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Abstract
The increasing concern with misinformation has stimulated
research efforts on automatic fact checking. The recently-
released FEVER dataset introduced a benchmark fact-
verification task in which a system is asked to verify a claim
using evidential sentences from Wikipedia documents. In this
paper, we present a connected system consisting of three ho-
mogeneous neural semantic matching models that conduct
document retrieval, sentence selection, and claim verification
jointly for fact extraction and verification. For evidence re-
trieval (document retrieval and sentence selection), unlike tra-
ditional vector space IR models in which queries and sources
are matched in some pre-designed term vector space, we de-
velop neural models to perform deep semantic matching from
raw textual input, assuming no intermediate term representa-
tion and no access to structured external knowledge bases.
We also show that Pageview frequency can also help improve
the performance of evidence retrieval results, that later can
be matched by using our neural semantic matching network.
For claim verification, unlike previous approaches that sim-
ply feed upstream retrieved evidence and the claim to a nat-
ural language inference (NLI) model, we further enhance the
NLI model by providing it with internal semantic relatedness
scores (hence integrating it with the evidence retrieval mod-
ules) and ontological WordNet features. Experiments on the
FEVER dataset indicate that (1) our neural semantic match-
ing method outperforms popular TF-IDF and encoder mod-
els, by significant margins on all evidence retrieval metrics,
(2) the additional relatedness score and WordNet features im-
prove the NLI model via better semantic awareness, and (3)
by formalizing all three subtasks as a similar semantic match-
ing problem and improving on all three stages, the complete
model is able to achieve the state-of-the-art results on the
FEVER test set (two times greater than baseline results).1

1 Introduction
The explosion of online textual content with unknown in-
tegrity and verification raises an important concern about
misinformation such as fake news, socio-political decep-
tion, and online rumors. This problem of misinformation
could potentially produce uncontrollable and harmful social
impacts, thus stimulating recent research efforts on lever-
aging modern machine learning techniques for automatic
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1Code: https://github.com/easonnie/combine-FEVER-NSMN

Claim: Giada at Home was only available on DVD.

[wiki/Giada at Home]
Giada at Home is a television show hosted by Giada De
Laurentiis. It first aired on October 18, 2008 on the Food
Network.

[wiki/Food Network]
Food Network is an American basic cable and satellite televi-
sion channel that is owned by Television Food Network, G.P., a
joint venture and general partnership between Discovery, Inc.
(which owns 70% of the network) and Tribune Media (which
owns the remaining 30%).

Label: Refutes

Figure 1: Example of FEVER task. Given the claim, the
system is required to find evidential sentences in the entire
Wikipedia corpus and label it as “SUPPORTS”, “REFUTES”,
or “NOT ENOUGH INFO” (Thorne et al. 2018).

fact checking. The recent release of the Fact Extraction and
VERification (Thorne et al. 2018) (FEVER) dataset not only
provides valuable fuel for applying data-driven neural ap-
proaches on evidence retrieval and claim verification, but
also introduces a standardized, benchmark task of the auto-
matic fact checking. In this FEVER shared task, a system
is asked to verify an input claim with potential evidence
in about 5 million Wikipedia documents, and label it as
“SUPPORTS”, “REFUTES”, or “NOT ENOUGH INFO” if the
evidence can support, refute, or not be found for the claim,
respectively. Fig. 1 shows an example of the task. The task
is difficult in two aspects. First, accurate selection of poten-
tial evidence from a huge knowledge base, w.r.t. an arbitrary
claim requires a thoughtful system design and results in a
trade-off between retrieval performance and computational
resources. Moreover, even with ground truth evidence, the
verification sub-task of predicting the relation between evi-
dence and the claim is still a long-existing open problem.2

In this work, we propose a joint system consisting of three
connected homogeneous networks for the 3-stage FEVER
task of document retrieval, sentence selection, and claim
verification and frame them as a similar semantic matching

2The task is often termed as natural language inference (NLI).
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problem. In the document retrieval phase, the correspond-
ing sub-module selects documents from the entire Wikipedia
corpus by keyword matching and uses a neural semantic
matching network for further document ranking. In the sen-
tence selection phase, we use the same neural architecture
trained with an annealed sampling method to select evi-
dential sentences by conducting semantic matching between
each sentence from retrieved pages and the claim. Finally,
we build a neural claim verifier by integrating upstream se-
mantic relatedness features (from the sentence selector) and
injecting ontological knowledge from WordNet into a sim-
ilar neural semantic matching network for natural language
inference (NLI), and train it to infer whether the retrieved
evidence supports or refutes the claim, or state that the evi-
dence is not enough to decide the correctness of the claim.

Overall, our unified neural-semantic-matching model for
fact extraction and verification, which includes a three-fold
contribution: (1) Unlike traditional IR methods e.g., TF-IDF,
in which queries and sources are matched in some vector
space according to pre-designed terms and pre-calculated
weightings, we explore the possibility of using a neural se-
mantic matching network for evidence retrieval and show
that by assuming no intermediate term representation, neu-
ral networks can learn their own optimal representation for
semantic matching at the granularity of sentences and signif-
icantly outperform term-weighting based methods. We also
show that external Pageview frequency information can pro-
vide comparable and complementary discriminative infor-
mation w.r.t. the neural semantic matching network for doc-
ument ranking. (2) In contrast to previous work, in which
upstream retrieved evidence are simply provided to down-
stream NLI models, we combined the evidence retrieval
module with the claim verification module, by adding se-
mantic relatedness scores to the NLI models, and further im-
prove verification performance by using additional semantic
ontological features from WordNet. (3) Rather than depend-
ing on structured machine-friendly knowledge bases such
as Freebase (Bollacker et al. 2008) and DBpedia (Auer et
al. 2007), we formalize the three subtasks as a similar tex-
tual semantic matching problem and propose one of the first
neural systems that are able to conduct evidence retrieval
and fact verification using raw textual claims and sentences
directly from Wikipedia as input, and achieves the state-of-
the-art results on the FEVER dataset, which could serve as
a new neural baseline method for future advances on large-
scale fact checking.

2 Related Works
Open Domain Question Answering: Recent deep learning-
based open domain question-answering (QA) systems fol-
low a two-stage process including document retrieval, se-
lecting potentially relevant documents from a large corpus
(such as Wikipedia), and reading comprehension, extract-
ing answers (usually a span of text) from the selected docu-
ments. Chen et al. (2017a) was the first to successfully ap-
plied this framework to open domain QA, obtaining state-
of-the-art results on several QA benchmarks (Rajpurkar
et al. 2016; Baudiš and Šedivỳ 2015; Miller et al. 2016;

Berant et al. 2013). Following their work, Dhingra, Mazaitis,
and Cohen (2017) introduced new benchmarks, Wang et al.
(2018) extended the framework by adding feedback signals
from comprehension to the upstream document retriever,
and Kratzwald and Feuerriegel (2018) proposed to adap-
tively adjust the number of retrieved documents. FEVER
shares the similar retrieval problem as open domain QA,
while the end task is claim verification.
Information Retrieval: Recent success in deep neural net-
works has brought increasing interest in their application to
information retrieval (IR) tasks (Huang et al. 2013; Guo et
al. 2016; Mitra, Diaz, and Craswell 2017; Dehghani et al.
2017). Although IR tasks also look at sentence-similarity,
as discussed in Guo et al. (2016), they are more about
relevance-matching, in which the match of specific terms
plays an important role. As the end goal of FEVER is veri-
fication, its retrieval aspect is more about sentences having
the same semantic meaning, and therefore, we approach the
problem via natural language inference techniques, instead
of relevance-focused IR methods.
Natural Language Inference: NLI is a task in which a sys-
tem is asked to classify the relationship between a pair of
premise and hypothesis as either entailment, contradiction
or neutral. Large annotated datasets such as the Stanford
Natural Language Inference (Bowman et al. 2015) (SNLI)
and the Multi-Genre Natural Language Inference (Williams,
Nangia, and Bowman 2018) (Multi-NLI) have promoted
the development of many different neural NLI models (Nie
and Bansal 2017; Conneau et al. 2017; Parikh et al. 2016;
Chen et al. 2017b; Gong, Luo, and Zhang 2017; Ghaeini
et al. 2018) that achieve promising performance. The task
of NLI is framed as a typical semantic matching problem
which exists in almost all kinds of NLP tasks. Therefore, in
addition to the final claim verification subtask, we also for-
malize the other two FEVER subtasks of document retrieval
and sentence selection as a similar problem and solve them
using a homogeneous network.
Other FEVER Systems: FEVER is the first task that re-
quires and measures models’ joint ability for both evidence
retrieval and verification, and provides a benchmark evalua-
tion. There are other proposed methods during the FEVER
Shared Task in which our system, Yoneda et al. (2018) and
Hanselowski et al. (2018) are the top three on the leader-
board. The most apparent differences between our system
and other methods are: (1) our method uses a homogeneous
semantic matching network to tackle all the subtasks while
others utilize different models for different subtasks and (2)
our vNSMN verification model takes the concatenation of
all the retrieved sentences (together with their relatedness
score) as input, while other systems use existing NLI models
to compare each of the evidential sentences with the claim
and then apply another aggregation module to merge all the
outputs for final prediction.

3 FEVER: Fact Extraction and VERification
3.1 Task Formalization
FEVER (Thorne et al. 2018) is a comprehensive task in
which a system is asked to verify an arbitrary claim with
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Figure 2: System Overview: Document Retrieval, Sentence Selection, and Claim Verification.

potential evidence extracted from a huge list of Wikipedia
documents, or states that the claim is non-verifiable it cannot
find enough evidence. Suppose Pi ∈ P denotes an individ-
ual Wikipedia document and P = {P0, P1, ...} is the set of
all the provided documents. Pi is also an array of sentences,
namely Pi = {s0i , s1i , s2i , ...smi } with each sji denoting the
j-th sentence in the i-th Wikipedia document (where s0i is
the title of the document). The inputs of each example are a
textual claim ci and

⋃
Pi, the union of all the sentences in

each provided Wikipedia document. The output should be a
tuple (Êi, ŷi) where Êi = {se0 , se1 , ...} ⊂

⋃
Pi, represent-

ing the set of evidential sentences for the given claim, and
ŷi ∈ {S,R,NEI}3, the predicted label for the claim. Suppose
the ground truth evidence and label are Ei and yi. For a suc-
cessful verification of a given claim ci, the system should
produce a prediction tuple (Êi, ŷi) satisfying Ei ⊆ Êi and
yi = ŷi. The dataset details (size and splits) are discussed
in Thorne et al. (2018). As described above, the single pre-
diction is considered to be correct if and only if both the
label is correct and the predicted evidence set (containing at
most five sentences4) covers the annotated evidence set. This
score is named as FEVER Score.

4 Our Model

In this section, we first describe the architecture of our Neu-
ral Semantic Matching Network (NSMN), and then elabo-
rate on the three subtasks of document retrieval, sentence
selection and claim verification, especially how these differ-
ent sub-tasks can be treated as a similar semantic matching
problem and be consistently resolved via the homogeneous
NSMN architecture. See Fig. 2 for our system’s overview.

3S,R,NEI represent “SUPPORTS”, “REFUTES” and “NOT
ENOUGH INFO”, respectively.

4This constraint is imposed in the FEVER Shared Task because
in the blind test set, all claims can be sufficiently verified with at
most 5 sentences of evidence.

4.1 Neural Semantic Matching Network
The Neural Semantic Matching Network (NSMN) is the key
component in each of our sub-modules that performs seman-
tic matching between two textual sequences. Specifically,
the NSMN contains four layers as described below.5
Encoding Layer: Suppose the two input sequences are U ∈
Rd0×n and V ∈ Rd0×m, the encoding layer is one bidirec-
tional LSTM that encodes each input token with its contexts:

Ū = BiLSTM(U) ∈ Rd1×n, (1)

V̄ = BiLSTM(V) ∈ Rd1×m, (2)

where d0 and d1 are input and output dimensions of the en-
coding layer and n and m are lengths of the two sequences.
Alignment Layer: This produces an alignment between the
two input sequences based on the encoding of tokens com-
puted above. The alignment matrix is computed as:

E = Ū>V̄ ∈ Rn×m. (3)

Each element eij in the matrix indicates the alignment score
between i-th token in U and j-th token in V. Then, for each
input token, the model computes the relevant semantic con-
tent from the other sequence using the weighted sum of en-
coded tokens according to the normalized alignment score:

Ũ = V̄ · Softmaxcol(E>) ∈ Rd1×n, (4)

Ṽ = Ū · Softmaxcol(E) ∈ Rd1×m, (5)

where Softmaxcol denotes column-wise softmax function. Ũ
is the aligned representation from V̄ to Ū and vice versa for
Ṽ. The aligned and encoded representations are combined:

S = f([Ū, Ũ, Ū− Ũ, Ū ◦ Ũ]) ∈ Rd2×n, (6)

T = f([V̄, Ṽ, V̄ − Ṽ, V̄ ◦ Ṽ]) ∈ Rd2×m, (7)

5Our NSMN model is a modification of the Enhanced Sequen-
tial Inference Model (ESIM) (Chen et al. 2017b), where we add
shortcut connections from input to matching layer and change out-
put layer to only max-pool plus one affine layer with rectifier acti-
vation. These modifications are based on validation results.
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where f is one affine layer with a rectifier as an activation
function and ◦ indicates element-wise multiplication.
Matching Layer: The matching layer takes the upstream
compound aligned representation and performs semantic
matching between two sequences via a recurrent network as:

P = BiLSTM([S,U∗]) ∈ Rd3×n, (8)

Q = BiLSTM([T,V∗]) ∈ Rd3×m. (9)

Note that U∗ and V∗ are additional input vectors for each
token provided to the matching layer via a shortcut connec-
tion. In this work, U∗ and V∗ are sub-channels of the input
U and V without GloVe, aimed to facilitate the training.
Output Layer: The two matching sequences are projected
onto two compressed vectors by max-pooling along the row
axes. The vectors, together with their absolute difference and
element-wise multiplication, are mapped to the final output
m by a function h.

p = Maxpoolrow(P) ∈ Rd3 , (10)

q = Maxpoolrow(Q) ∈ Rd3 , (11)
h(p,q, |p− q|,p ◦ q) = m, (12)

where function h denotes two affine layers with a rectifier
being applied on the output of the first layer.

The final output vector is different for the extraction
versus the verification subtasks. For the extraction sub-
tasks (document retrieval and sentence selection), m =
〈m+,m−〉, where m+ ∈ R is a scalar value indicating
the score for selecting the current sentence as evidence, and
m− gives the score for discarding it. For claim verification,
m = 〈ms,mr,mn〉, where the elements of the vector de-
note the score for predicting the three labels, namely SUP-
PORTED, REFUTE, and NEI, respectively.

4.2 Three-Phase Procedure
1. Document Retrieval Document retrieval is the selec-
tion of Wikipedia documents related to a given claim. This
sub-module handles the task as the following function:

f(ci,P) = Dci , (13)

where a claim ci and the complete collection of documents P
are mapped to a set of indices Dci such that {Pi | i ∈ Dci}
is the set of documents required to verify the claim. The task
can be viewed as selecting a fine-grained document subset
from a universe of documents by comparing each of them
with the input claim. We observe that 10% of the docu-
ments have disambiguation information in their titles, such
as “Savages (band)”; the correct retrieval of these documents
requires semantic understanding and we will rely on the
NSMN to handle this problem. For clarity, we will call these
documents as “disambiguative” documents for later use.

Because the number of documents in the collection are
huge, conducting semantic matching between all the doc-
uments from the collection with the claim is computation-
ally intractable. Hence, we start the retrieval by applying a
keyword matching step to narrow down the search space.6

6On average, keyword matching returns 8 pages for each claim.

The details about the keyword matching is described in the
arxiv supplementary. Next, we give all the documents that
are not “disambiguative” the highest priority score and rank
the “disambiguative” documents by comparing each of them
with the claim using the NSMN (Sec. 4.1). The document is
represented as the concatenation of its title and the first sen-
tence. The matching score between the claim ci and the j-th
document is computed as:〈

m+,m−
〉
= NSMN(ci, [tj , s

0
j ]), (14)

p(x = 1 | ci, j) =
em

+

em+ + em− , (15)

where x ∈ {0, 1}7 indicates whether to choose the j-th doc-
ument, m+ is the score for prioritizing the document, and
p(x = 1 | ci, j) ∈ (0, 1) is the normalized score for m+.
Note that m+ can also be viewed as the global semantic re-
latedness of a document to a claim. A document having a
higher m+ value than others, w.r.t. a claim, indicates that it
is semantically more related to the claim.

To summarize, document retrieval phase involves steps:
• Building a candidate subset with keyword matching on all

documents in the collections;
• Adding all the documents that are not “disambiguative”

to the resulting list;8

• Calculating the p(x = 1 | ci, j) and m+ value for “disam-
biguative” documents in the candidate set using NSMN;

• Filtering out the documents having p(x = 1 | ci, j) lower
than some threshold P d

th;
• Sorting the remaining documents by their m+ values and

adding the top k documents to the resulting list.

2. Sentence Selection Sentence selection is the extraction
of evidential sentences from the retrieved documents regard-
ing a claim, formalized as the following function:

g(ci,
⋃

i∈Dci

Pi) = Eci , (16)

which takes a claim and the union of the sentence set of
each retrieved document as inputs and outputs a subset of
sentences Eci ⊆

⋃
i∈Dci

Pi as the evidence set. Similar to
document retrieval, sentence selection can also be treated
as conducting semantic matching between each sentence
sj ∈

⋃
i∈Dci

and the claim ci to select the most plausible ev-
idence set. Since the search space is already narrowed down
to a controllable size by the document retrieval, we can di-
rectly traverse all the sentences and compare them with the
claim using NSMN. The selection is done via these steps:
• Calculating the p(x = 1 | ci, j) and m+ value for all the

sentences in the retrieved documents;
• Filtering out the sentences having p(x = 1 | ci, j) lower

than some threshold P s
th;

• Sorting sentences by their m+ values and adding the top
5 sentences to the resulting list.
71 indicates to choose the document and 0 otherwise
8If there are multiple “disambiguative” documents, we ran-

domly select at most five documents.
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Exact same lemma
Antonym
Hyponym
Hypernym
Hyponym with 1-edge distance in WN topological graph
Hypernym with 1-edge distance in WN topological graph
Hyponym with 2-edge distance in WN topological graph
Hypernym with 2-edge distance in WN topological graph
Hyponym with distance > 2 edges in WN topological graph
Hypernym with distance > 2 edges in WN topological graph

Table 1: 10 indicator features in WordNet embedding.

3. Claim Verification This final sub-task requires logical
inference from evidence to the claim, which is defined as:

h(Eci , ci) = y, (17)
where Eci is the set of evidential sentences and y ∈
{S,R,NEI} is the output label.

We use the similar neural semantic matching network
with additional token-level features for the final claim veri-
fication (similar to NLI task). The input premise is the con-
catenation of all sentences from the upstream evidence set,
and the input hypothesis is the claim. More importantly, be-
sides GloVe and ELMo9 embeddings, the concatenation of
the following three additional token-level features are added
as task-specific token representations to further improve the
verification accuracy:
WordNet: 30-dimension indicator features regarding onto-
logical information from Wordnet. The 30 dimensions are
divided into 10 embedding channels corresponding to 10
hypernymy/antonymy and edge-distance based phenomena,
as shown in Table 1. For the current token, if one of these
10 phenomena is true for any word in the other sequence,
that phenomenon’s indicator feature will be fired. As we also
want to differentiate whether the token is in the evidence or
the claim, we use 3 elements for each channel with first two
elements indicating the position and the last element for the
feature indication. For example, if a token in the evidence
fires then the vector will be [1, 0, 1] and if the token is in the
claim it will be [0, 1, 1].
Number: We use 5-dimension real-value embeddings to
encode any unique number token. This feature assists the
model in identifying and differentiating numbers.
Normalized Semantic Relatedness Score: Two normalized
relatedness scores, namely the two p(x = 1 | ci, j) val-
ues produced by the document and sentence NSMN, respec-
tively. These scores are served as 2-dimension features for
each token of the evidence. We add these features to con-
nect the three subtask modules strongly, i.e., help the claim
verification model better focus on the evidence, based on the
semantic relatedness strength between the current evidence
and the claim.
Evidence Enhancement (Optional): An optional step that
augments the current evidence set. By default, we apply ev-
idence enhancement before evaluation. Details are provided
in the arxiv supplementary.

9We used GloVe+ELMo because their combination gives a
comprehensive+contextualized lexical representation of the inputs.

5 Implementation and Training Details
Document Retrieval: The neural semantic matching net-
work is trained by optimizing cross-entropy loss using the
“disambiguative” documents containing ground truth ev-
idence as positive examples and all other “disambigua-
tive” document as negative examples. We used Adam op-
timizer (Kingma and Ba 2015) with a batch size of 128.
We also consider using Pageview frequency resources, TF-
IDF method after keyword matching for re-ranking the doc-
uments and compare their results in the experiments.
Sentence Selection: We trained neural sentence selector us-
ing the FEVER training set by optimizing cross-entropy loss
with ground truth evidence as positive examples and all
other sentences in the candidate pool from the document
retriever as negative examples. We used Adam optimizer
(Kingma and Ba 2015) with a batch size of 128. We ap-
plied an annealed sampling strategy to gradually increase
the portion of positive examples after every epoch. Con-
cretely, each negative example in the training data will be
added to the next training epoch with a decreasing probabil-
ity pe. pe starts from 0.5 at the first epoch and decreases 0.1
after each epoch and is reset to 0.02 when pe ≤ 0. The intu-
ition behind annealed sampling is that we want the model to
be more tolerant about selecting sentences while being dis-
criminative enough to filter out apparent negative sentences.
We also experiment with using TF-IDF method and a Max-
Pool sentence encoder that gives a comprehensive represen-
tation for sentence modeling (Conneau et al. 2017) in place
of the NSMN for sentence selection.
Claim Verification: We trained our verification NSMN us-
ing ground truth labels in FEVER training set. For verifi-
able claims, the input evidence is the provided ground truth
supporting or refuting evidence. For non-verifiable claims
with no given evidence, we randomly sample 3-5 sentences
from candidate sentence pool with equal probability given
by the upstream selected sentence. We use Adam optimizer
for training the model with a batch size of 32.

6 Results and Analysis
In this section, we present extensive ablation studies for
each module in our system, and report our final full-system
results. When evaluating the performance of document re-
trieval and sentence selection, we compare the upper bound
of the FEVER score (or oracle score OFEVER) by assum-
ing perfect downstream systems.10 Besides that, we also pro-
vide other metrics (i.e., F1 and label accuracy) for analyzing
different submodules. For simplicity, we name dNSMN for
document retrieval NSMN, sNSMN for sentence selection
NSMN, and vNSMN for verification NSMN.

Document Retrieval Results In Table 2, we compare the
performance of different methods for document retrieval on
the entire dev set and on a difficult subset of the dev set.
This subset is built by choosing examples having at least
one evidence contained in the “disambiguative” document.

10OFEVER is the same metric as the “Oracle Accuracy” in the
original baseline in (Thorne et al. 2018).
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Model Entire Dev Set Difficult Subset (>10%)

OFEVER Acc. Recall F1 OFEVER Acc. Recall F1

FEVER Baseline 70.20 – – – – – – –
KM 88.86 44.90 83.30 58.35 60.15 23.89 60.15 34.20

KM + Pageview 91.98 45.90 87.98 60.32 85.61 29.32 85.61 43.68
KM + TF-IDF 91.63 42.83 87.45 57.50 85.60 28.66 85.60 42.94
KM + dNSMN 92.34 52.70 88.51 66.06 87.93 31.71 87.93 46.61

KM + Pageview + dNSMN 92.42 52.73 88.63 66.12 88.73 31.90 88.72 46.93
k = 5

FEVER Baseline 77.24 – – – – – – –
KM 90.69 42.61 86.04 56.99 74.34 23.19 74.34 35.36

KM + Pageview 92.69 42.92 89.04 57.92 90.52 24.89 90.52 39.05
KM + TF-IDF 92.38 39.57 88.57 54.70 89.88 23.94 89.88 37.80
KM + dNSMN 92.82 51.04 89.23 64.94 91.33 28.30 91.33 43.21

KM + Pageview + dNSMN 92.75 51.06 89.13 64.93 91.36 28.38 91.37 43.30
k = 10

Table 2: Performance of different document retrieval methods. k indicates the number of retrieved documents. The last four
columns show results on the difficult subset that includes more than 10% of dev set. dNSMN = document retrieval Neural
Semantic Matching Network. ‘KM’=Keyword Matching.

Method Entire Dev Set Difficult Subset (>12%)

OFEVER Acc. Recall F1 OFEVER Acc. Recall F1

FEVER Baseline 62.81 – – – – – – –
TF-IDF 83.77 34.16 75.65 47.07 53.01 38.54 51.01 44.63
Max-Pool Enc. 84.08 59.52 76.13 66.81 73.68 54.13 73.68 62.41
sNSMN w/o AS 86.65 69.43 79.98 74.33 68.34 67.82 68.34 68.08
sNSMN w. AS 91.19 36.49 86.79 51.38 81.44 34.56 81.44 48.53

Table 3: Different methods for sentence selection on dev set. ‘Enc.’= Sentence Encoder. ‘AS’= Annealed Sampling. The
OFEVER column shows Oracle FEVER Score. The other three columns show the evidence accuracy, recall, and F1.

We hypothesize that the correct retrieval of these documents
will be more semantically demanding and challenging. To
begin with, the keyword matching method (getting 88.86%
and 90.69% oracle score for k = 5 and 10) is better than the
FEVER baseline (getting 70.20% and 77.24% oracle score
for k = 5 and 10) with TF-IDF in Chen et al. (2017a). This
is due to the fact that keyword matching with only titles and
claims (as described in Sec. 4.2) is intuitively more related
to human online search behavior and can narrow the search
space down with very high accuracy, whereas filtering doc-
ument using term-based method e.g., TF-IDF directly on
the entire document collection tends to impose more errors.
However, keyword matching does not maintain its perfor-
mance on the difficult subset and suffers a 25 points drop on
the oracle score because the method is essentially semantics-
agnostic, i.e. can not reason by taking linguistic context into
consideration. This imposed difficulty is better handled by
reranking based on Pageview frequency, TF-IDF, and the
dNSMN, with the last one outperforming the other two on all
the metrics. Though dNSMN and Pageview frequency rank-
ing obtain comparable results on oracle score, the two meth-
ods are inherently different in that the former approaches
document selection via advanced self-learned deep repre-
sentations while the latter via demographic bias. Thus, we
also experiments on combining the two methods by first re-

ranking using Pageview and then dNSMN. Finally, though
the performances of all the methods are affected by increas-
ing the number of retrieved documents from 5 to 10, the
methods that use dNSMN merely suffered a 1 point drop on
the retrieval accuracy on the entire dev set, indicating that
it’s relatively more robust than other methods.

Sentence Selection Results Similar to the document re-
trieval setup, we evaluate the sentence selection performance
on both the entire dev set and a difficult subset. The diffi-
cult subset for sentence selection is built by selecting ex-
amples in which the number of word-overlap between the
claim and the ground truth evidence is below 2 and thus re-
quires higher semantic understanding. Neural networks with
better lexical representations are intuitively more robust at
selecting semantically related sentences than term weight-
ing based methods. This fact is reflected in Table 3, where
although TF-IDF and the Max-pool Sentence Encoder ob-
tain similar oracle FEVER scores (83.77% and 84.08%)
and evidence recall (75.65% and 76.13%), the latter could
achieve a much higher score for all metrics on the difficult
subset. Note that for the entire dev set, the oracle score of
the normally-trained (without annealed sampling) sNSMN
(86.65%) is higher than that of the Max-Pool sentence en-
coder (84.08%) but on the difficult set, the sNSMN obtains
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Model FEVER LA F1

S/R/NEI

Final Model 66.14 69.60 75.7/69.4/63.3
w/o WN and Num 65.37 68.97 74.7/68.0/63.3
w/o SRS (sent) 64.90 69.07 74.5/70.7/60.7
w. SRS (doc) 66.05 69.69 75.6/70.0/62.8
Vanilla ESIM 65.07 68.63 73.9/68.1/63.0
Data from sNSMN
Final Model 62.48 67.23 72.6/70.4/56.3
Data from TF-IDF

Table 4: Ablation study for verification (vNSMN).
‘WN’=WordNet feature, ‘Num’=number embedding, ‘Fi-
nal Model’=vNSMN with semantic relatedness score fea-
ture only from sentence selection. ‘SRS (sent)’, ‘SRS (doc)’
= Semantic Relatedness Score from document retrieval and
sentence selection modules. FEVER column shows strict
FEVER score and LA column shows label accuracy with-
out considering evidence. The last column shows F1 score
of three labels. All models above line are trained with sen-
tences selected from sNSMN for non-verifiable examples,
while model below is from TF-IDF.

Threshold FEVER LA Acc. Recall F1

0.5 66.15 69.64 36.50 86.69 51.37
0.3 66.42 69.76 33.17 86.90 48.01
0.1 66.43 69.67 29.83 86.97 44.42

0.05 66.49 69.72 28.64 87.00 43.10

Table 5: Dev set results (before evidence enhancement) for
a vNSMN verifier making inference on data with different
degrees of noise, by filtering with different score thresholds.

a lower recall (68.34%) compared to Max-Pool sentence en-
coder (73.68%). This is due to the fact that the model with
a stronger alignment mechanism will be more strict about
selecting evidence and thus tends to trade accuracy for re-
call. This motivates our usage of annealed sampling in order
to improve evidence recall. Although the annealed sampling
reduces the evidence F1, we will explain later that this im-
provement of recall is important for the final FEVER Score.

Claim Verification Results We also conduct ablation ex-
periments for the vNSMN with the best retrieved evidence11

on the FEVER dev set. Specifically, we choose the vNSMN
with semantic relatedness score feature only from sentence
selection as our Final Model (because it obtains the best re-
sults on FEVER score), and make modifications based on
that model for analyzing different add-ons. The results are
included in Table 4. First of all, we see that WordNet features
(WN) and number embedding (Num) is able to increase the
FEVER score, specifically by improving roughly 1 point of
F1 scores on both the “SUPPORTS” (from 74.7 to 75.7) and

11The best retrieved evidence is extracted from our dNSMN and
sNSMN models (trained with annealed sampling).

Combination FEVER

Pageview + dNSMN + sNSMN + vNSMN 66.59
dNSMN + sNSMN + vNSMN 66.50

Pageview + sNSMN + vNSMN 66.43

Table 6: Performance of different combinations on dev set.

Model F1 LA FEVER

UNC-NLP (our shared task model) 52.96 68.21 64.21
UCL Machine Reading Group 34.97 67.62 62.52
Athene UKP TU Darmstadt 36.97 65.46 61.58

UNC-NLP (our final model) 52.81 68.16 64.23

Table 7: Performance of systems on blind test results.

the “REFUTES” (from 68.0 to 69.4) examples because onto-
logical features from WordNet (e.g., symptoms, antonyms,
and hypernymms) and ordinal numeral features provide dis-
criminative and fine-grained relational information which is
extremely useful for revealing entailment and contradiction
relations. More importantly, by incorporating the semantic
relatedness score from the sNSMN model into the down-
stream vNSMN model, we also observe a 1 point improve-
ment on FEVER score and almost 3 points improvement
on F1 score for “NOT ENOUGH INFO” examples. This ap-
proach can be viewed as combining evidence extraction with
verification, by providing the verifier the degree of trustwor-
thiness for each evidence and helping it recognize subtle
neural relations between evidence and the claim. We also see
that the vNSMN with semantic relatedness score from both
document retrieval and sentence selection modules achieves
comparable (slightly worse) results to the vNSMN with se-
mantic relatedness score from only the sentence selection
module (hence, we use the latter for our final model). Our
intuition of this phenomenon is that the document extraction
subtask is two hops away from the claim verification subtask
and hence its annotation supervision is less useful than the
sentence selection subtask which is only one hop away. We
also compare our vNSMN (66.14% on FEVER) with vanilla
ESIM model (65.07% on FEVER) and the results on all met-
rics demonstrate that our architecture is better at modeling
semantic matching. Lastly, we compare the performances
of the same vNSMN with different training data for non-
verifiable examples. The change of training data induces sig-
nificant drops on both FEVER accuracy and F1 for the “Not
Enough Info” example, highlighting the importance of the
quality of upstream training data for neural inference model.

Noise Tolerance of vNSMN We evaluate the robustness
of the vNSMN to noisy evidence during inference by setting
different probability thresholds for filtering upstream evi-
dence where the default 2-way softmax classification thresh-
old is 0.5. By reducing this value, we are allowing less con-
fident evidence to be selected for downstream vNSMN. In
Table 5, we can see that the overall FEVER score is slightly
increasing with the decrease of the threshold, indicating that
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the vNSMN is immune to noise. The findings encourage our
usage of annealed sampling during sentence selection train-
ing and providing high recall evidence for the final fact ver-
ification model. We set threshold to 0.05 for sentence.

Combination Evaluation and Final Result Since the
KM + dNSMN and KM + Pageview + dNSMN setups get
similar results on document retrieval (see Table 2), we also
compare their final FEVER results using the best down-
stream model (see Table 6). Based on these dev FEVER
results, we choose our final model as the combination of
Pageview and dNSMN for blind test evaluation (though the
non-Pageview neural-only model is still comparable). Fi-
nally, in Table 7, we present blind test results of our final
system together with the top 3 results on the FEVER Shared
Task leaderboard12. Our final system (Pageview + dNSMN
+ sNSMN + vNSMN) is able to get comparable results with
our earlier shared task rank-1 system (Pageview + sNSMN
+ vNSMN), achieving the new state-of-the-art on FEVER.

7 Conclusion
We addressed the fact verification FEVER task via a three-
stage setup of document retrieval, sentence selection, and
claim verification. We develop consistent and joint neural
semantic matching networks for all three subtasks, along
with Pageview, WordNet, and inter-module features, achiev-
ing the state-of-the-art on the task.
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