Sent

CNN
(Kalchbrenner, Grefen-
stette, and Blunsom 2014)

Fixed window fθ(wi) ∗ gθ(wj) Local T-Sent

SeqRNN
(Liu et al. 2015) Adjacent words fθ(wi,wj) Local T-Sent

TreeRNN
(Tai, Socher, and Manning
2015, Zhu, Sobhani, and
Guo 2015)

Child words fθ(wi,wj) Local T-Sent

GraphCNN
(Marcheggiani and Titov
2017)

Child words fθ(wi,wj) Local T-Word

SelfAtt1
(Yang et al. 2016, Lin et al.
2017)

Adjacent words fθ(wi,wj) Local T-Sent

SelfAtt2
(Cheng, Dong, and Lapata
2016)

Preceding words
∑
i∈Φ αi · fθ(wi) Local T-Sent & T-Word

SelfAtt3

(Vaswani et al. 2017) All pairs of
words

∑
i∈Φ αi · [wi,pi] Non-local T-Word

Our Work All pairs of
words

∑
i∈Φ αi · fθ(wi) Contextualized Non-local T-Sent & T-Word

Table 2: A comparison of published approaches for sentence representations. S-Graph denotes statistical graph. f(·) and g(·)
are parameterized functions. w denotes the representation of word and p is a vector relating to positional information. αi is
a scalar and Φ is a set of indexes for those words within a interaction scope. The 2nd column shows which part of words
can interact with each other while the 3rd column shows how to compose these words. The 4th column lists what kinds
of knowledge the interaction methods depend on. The last column represents which tasks can be processed by corresponding
models. “T-Sent” denotes those tasks who require sentence-level representations, such as text classification, while “T-word”
represent tasks which rely on word-level representations, such as sequence labelling, machine translation. “-”: S-Graph usually
calls for complicated ranking algorithm and can not directly obtain a real-valued vector to represent the sentence meanings. “*”
SelfAtt3 is proposed for machine translation, rather than sentence level representation learning.

and complex structures (Biber, Conrad, and Reppen 1998),
we propose the contextualized non-local network, which in-
corporates non-local bias into graph neural networks. Gen-
erally, CN3 can not only support the encoding of local con-
textual information, it can also learn task-dependent struc-
tures on the fly.

Next, we introduce the contextualized non-local network,
which involves two steps. The first is to construct graphs
from sentences and introduce contextualized information
from attributes. The second is to dynamically update the
graph structures for specific tasks. The overall learning pro-

cess for learning task-dependent graphs is illustrated in Al-
gorithm 1.

Graph Construction
The first part of our framework is to construct meaningful
graphs from sentences in order to encode different types of
local contextual information.

Nodes Given a sentence X = x1, x2, · · · , xn, we treat
each word xi as a node. For each node i, we define NODE
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ATTRIBUTES (Svi = v1, · · · , v|Sv|) as different types of ex-
tra information besides the word identity. In this paper, we
list several typical node attributes described as follows:

Position Information The position of each word in a sen-
tence.

Contextual Information Information of nodes can also be
enriched by short-term contexts, which can be obtained by
convolutional neural network or long-short term memory
network. Introducing this information means that we have
augmented the model with a local bias: adjacent units are
prone to provide useful information (Battaglia et al. 2018,
Cheng, Dong, and Lapata 2016).

Tag Information More prior knowledge such as POS tags
can be encoded into the nodes.

Edges For each edge between any word pair (xi, xj), we

define EDGE ATTRIBUTES (Seij = e1
ij , · · · , e

|Seij
|

ij ) as com-
bined relationships, such as lexical relationships, syntactic
dependency obtained from parsing tree, or co-occurrence re-
lationships.

Contextualized Node Representations Each word and
attribute will be first converted to be a real-valued vector
through a look-up table, and if only the word identity is used,
the node representations are simply as word representations.
The information of word then will be enriched by fusing its
attributes therefore constructing contextualized node repre-
sentations.

Dynamic Graph Structure Updating
Non-local bias in CN3 is realized as pairwise interactions
between any two words, which makes it possible to dynam-
ically learn sentence structures that are geared towards spe-
cific tasks. Specifically, The model first encodes each node
in a low-dimensional vector. Afterwards, different nodes
communicate with each other via messages, which updates
the graph structures and the node representations. After the
nodes are represented by low-dimensional vectors, we cre-
ate multiple message passing layers l = 1, 2, . . . , L, which
either update the graph structure or the node representations.

Graph Structure Updating The graph structures are
updated by promoting communication between different
nodes. Specifically, let αik denote the strength of the re-
lationship between nodes i and k. We update αik according
to the following formula:

sik = f(hlk,h
l
i,vi,vk, eik) (1)

= uT tanh(W[hlk,h
l
i,vi,vk, eik]) (2)

αik = Softmax(sik), (3)

where v denotes the node attributes. ei,k represents the edge
attributes between node i and k, hli is the representation of
node i in layer l. u and W are parameters that can be learned
by backpropagation. h0 denotes the word embedding.

Algorithm 1 Learning Processes of Contextualized Non-
local Neural Networks for Sequences
Require: Tag sequence Y = {y1, y2, . . . , yT } and text se-

quence X = {x1, x2, . . . , xT } from a specific task.
Require: A set of node attributes Sv = v1, · · · , v|Sv| and

edge attributes Se = e1, · · · , e|Se|

1: for l ∈ {1 · · ·L} do
2: for i ∈ {1 · · ·N} do . Graph Construction
3: // Contextualized representations
4: vi = Concat-RealValue(Sv)
5: for j ∈ {1 · · ·N} do
6: eij = Concat-RealValue(Se)
7: end for
8: end for
9: for i ∈ {1 · · ·N} do . Graph Learning

10: for j ∈ {1 · · ·N} do
11: // Dynamic Structure Updating
12: αij

l ←Edge-Update(hli,h
l
j ,vi,vj, eij, θe)

13: end for
14: hl+1

i ← Node-Update(Hl,αli)
15: end for

. Application Layer
16: if Node-Level then
17: p(Y |X) = CRF(hLi , θ

(c))
18: else if Graph-Level then
19: hL = 1

N

∑
i h

L
i ,

20: p(Y |X) = Softmax(WhL + b)
21: end if
22: end for

Node Updating Once the graph structure αik is updated,
for each node k, it first aggregates information from its
neighbors. Specifically, let h̃lk denote the information col-
lected from neighbors for node k in the l-th graph layer,
which can be simply calculated as:

h̃lk = αiHl =

m∑
i

αikh
l
i (4)

Afterwards, we update the node representations based on
the current node representations hlk and the information ag-
gregated from its neighbors h̃lk. Here, we choose a gating-
based updating methods.

hl+1
k = g � h̃lk + (1− g)� hlk (5)

where � denotes element-wise multiplication, and

g = σ(Whlk + b), (6)

where σ represents the logistic function. W and b are learn-
able parameters.

Application Layers
After multiple steps of graph structure updating (l =
1, 2, . . . , L), we can obtain node-level representations of the
final layer L : hL1 , ...,h

L
m, which can be used for different
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NLP tasks when followed by different output layers. Here,
we show how to utilize these representations at the node
level for POS, Chunking, NER tasks, and graph-level for
text classification, semantic matching tasks.

Node-level Representations A direct application in this
scenario is sequence labelling, which aims to assign a tag
sequence Y = {y1, y2, . . . , yT } to a text sequence X =
{x1, x2, . . . , xT }. The output at each time step hLi can be
regarded as the representation of the preceding subsequence,
which is then fed into a CRF layer that calculates scores for
corresponding tag categories. Then, in the CRF layer, the
conditional probability p(Y |X) is formalized as:

p(Y |X) = CRF(hLi , θ
(c)) (7)

where CRF represents the CRF layer and θ(c) is learnable
parameters. For detailed formulation of the CRF layer, see
additional resources.

Graph-level Representations In this scenario, we should
compute a representation for the whole graph. The
simplest way is to take the average of all the node
representations:hL = 1

m

∑
i h

L
i

Then, the representation hL can be further fed into a soft-
max function to yield a probability distribution over the out-
put labels for text classification or semantic matching tasks.

Experiments
In this section, we evaluate the effectiveness of our proposed
method on ten tasks. Next, we will give brief descriptions of
the tasks and datasets. For more details of the above dataset
descriptions and training hyper-parameters, please see the
Additional Resources section.

Tasks and Datasets
We evaluate our models on five text classification tasks, two
semantic matching tasks and three sequence labelling tasks.

• Text Classification: QC (Question Classification); SST2
(the Stanford Sentiment Treebank); MR (The movie re-
views with two classes (Pang and Lee 2005)); IMDB
(Long text movie reviews.)

• Semantic Matching: In this task, given two sentences
A and B, the model is used to determine the semantic
relationship between these two sentences. We choose
two typical datasets SICK (Marelli et al. 2014) and SNLI
(Bowman et al. 2015) for this tasks.

• Sequence Labelling: We choose POS, Chunking and
NER as evaluation tasks on Penn Treebank, CoNLL 2000
and CoNLL 2003 respectively.

We parse the sentences in the datasets with Stanford NLP
toolkit (Manning et al. 2014) to obtain dependency relations
and Part-of-Speech tags for our models and several competi-
tor models.

Settings
To minimize the objective, we use stochastic gradient de-
scent with the diagonal variant of AdaDelta (Zeiler 2012).
The word embeddings for all of the models are initial-
ized with GloVe vectors (Pennington, Socher, and Manning
2014). The other parameters are initialized by randomly
sampling from a uniform distribution in [−0.1, 0.1]. For
each task, we take the hyperparameters which achieve the
best performance on the development set via grid search.
Other detailed settings of our models can be seen in the Ad-
ditional Resources section.

Quantitative Evaluation
The proposed models support highly flexible graph repre-
sentations in two ways: first, in terms of the representation
of the attributes (feature encoding of nodes and edges); and
second, in terms of the structure of the graph itself (dynamic
learning of task-dependent structure). Next, we will elabo-
rate on these evaluations.

Evaluation on Dynamic Structure Learning Table 3
shows the performances of different models on 10 different
tasks. We have following observations:

• For graph-level task, CN3
LSTM consistently outperforms

neural networks with different structural biases (sequen-
tial, tree, pre-defined graph) and attention mechanisms,
indicating the effectiveness of non-local bias and dynamic
learning nature for sentence structures. Particularly, com-
pared with PDGraph, CN3

LSTM achieves better perfor-
mance and doesn’t rely on external syntactic tree, with the
ability to handle more longer texts, such as IMDB. Com-
pared with LSTM, the improvement of CN3

LSTM also
indicates the functions of local and non-local biases are
complementary.

• For node-level tasks (sequence labelling), CN3
LSTM

achieves comparable results as opposed to CNN (which
utilizes mulit-task learning framework) and LSTM (which
additionally introduces many external features: gazetteer
features and spelling features).

Evaluation on Attributes The proposed model has the
advantage of being able to contextualize words by encod-
ing information of nodes’ or edges’ attributes. Here we use
superscripts and subscripts to introduce nodes’ or edges’ at-
tributes. Table 3 illustrates:

• Compared to SelfAtt3 (Transformer), CN3
LSTM ob-

tained substantial improvements, especially on SST
dataset constructed by lots of sentences with complicated
sentence patterns. For those node-level tasks, CN3

LSTM

surpasses SelfAtt3 and we attribute the success to its
power in both the ability of learning structures dynami-
cally and encoding short-term contextual information.

• The performances can be enhanced when rich node or
edge attributes were taken into accounts. And we ob-
served that effects of different attributions are different.
Specifically, CN3

LSTM+char achieves best performances
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Models Text Classification Semantic Matching Sequence Labelling
QC MR SST SUBJ IMDB SICK SNLI POS Chunking NER

NBOW 88.2 77.2 80.5 91.3 87.5 73.4 75.1 96.38 90.51 87.91

NEURAL NETWORK WITH DIFFERENT STRUCTURE BIAS

CNN 92.2 81.5 88.1 93.2 88.5 75.4 77.8 97.20 93.63 88.67
RNN 90.2 77.2 85.0 92.1 87.0 74.9 76.8 97.30 92.56 88.50
LSTM 91.3 77.7 85.8 92.5 88.0 76.3 77.6 97.55 94.46 90.10
TreeLSTM 92.8 78.7 88.0 93.3 × 77.5 78.3 - - -
PDGraph 93.2 80.2 86.8 92.5 × 78.8 78.9 - - -

ATTENTION-BASED MODELS

SelfAtt1 93.2 80.3 86.4 92.9 90.3 78.4 77.4 * * *
SelfAtt2 93.5 79.8 87.0 93.1 89.2 79.8 79.2 - - -
SelfAtt3 90.1 77.4 83.6 92.2 88.5 76.3 76.9 96.42 91.12 87.61

TASK-DEPENDENT GRAPHS

CN3
LSTM 94.2 81.3 87.5 93.5 91.5 80.2 81.3 97.12 93.81 89.33

CN3
LSTM+POS 94.8 80.7 87.1 94.3 91.0 81.4 82.1 - - -

CN3
LSTM+char 94.6 82.5 88.0 94.0 92.5 81.5 82.7 97.65 94.82 90.51

CN3Dep
LSTM 95.0 81.0 87.8 94.6 * 81.9 83.5 - - -

CN3
LSTM+char+Spell - - - - - - - 97.78 95.13 91.10

Table 3: Performance of the proposed models on all datasets compared to typical baselines. × indicates that corresponding
models can not work since the sentences are too long to be processed by parser. ∗ denotes corresponding models can not be
used for sequence labelling tasks. − denotes corresponding publications don’t evaluate models on related tasks. The superscript
of CN3 denotes the edge attributes while subscript represents node attributes. Specifically, LSTM denotes the information of
each node is enriched by long-short-term memory unit. And the Spell feature is an indicator that the first letter of a word
is capital or small. Dep provides the information that if two node have an edge in syntactic dependency tree. POS denotes
the POS taging tags while char represents character information. CNN: We use (Kim 2014) for graph-level representation
and (Collobert et al. 2011) for node-level representation. LSTM We use (Tai, Socher, and Manning 2015) for graph-level
representation and (Huang, Xu, and Yu 2015) for node-level representation. TreeLSTM: LSTM over tree-structure (Tai,
Socher, and Manning 2015). PDGraph: Pre-defined Graph Neural network based on syntactic dependency. (Marcheggiani and
Titov 2017). SelfAtt1: A structured self-attentive sentence (Lin et al. 2017). SelfAtt2: Proposed by (Cheng, Dong, and Lapata
2016). SelfAtt3: Also known as Transformer, which is proposed by (Vaswani et al. 2017).

Model Chunking NER POS

Collobert and We-
ston [2008]

94.32 89.59 97.29

Yang, Salakhutdinov,
and Cohen [2016]

95.41 90.94 97.55

Peters et al. [2018] - 92.22 -
Yasunaga, Kasai, and
Radev [2018]

- - 97.58

Ma and Hovy [2016] - 91.21 97.55

Ours 95.13 91.10 97.78

Table 4: Performances of our model against state-of-the-art
models.

on MR and IMDB datasets while CN3Dep
LSTM has ob-

tained best performances on QC, SUBJ, SICK and SNLI
datasets. The reason is that the texts in QC, SUBJ, SICK
and SNLI is more formal where higher accuracies on ex-

ternal tools (Parser or tagger) was achieved, while for
MR, and IMDB, they contain more informal expressions
such as “‘cooool, gooood”’, leading to the failure of
external linguistic tools though they can be resolved by
character-aware models.

• While introducing the same spelling features with LSTM
model, the performances of CN3

LSTM+char+Spell in tag-
ging tasks can be further improved. To make an complete
comparison, we have also listed the performances of our
models in tagging tasks aginst state-of-the art models in
Tab.42. Competitor models in Tab.4 or introduce multi-
task learning methods (Collobert and Weston 2008, Yang,
Salakhutdinov, and Cohen 2016), or utilize more unsu-
pervised knowledge (Peters et al. 2018, Yasunaga, Kasai,
and Radev 2018), or design more handcrafted features
(Ma and Hovy 2016). Rather, proposed models utilize
less knowledge in terms of data or external features while
achieving comparable results.

2Since it’s hard to integrate this table into Tab.3
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Interpretable Sub-Structures Explanations

Semantic
Key sentence patterns for question
classification and sentiment analysis
tasks

Syntactic

Key Subgraph pairs for semantic
matching task. Relating to different
types of phrases (verb-adverb, verb-
object) and voices (active or passive)

Table 5: Multiple interpretable sub-structures generated by different tasks. For text classification tasks, we show the sub-
structure of a sentence, which is a key pattern for final prediction. For semantic matching, since there are two sentences
as input, we simultaneously give a pair of sub-structures with different color lines. For example, the subgraph pair in the
second row and column denote the structure of “is leaping over” is learned in the first sentence and simultaneously “is
jumping into” is learned in the second sentence.

Qualitative Analysis
In this section, we aim to better understand our models in
terms of the following two aspects: 1) How do learned task-
dependent structures contribute to different tasks? 2) How
do these attributes influence the learned structures? We de-
sign a series of experiments to address these questions.

Analysis on Task-dependent Structures Since the pro-
posed models can explicitly learn the relationship between
each word pair by computing edge weights, we randomly
sample several examples across different tasks (text classi-
fication and semantic matching) and visualize their learned
structures.

As shown in Table 5, there are multiple interpretable sub-
structures. We observe the following points:

• For several simple tasks such as text classification, the
words in a sentence are usually organized so as to accu-
rately express certain semantic information.
For example, for a question classification task, the infor-
mative patterns constructed by the question word “what”
can be easily learned. For a sentiment classification task,
the word “movie” is prone to connecting to sentimental
words, such as “terrible”, “no sense”.

• For more complex tasks such as semantic matching,
a ground-truth understanding of the syntactic structure
is important. In this context, we find that, given
a sentence pair, our model is more likely to learn
their syntactic information. For example, for the sen-
tence pair “A man is rising from a swamp/A
man is coming out of the water”, our model
learns that “is rising from” and “is coming
out of” are two informative patterns in two sentences
respectively, which are crucial for accurately predicting
the relationship of the sentence pair (“Entailment”).

Analysis on Attributes As the above results demonstrate,
attributes (Part-of-Speech or dependency relation) will in-
fluence the learning process of relationships among differ-
ent nodes. In order to obtain a better intuitive understand-
ing, we randomly pick samples from the dataset (QC), and

What is Susan B. Anthoy ‘s Birthday

What

What is Susan B. Anthoy ‘s Birthday

What

What is Susan B. Anthoy ‘s Birthday

(a)

(b)

(c)

Figure 1: (a) The dependency tree obtained by the Stanford
Parser. (b-c) The relationship between “What” and other
words, which are learned by CN3

LSTM and CN3Dep
LSTM

models respectively. The correct label of “What is
Susan B. Anthoy ’s birthday ?” is “Number”,
indicating that it’s a question asked about “Number”.

compare the learned dependencies among words learned by
CN3

LSTM and CN3Dep
LSTM .

As shown in Figure 1 (b-c), given a sentence, CN3Dep
LSTM

makes a correct prediction about the type of this question
while CN3

LSTM fails. We note the following points.
1) With the help of edge attributes, more useful patterns

can be built into the graph structure. For example, “What”
strongly connects to the words “What” and “birthday”
therefore it captures the latent sentence pattern “What ...
birthday ”, which is the key to predicting the type of this
question.

2) The relationships between different words are task-
specific rather than exactly matching the pre-defined syntac-
tic dependencies. Although our model gets a hint that there
is strong connection between “What” and “is” from the
dependency parser as shown in Figure 1 (a), yet CN3Dep

LSTM
regards it as less informative. We think it simply reflects the
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Conclusion
In this paper, we first analyze two challenges for sequence
learning from the perspective of a model’s locality biases,
which motivates us to examine the complementary natures
of Transformer and graph neural networks. Then, we draw
on their complementary strengths to propose a contextual-
ized non-local neural network. Experimental results show
that learning task-dependent structures of sentences and con-
textualized word representations are crucial to many NLP
tasks.
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