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Abstract
Generating natural language descriptions for the structured
tables which consist of multiple attribute-value tuples is a
convenient way to help people to understand the tables. Most
neural table-to-text models are based on the encoder-decoder
framework. However, it is hard for a vanilla encoder to learn
the accurate semantic representation of a complex table. The
challenges are two-fold: firstly, the table-to-text datasets of-
ten contain large number of attributes across different do-
mains, thus it is hard for the encoder to incorporate these het-
erogeneous resources. Secondly, the single encoder also has
difficulties in modeling the complex attribute-value structure
of the tables. To this end, we first propose a two-level hier-
archical encoder with coarse-to-fine attention to handle the
attribute-value structure of the tables. Furthermore, to cap-
ture the accurate semantic representations of the tables, we
propose 3 joint tasks apart from the prime encoder-decoder
learning, namely auxiliary sequence labeling task, text auto-
encoder and multi-labeling classification, as the auxiliary su-
pervisions for the table encoder. We test our models on the
widely used dataset WIKIBIO which contains Wikipedia in-
foboxes and related descriptions. The dataset contains com-
plex tables as well as large number of attributes across differ-
ent domains. We achieve the state-of-the-art performance on
both automatic and human evaluation metrics.

Introduction
Data-to-text generation produces understandable texts from
some underlying non-linguistic representation of informa-
tion (Reiter and Dale 1997; 2000). Table-to-text generation,
which belongs to the data-to-text generation, aims at gener-
ating natural language descriptions for the structured tables
to help people to get the key points of the tables.

Different from text-to-text generation tasks like machine
translation or abstractive summarization, the sources for
table-to-text generation are the tables with hierarchical
attribute-value structure. Open-domain tables like Wikipedia
infoboxes (Table 1) often have large number of attributes
across different domains.

Although previous researchers proposed some task-
specific encoder-decoder models for table-to-text generation
(Liu et al. 2017a; Sha et al. 2017; Wiseman, Shieber, and
Rush 2017; Perez-Beltrachini and Lapata 2018; Bao et al.
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Infobox:
Attribute Content
Name Edward Merrill Root
Birthdate 04 January 1895
Birthplace Baltimore, Maryland, USA
Deathdate 26 October 1973
Deathplace Kennebunkport, Maine
Nationality American
Known for anti-communist activities
Occupation educator and poet
Alma Mater Amherst College
Residence Richmond, Indiana
Article title E. Merrill Root

Description: Edward Merrill Root , known as e. Merrill
Root ( January 4 , 1895 - October 26 , 1973 ) , was an Amer-
ican educator and poet devoted to anti-communist causes .

Table 1: Example of a Wikipedia infobox for ‘Edward Mer-
rill Root’ and the associated description.

2018), most of them are dedicated to improving the de-
coding phase while generating (Sha et al. 2017; Wiseman,
Shieber, and Rush 2017; Perez-Beltrachini and Lapata 2018;
Bao et al. 2018). We argue that a single encoder without any
auxiliary assistant may not be effective to capture the accu-
rate semantic representation due to the hierarchical structure
and vast heterogeneous attributes of the tables.

To this end, we first propose a two-level hierarchical table
encoder, which encodes both the word-level and attribute-
level semantics. The coarse-to-fine attention is proposed to
cooperate with the two-level hierarchical table encoder.

Although the hierarchical table encoder has greatly im-
proved the table-to-text generation, we believe the perfor-
mance can be further enhanced by the external assistance to
the table encoder as a complex table may not be well repre-
sented by a single encoder. So we also propose 3 auxiliary
tasks: including auxiliary sequence labeling task, text auto-
encoder and multi-labeling classification, to help the table
encoder to better represent the source tables and then im-
prove the encoder-decoder style table-to-text generation.

Auxiliary sequence labeling task is a new approach to in-
corporate the attribute information into the table encoder.
We view the attribute names (such as ‘Name’, ‘Birthdate’
in Table 1) as the labels for the related table content and use

6786



the sequence labeling as a multi-task to better represent a
structured table. This is a way to guide the encoder to repro-
duce thus ‘remember’ the attribute names. The experiments
show that this is a better way to integrate attribute informa-
tion than previous works (Lebret, Grangier, and Auli 2016;
Sha et al. 2017; Liu et al. 2017a).

Text auto-encoder used the related descriptions of the
source tables to supervise the table encoder. Compared with
the complex structure of the source tables, the associated
descriptions are well-written and straightforward. So it is
easier to encode their semantic representation. Since the
descriptions share the similar meanings of the associated
source tables, it is possible to supervise the learning of the
semantic representation of the source tables with that of the
related descriptions. We use the internal representation of
the auto-encoder to supervise that of the hierarchical table
encoder by minimizing their distance.

Multi-labeling classification is also operated on the inter-
nal representation of the table encoder. We view all the at-
tribute names which appear in the specific table as the targets
for the multi-label classification on the internal representa-
tion of the table encoder. We encourage the semantic repre-
sentation of the source tables to carry as much attribute-level
information as possible.

The auxiliary supervisions from text auto-encoder and
multi-labeling classification can be widely applied into all
the encoder-decoder models for table-to-text generation.
The auxiliary sequence labeling supervision can only be
used in the proposed hierarchical table encoder. Further-
more, we witness a sharp decrease on the performance of the
vanilla encoder-decoder models when we randomly shuffle
the order of the attributes in the source tables (in both train-
ing and testing set). The proposed auto-encoder and multi-
labeling supervisions can make our models more robust to
the disordered tables.

We use WIKIBIO (Lebret, Grangier, and Auli 2016),
which contains wikipedia infoboxes and related biographies,
as our benchmark dataset. The dataset owns over three thou-
sands attributes which describe people in the different areas
(domains), including sportsmen, politicians, artists, soldiers,
etc. Each table contains about 20 attributes on average. Ex-
periments show our model achieves the state-of-the-art re-
sults on both automatic and human evaluation metrics.

Two-level Hierarchical Table Encoder
Notations
Given a table-to-text dataset with N data samples, the t-
th data sample (Tt, Yt) contains a source table Tt =
{x1, x2, · · · , xm} with m words, and a description Yt =
{y1, y2, · · · , yL} with L words. The source table Tt also has
n attributes At = {a1, a2, · · · , an}. Each word xi belongs
to a specific attribute aj . In the following sections, we use
x
aj
i to represent the i-th word xi in the table Tt which be-

longs to aj(xi ∈ aj).

Two-level Hierarchical Encoder
Most previous work (Liu et al. 2017a; Sha et al. 2017;
Wiseman, Shieber, and Rush 2017) viewed a structured
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Figure 1: The proposed two-level hierarchical LSTM and
coarse-to-fine attention. Suppose we have 3 attributes
(marked by 3 different colors) and 7 words in the table. At
the t-th decoding step, the decoder state st attends to the
hidden states of attribute-level and word-level LSTMs for
coarse-grained and fine-grained attention, respectively.

table as a sequence of words and only used word-level
LSTM (Hochreiter and Schmidhuber 1997) to encode the
tables. However a factual table is inherently organized in
the attribute-value hierarchical structure, thus we propose
attribute-level LSTM, apart from word-level LSTM, to cap-
ture the attribute-level semantics of the table.

As shown in Fig 1, the proposed table encoder contains
two separate LSTMs: the word-level LSTM encodes each
word xaji in the table sequentially while the attribute-level
LSTM encodes each attribute-value tuple by taking the last
state hajlast for the attribute aj in the word-level LSTM as
input.

h
aj
i = LSTMword(h

ak
i−1, x

aj
i ) (1)

Haj = LSTMattribute(H
aj−1 , h

aj
last) (2)

We have ak = aj if xi−1 ∈ aj , otherwise ak = aj−1.

Coarse-to-fine Attention
To cooperate with the proposed two-level LSTM, we also
modify the attention mechanism to incorporate both word-
level and attribute-level semantics.

For convenience, we only focus on the one step of decod-
ing in the following illustration. Given the decoder state st
at the t-th decoding step, βaji is the fine-grained attention for
the i-th word xaji in the table, which belongs to the attribute
aj . γaj is the coarse-grained attention for the attribute aj .

β
aj
i ∝ g(h

aj
i , st); γ

aj ∝ g(Haj , st) (3)
in which g(·) is the Bahdanau-style attention calculation
function (Bahdanau, Cho, and Bengio 2014).

The proposed coarse-to-fine attention αi for the i-th word
in the table is the element-wise product of the fine-grained
attention βaji and the coarse-grained attention γaj .

αi = β
aj
i × γ

aj (xi ∈ aj) (4)

Auxiliary Supervision For Table Encoder
Why we need auxiliary supervision?
1) Many open-domain table-to-text datasets, such as WIK-
IBIO, have large numbers of attributes across different do-
mains. Even an individual table in WIKIBIO has about 20
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(b) Auxiliary Sequence Labeling Supervision

Figure 2: Two ways to incorporate attribute information into
the encoder. Most previous work utilized word-attribute con-
catenation to represent the tables (Fig a). We find a more effi-
cient way to guide the encoder to ‘remember’ the attributes
(Fig b). We treat the attribute names as the labels (dashed
box) for a sequence labeling auxiliary task and train it jointly
with the table-to-text generation task.

attributes on average. So it is very challenging for a sin-
gle encoder to incorporate such heterogeneous resources and
learn the accurate semantic representation of the source ta-
bles.
2) Due to the extreme data hungry of the neural network
models, researches often use large-scale crawled datasets
from the Internet, however, some informal expressions or
outdated information may appear as noisy cases in the struc-
tured tables.
3) As studied in (Sha et al. 2017), the order of different
key-value pairs does influence the generation quality, the at-
tributes feed earlier to the encoder may be ignored due to the
gradient vanishing and exploding problem in the encoder-
decoder framework.

Auxiliary Sequence Labeling Task
Although it is quite straightforward to incorporate the at-
tribute names as the additional inputs to the table encoder
(Hachey, Radford, and Chisholm 2017; Liu et al. 2017a;
Sha et al. 2017), there is no explicit evidence showing that
the encoder can ‘remember’ the attributes. To this end, we
treat the attribute information as an auxiliary supervision
to explicitly guide the table encoder to reproduce (thus ‘re-
member’) the attribute names in the tables by a sequence-
labeling multi-task.

As shown in Fig 2, for a specific table Tk with n attributes,
the sequence labeling training is based on the hidden states
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(b) Testing Stage

Figure 3: The overview of auto-encoder and multi-labeling
supervision. We use text auto-encoder to supervise the ta-
ble encoder as the text has similar meaning with the source
tables. We also use the multi-label classification as auxil-
iary assistant task . At the training stage, we use the auxil-
iary tasks to supervise the table-to-text model. At the testing
stage, we only use table-to-text model to generate texts.

[Hai ]i=1:n of the attribute-level LSTM.

a∗1:n = LABEL([Hai ]i=1:n) (5)

in which LABEL function can be multi-layer perceptron
(MLP) or CRF (Lafferty, McCallum, and Pereira 2001)
layer, a∗1:n are the predicted attribute names.

The auxiliary sequence labeling task is trained jointly
with the sequence-to-sequence learning. We use cross-
entropy loss for the sequence labeling task.

LSL = −λ1
N∑
k=1

pθSL
(Ak|Hk) (6)

λ1 is a tunable hype-parameter which is set to 0.3 accord-
ing to the validation set. Ak and Hk are the set of attribute
names and the attribute-level hidden states for Table Tk.

Auto-encoder Supervision
Compared with the complex structured tables, their associ-
ated descriptions are also strong guidances to the represen-
tation of the source tables, as they are well-written and share
the similar meanings as the source tables. Therefore, we pro-
pose a text auto-encoder to reconstruct the descriptions.

At the training stage, the table encoder compresses the
source table Ti into an internal representation zt. At the same
time, the text encoder compresses the reference text Yi into
the representation zb. Then both zt and zb are fed into the
same decoder to generate the related description. The loss
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of the text auto-encoder is also the cross-entropy losses:

LAE = −λ2
N∑
i=1

pθAE
(Yi|zb) (7)

where λ2 is a also tunable hyper-parameter, which is set to
0.5 according to the validation set.

We enhance the supervision of text auto-encoder by min-
imizing the distance between the semantic representation zt
and zb. We implement the supervision by adding Ldis into
the loss function.

L
′

AE = LAE + Ldis;Ldis =
λ3
Nh

d(zt, zb) (8)

where d(zt, zb) is a function which measures the distance
between zt and zb. λ3 is a tunable hyper-parameter to bal-
ance the loss of the supervision and other parts of the overall
loss. Nh is the number of the hidden unit to limit the mag-
nitude of the distance function. We set λ3 = 0.3 based on
the model performance on the validation set. the distance be-
tween two representations can be written as L2 constraint:

d(zt, zb) = ||zt − zb||2 (9)

Multi-labeling Supervision
As shown in Fig 3, to encourage the internal representation
zt of the table to carry as much attribute-level information
as possible, we also use multi-label classification task on zt
to encode the attributes across different domains.

We use MLP to map zt to the labels ã∗1:n and treat all the
attributes Ai = a1:n in the associated table Ti as the targets.
λ4 is also a hyper-parameter which is set to 0.5 according to
the validation set.

LML = −λ4
N∑
i=1

pθML
(Ai|zt) (10)

Loss Function and Training
The overall objective function consists of 4 parts: cross-
entropy loss of the table-to-text generation, auxiliary se-
quence labeling task (Eq 6), text auto-encoder supervision
(Eq 7 & 8), and the multi-labeling supervision (Eq 10). The
cross-entropy loss of the table-to-text generation is written
as:

LS2S = −
N∑
i=1

pθS2S
(Yi|zt) (11)

The overall loss of our model is the sum of these individual
losses.

L = LS2S + LSL + L
′

AE + LML (12)

Experiments
Dataset
We use WIKIBIO dataset (Lebret, Grangier, and Auli 2016)
as our benchmark dataset. WIKIBIO contains 728,321 ar-
ticles from English Wikipedia (Seq 2015). The dataset uses
the first sentence of each article as the description of the re-
lated infobox, which contains 26.1 words on average. 9.5

words in the description also occur in the infoboxes. The in-
fobox contains 53.1 words and 19.7 attributes on average.
The dataset has been divided in to training (80%), testing
(10%) and validation (10%) sets.

Evaluation Metrics
Automatic Metrics: Following the previous work (Lebret,
Grangier, and Auli 2016; Sha et al. 2017; Liu et al. 2017a),
we use BLEU-4 (Papineni et al. 2002) and ROUGE-4 (F
measure) (Lin 2004) for automatic evaluation.
Human Evaluation: Since automatic evaluations like
BLEU may not always be reliable for NLG systems. We use
human evaluation which involves the generation fluency and
the generation quality (how much false or irrelevant infor-
mation is mentioned in the biography). We firstly sampled
300 generated items from the test set for human evaluation.
Each item contains the generated descriptions by different
systems given the same resource tables. These items are dis-
tributed to 3 third-party crowd-workers who have no knowl-
edge about which system the biography is from. They are
asked to score the generated biographies according to their
fluency and quality. The scores range from 1 to 5 (higher
scores are better). Table 5 shows the scores for the gener-
ated biographies whose source table is Table 1.

Experimental Details
Following previous work (Liu et al. 2017a). We select the
most frequent 20,000 words in the training set as the word
vocabulary. For attribute vocabulary, we select the most fre-
quent 1480 attributes.

We tune the hyper-parameters based on the model per-
formance on the validation set. Since we have many hyper-
parameters (λ1 − λ4) in Eq 6, Eq 7, Eq 8 and Eq 10.
For convenience, We only tune each λ independently from
[0.3,0.5,0.7,1.0]. The dimensions of word embedding, field
embedding, hidden unit are set as 500, 50, 600 respectively.
The batch size, learning rate and optimizer are 32, 3e-4 and
Adam (Kingma and Ba 2014), respectively. We use Xavier
initialization for all the parameters in our model. We replace
UNK tokens with the most relevant token in the source ta-
ble according to the attention matrix (Jean et al. 2014). The
results in Table 2 come from the results of 5 independent
runs of the models.

Baselines
• KN & Template KN: The template-based Kneser-Ney

(KN) language model reported in (Lebret, Grangier, and
Auli 2016). They used the KenLM tool to train a 5-gram
models. The extracted template for the biography in Table
1 is “name 1 name 2 name 3 ( birthdate 2 · · · ” During
inference, the decoder is constrained to emit words from
the vocabulary or the special tokens occurring in the table.

• NLM & Table NLM: Lebret, Grangier, and Auli 2016
proposed a neural language model (NLM) which ig-
nores attribute information. Table NLM includes local and
global conditioning on the tables by taking the attribute
information into consideration.
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Models BLEU ROUGE

KN 2.21 0.38
Template KN 19.80 10.70
NLM 4.17 1.48
Table NLM 34.70 25.80
Order-planning 43.91 37.15
Struct-aware 44.89 ± 0.33 41.21 ± 0.25

Our models
Seq2seq† 43.37 ± 0.32 39.78 ± 0.21
+ Two-level LSTM† 44.14 ± 0.24 40.25 ± 0.15
+ Coarse-to-fine Attention† 44.42 ± 0.21 40.37 ± 0.26
+ Sequence labeling (Eq 6)‡ 44.63 ± 0.29 40.64 ± 0.32
+ Auto-encoder (Eq 7 & 8)‡ 44.84 ± 0.27 40.91 ± 0.19
+ Multi labeling (Eq 10)‡ 45.14 ± 0.34 41.26 ± 0.37

Table 2: Automatic evaluation on the WIKIBIO dataset. ‘+
A’ means this model adds module A to the last model. All
the baselines are reported by their authors. Models marked
by † use word-attribute concatenation (Fig 2 (a)) to incor-
porate attribute information while models marked by ‡ use
auxiliary sequence labeling supervision (Fig 2 (b)).

Models Fluency Quality
seq2seq 4.23 2.89
Struct-aware (Liu et al. 2017a) 4.42 3.64
Our best 4.56 3.85

Table 3: Human evaluation (larger values signifies better per-
formances) for 3 systems. The generated cases of the state-
of-the-art system (Liu et al. 2017a) are provided by the au-
thors. The Pearson coefficients of the annotators’ scores on
the generation fluency and quality are 0.77 and 0.68 respec-
tively (both p-values less than 0.001).

• Order-planning: Sha et al. 2017 proposed a link matrix
to model the order for the attribute-value tuples while gen-
erating the related biography.

• Struct-aware: Liu et al. 2017a proposed a structure-
aware learning which include the ‘field-gating’ mecha-
nism which input the attribute name embedding into the
LSTM and the dual attention mechanism to incorporate
the attribute information.

Analysis for Human & Automatic Evaluation
The automatic evaluation (Table 2) shows that our pro-
posed model outperform the seq2seq baseline by about 1.8
BLEU and 1.5 ROUGE and also beat the state-of-the-art sys-
tem (Liu et al. 2017a). The proposed two-level LSTM en-
coder with coarse-to-fine attention brings 1.1 BLEU and 0.6
ROUGE increase compared with the vanilla seq2seq model.
Table 4 shows that the improvement of the two-level LSTM
structure comes from better representation of the attribute-
value structure of the tables rather then increased parame-
ters. The auxiliary supervisions from different resources fur-
ther enhance the model performance. Human evaluations in

Encoder BLEU ROUGE

Two-level LSTM (Ours) 44.14 40.25
One-layer LSTM 43.37 39.78
Two-layer LSTM 43.25 39.53
Bi-directional LSTM 43.41 39.64

Table 4: The comparison of the proposed two-level LSTM
encoder with stacked LSTM encoders. It shows that the im-
provement of the two-level hierarchical encoder does not
come from the increased model parameters .

s2s: Edward Merrill Root ( January 4 , 1895 – Oct-
ober 26 , 1973 ) was an american educator and poet .
Liu et al. 2017a: Edward Merrill Root ( January 4 ,
1895 – October 26 , 1973 ) was an american educator
and poet from Richmond , Indiana .
Our best: Edward “ E. ” Merrill Root ( January
4 , 1895 in Baltimore – October 26 , 1973 in Kenneb-
unkpot ) was an american educator and poet , best
known for his anti-communist activities .

Table 5: The generated biographies and associated human
evaluation scores for Table 1 from 3 systems. All the biogra-
phies are scored 5.0 for the fluency evaluation. The average
scores of generation quality for the 3 systems are 2.67, 3.67
and 4.0 respectively.

Table 3 also shows that the generated cases from our model
have higher quality than the seq2seq baseline and the state-
of-the-art system.

Ablation Studies
We first introduce the baselines in Table 6 and 7:

• hs2s + concat: The proposed hierarchical encoder with
two-level LSTM and coarse-to-fine attention (Fig 1) using
word-attribute concatenation (Fig 2(a)).

• hs2s + gating: The proposed hierarchical encoder with
field-gating mechanism (Liu et al. 2017a). We feed the
attribute name embedding into both the word-level and

Models BLEU
hs2s + concat 44.42
hs2s + gating 44.57
hs2s + SL-MLP 44.63
hs2s + SL-CRF 44.54

(a) Different Ways to incor-
porate attribute information

Models ACC(%)

hLSTM + MLP 94.01
hLSTM + CRF 94.30
hs2s + SL-MLP 93.84
hs2s + SL-CRF 94.07

(b) The accuracy of sequence
labeling

Table 6: The analysis of auxiliary sequence labeling supervi-
sion. We show that the proposed sequence labeling auxiliary
task performed better than word-attribute concatenation (Fig
2 (a)) and attribute-gating method (Liu et al. 2017a) (left).
The accuracies of the sequence labeling multi-task are com-
parable with competitive baselines (right).
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Models BLEU ROUGE
s2s 43.37 39.78
+ Co-training (Eq 7) 43.69(+0.32) 40.02(+0.24)
+ Dis. Minimizing (Eq 8) 44.04(+0.67) 40.22(+0.44)

hs2s + concat 44.42 40.37
+ Co-training (Eq 7) 44.64(+0.22) 40.68(+0.31)
+ Dis. Minimizing (Eq 8) 44.68(+0.26) 40.74(+0.37)

hs2s + SL-CRF 44.63 40.64
+ Co-training (Eq 7) 44.76(+0.13) 40.86(+0.22)
+ Dis. Minimizing (Eq 8) 44.84(+0.21) 40.91+(0.27)

(a) Ablation studies on Auto-encoder Supervision

Models BLEU ROUGE
s2s 43.37 39.78
+ Multi-labeling (Eq 10) 43.69(+0.32) 40.02(+0.24)

hs2s + concat 44.42 40.37
+ Multi-labeling (Eq 10) 44.77(+0.35) 40.63(+0.26)

hs2s + SL-CRF 44.63 40.64
+ Multi-labeling (Eq 10) 45.01(+0.38) 41.06(+0.42)

(b) Ablation studies on Multi-labeling Supervision

Table 7: Ablation studies on the auto-encoder and multi-
labeling supervision.

attribute-level LSTM units. Please refer to (Liu et al.
2017a) for more details.

• hs2s + SL-MLP/CRF: The proposed hierarchical en-
coder which integrates attribute-level information by joint
training the auxiliary sequence labeling task with the
seq2seq learning. The LABEL function in Eq 5 can be
MLP or CRF.

• hLSTM + MLP/CRF: The independent sequence label-
ing model using the two-level hierarchical LSTM. We can
also use MLP or CRF as the LABEL function.

Table 6 (a) shows that the proposed sequence labeling
auxiliary task is a better way to incorporate attribute infor-
mation than word-attribute concatenation (Fig 2(a)) and the
field-gating mechanism (Liu et al. 2017a). Table 6 (b), on
the other hand, shows the accuracy of the sequence labeling
auxiliary task on the test set of WIKIBIO. The joint train-
ing models (hs2s + SL-MLP/CRF) also achieve comparable
sequence labeling accuracies with the independent sequence
labeling models (hLSTM + MLP/CRF).

The sequence labeling auxiliary task can only be oper-
ated on the proposed two-level LSTM. The auto-encoder
and multi-labeling supervision, on the other hand, can be
applied to all seq2seq-like models. Table 7 shows that both
auto-encoder and multi-labeling supervision can be helpful
to encode the structured tables and improve the table-to-text
generation.

We notice more increase on the automatic evaluations on
the vanilla seq2seq model with the help of the auto-encoder

Key Value
Name Bobby Fenwick
Position infielder
Birthdate 10 December, 1946
Birthplace Naha, Okinawa
Debutdate April 26, 1972
Debutteam Houston Astros
Finaldate May 8, 1973
Finalteam Louis Cardinals

Gold: Robert Richard Fenwick ( December 10 , 1946 in
Naha , Okinawa ) , is a retired major league baseball
player who played infielder from 1972 - 1973 .
s2s: Robert Joseph Fenwick ( born December 10 , 1946
in Naha , Okinawa ) is a former major league baseball
infielder .
+ hierarchical encoder: Robert Fenwick ( born Dec-
ember 10 , 1946 in Naha , Okinawa ) is a former
major league baseball infielder who played for
Houston Astros and Louis Cardinals.
+ Auxiliary Supervision: Robert Fenwick ( born Dec-
ember 10 , 1946 in Naha , Okinawa ) is a former major
league baseball player who played as infielder for
Houston Astros and Louis Cardinals from 1972 to 1973 .

Table 8: The generated biographies for ‘Bobby Fenwick’ in
the WIKIBIO.

supervision (Table 7 (a)). We believe this is because the
less expressive encoder might benefit more from the aux-
iliary auto-encoder supervision from the related text. For the
multi-labeling supervision, all the baselines can get about
0.3 increase on both BLEU and ROUGE metrics.

Generation Analysis
We offer 2 generated cases (Table 5 and Table 8) for the in-
foboxes in the test set of WIKIBIO. Table 5 shows that the
generated biography by our model get higher human eval-
uation scores than its counterpart provided by the state-of-
the-art system (Liu et al. 2017a). In this case, our system
includes the information in the ‘known for’ attribute. Simi-
larly, the generated biography by our system in Table 8 con-
tains the teams where Bobby Fenwick played for as well as
the time span in these teams.

Disordered Tables
Most previous work (Lebret, Grangier, and Auli 2016; Liu et
al. 2017a; Sha et al. 2017) viewed the attributes in the source
tables as a ordered list and then feed them sequentially into
the table encoder. Actually, as proved by (Sha et al. 2017;
Liu et al. 2017a), the order of the attributes does influence
the generation quality. The conclusion makes perfect sense,
especially for Wikipedia infoboxes and associated biogra-
phies, as the human editors tend to describe a person in
a relatively fixed order. For example, most biographies ac-
cords with the ‘name-birthdate-nationality-occupation-· · · ’
pattern. The attributes in the infoboxes are usually arranged
in the proper order.

However, not every table is guaranteed to have the ap-
propriate order. A robust model should achieve constantly
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Models BLEU
s2s 41.80 (-1.57)
s2s + Auto-encoder (Eq 7 & 8) 43.19 (-0.85)
s2s + Multi-labeling (Eq 10) 43.06 (-0.63)
s2s + AE & ML (Eq 7, 8 & 10) 43.89 (-0.52)
hs2s 43.21 (-1.21)
hs2s + SL-CRF (Eq 5) 43.46 (-1.17)
hs2s + Auto-encoder (Eq 7 & 8) 44.04 (-0.64)
hs2s + Multi-labeling (Eq 10) 44.30 (-0.47)
hs2s + AE & ML (Eq 7, 8 & 10) 44.51 (-0.43)
hs2s + AE & ML & SL-CRF (full) 44.58 (-0.56)

Table 9: The performance of different models on the dis-
ordered tables, which shows that the text auto-encoder and
multi-labeling supervisions can make the models more ro-
bust to the disordered tables.

high performance even if the attributes are disordered. So
we test our model in the adversarial setting. We randomly
shuffle the attributes of the source tables in both training
and testing set. During the shuffling, we only reorder the
attributes of the source tables without changing the content
in these attributes. We shuffle for 3 times and average the
scores of the candidate models on the shuffled data sets dur-
ing this process. Table 9 shows that the shuffling does hurt
the performance of our models. However, we find that the
proposed auto-encoder and multi-labeling auxiliary supervi-
sion can relieve the undesirable tendencies. We believe this
is because the two sources of external supervision can facili-
tate the table encoder to learn more accurate semantic repre-
sentations for the source tables no matter how the attributes
are ordered.

Error Analysis
Although our models have greatly improved the table-to-text
generation, we also find some errors by case studies. 1) The
first problem is the irrelevant information in the generated
descriptions to the source tables. it is a general problem in
the seq2seq framework as we usually view the seq2seq mod-
els as the black boxes and can not easily debug the models
according to the ill-formed generations. 2) In some cases,
we need common sense knowledge to get the reasonable bi-
ographies. For example, when we say ‘a retired basketball
player’, we should determine whether a man is retired or
not according to the ‘Finaldate’ attribute. 3) The information
which needs some inference across several attributes (like a
time span) may not be well represented by our model.

Related Work
Auto-encoder has been shown to be effective to learn the
internal representations (Vincent et al. 2008) for the source
data in various domains, including natural language under-
standing (AP et al. 2014), speech recognition (Deng et al.
2010; Lu et al. 2013) and image representation (Krizhevsky
and Hinton 2011). Our model utilizes a biography auto-
encoder to supervise the learning for the related table rep-

resentation. A closely related work is the auto-encoder as-
sistant proposed by Ma et al. 2018 which used the text auto-
encoder in the field of abstractive summarization.
Sequence labeling, which labels the source sequences with
pre-defined labels. Hand-crafted domain-specific features
were widely used in traditional methods, like HMMs and
CRFs (Lafferty, McCallum, and Pereira 2001; McCallum
and Li 2003). Recently, there are many attempts to build
end-to-end systems for sequence labeling (Lample et al.
2016; Ma and Hovy 2016). Our model is based on the suc-
cess of LSTM+MLP and LSTM+CRF models.
Natural language generation tasks can be generally di-
vided into two phases: content selection (‘what to say’) and
surface realization (‘how to say’)(Reiter and Dale 1997;
2000). Many previous work (Barzilay and Lee 2004; Barzi-
lay and Lapata 2005; 2006; Yu et al. 2007; Liang, Jordan,
and Klein 2009) treated the task as a pipelined systems,
which viewed content selection and surface realization as
two separate tasks. Duboue and McKeown (2002) proposed
a clustering approach in the biography domain by scoring
the semantic relevance of the text and paired knowledge
base. In a similar vein, Barzilay and Lapata (2005) modeled
the dependencies between the American football records and
identified the bits of information to be verbalized. (Liang,
Jordan, and Klein 2009; Angeli, Liang, and Klein 2010) ex-
tend the work of Barzilay and Lapata to soccer and weather
domains by learning the alignment between data and text us-
ing hidden variable models. Most recent work treated natural
language generation in an end-to-end fashion (Mei, Bansal,
and Walter 2016; Lebret, Grangier, and Auli 2016; Wise-
man, Shieber, and Rush 2017; Xu et al. 2018; Lin et al. 2018;
Luo et al. 2018; Liu et al. 2017b; Wang et al. 2017) with the
help of attention mechanism (Bahdanau, Cho, and Bengio
2014; Luong, Pham, and Manning 2015; Luo et al. 2018;
Wu et al. 2018).

Conclusion
Many tables have complex attribute-value hierarchical struc-
ture and large number of attributes across different domains.
So it is hard for a single encoder to learn the accurate seman-
tic representation of the source tables. To this end, we first
propose a two-level hierarchical encoder with coarse-to-fine
attention to encode the tables. Furthermore, we also propose
3 auxiliary tasks to assist the table encoder, namely auxiliary
sequence labeling task, text auto-encoder and multi-label
classification. The experiments on the WIKIBIO dataset
show that our models achieve the state-of-the-art perfor-
mance and are more robust in the adversarial setting.
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