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Abstract

This paper is concerned with open-domain question answer-
ing (i.e., OpenQA). Recently, some works have viewed this
problem as a reading comprehension (RC) task, and directly
applied successful RC models to it. However, the perform-
ances of such models are not so good as that in the RC task. In
our opinion, the perspective of RC ignores three characterist-
ics in OpenQA task: 1) many paragraphs without the answer
span are included in the data collection; 2) multiple answer
spans may exist within one given paragraph; 3) the end pos-
ition of an answer span is dependent with the start position.
In this paper, we first propose a new probabilistic formula-
tion of OpenQA, based on a three-level hierarchical structure,
i.e., the question level, the paragraph level and the answer
span level. Then a Hierarchical Answer Spans Model (HAS-
QA) is designed to capture each probability. HAS-QA has the
ability to tackle the above three problems, and experiments
on public OpenQA datasets show that it significantly outper-
forms traditional RC baselines and recent OpenQA baselines.

1 Introduction
Open-domain question answering (OpenQA) aims to seek
answers for a broad range of questions from a large know-
ledge sources, e.g., structured knowledge bases (Berant et
al. 2013; Mou et al. 2017) and unstructured documents from
search engine (Ferrucci et al. 2010). In this paper we fo-
cus on the OpenQA task with the unstructured knowledge
sources retrieved by search engine.

Inspired by the reading comprehension (RC) task flour-
ishing in the area of natural language processing (Wang
and Jiang 2016; Seo et al. 2016; Xiong, Zhong, and Socher
2016), some recent works have viewed OpenQA as an
RC task, and directly applied the existing RC models to
it (Chen et al. 2017; Joshi et al. 2017; Wang and Jiang 2016;
Clark and Gardner 2018). However, these RC models do not
well fit for the OpenQA task.

Firstly, they directly omit the paragraphs without answer
string1. RC task assumes that the given paragraph contains
the answer string (Figure 1 top), however, it is not valid

Copyright c© 2019, Association for the Advancement of Artificial
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1The answer string is a piece of text that can answer the ques-
tion. If the answer string is obtained in a paragraph as a consecutive
text, we call it the answer span.

Reading Comprehension

Open-domain QuestionAnswering
Question: What does a camel store in its hump?
Paragraph1(multiple-answer-spans): The humps are reservoirs of
fatty tissue: concentrating body fat in their humps minimizes the
insulating effect fat would have if distributed over the rest of their
bodies, helping camels survive in hot climates.
Paragraph2(no-answer-span): Camels with one hump are called
Arabian camels, or Dromedaries, and come from North Africa. Camels
with two humps are from Asia, and are called Bactrian camels.

Paragraph: At standard temperature and pressure, two atoms of the
element bind to form dioxygen, a colorless and odorless diatomic gas
with the formula O2.
Question: How many atoms combine to form dioxygen?
Answer: two

Answer: fat
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Figure 1: Examples of RC task and OpenQA task.

for the OpenQA task (Figure 1 bottom). That’s because the
paragraphs to provide answer for an OpenQA question is
collected from a search engine, where each retrieved para-
graph is merely relevant to the question. Therefore, it con-
tains many paragraphs without answer string, for instance, in
Figure 1 Paragraph2. When applying RC models to OpenQA
task, we have to omit these paragraphs in the training phase.
However, during the inference phase, when model meets one
paragraph without answer string, it will pick out a text span
as an answer span with high confidence, since RC model
has no evidence to justify whether a paragraph contains the
answer string.

Secondly, they only consider the first answer span in
the paragraph, but omit the remaining rich multiple answer
spans. In RC task, the answer and its positions in the para-
graph are provided by the annotator in the training data.
Therefore RC models only need to consider the unique an-
swer span, e.g., in SQuAD (Rajpurkar et al. 2016). How-
ever, the OpenQA task only provides the answer string as
the ground-truth. Therefore, multiple answer spans are de-
tected in the given paragraph, which cannot be considered
by the traditional RC models. Take Figure 1 as an example,
all text spans contain ‘fat’ are treated as answer span, so we
detect two answer spans in Paragraph1.

Thirdly, they assume that the start position and end posi-
tion of an answer span is independent. However, the end po-
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Figure 2: The three hierarchical levels of OpenQA task.

sition is evidently related with the start position, especially
when there are multiple answer spans in a paragraph. There-
fore, it may introduce some problems when using such in-
dependence assumption. For example, the detected end pos-
ition may correspond to another answer span, rather than the
answer span located by the start position. In Figure 1 Para-
graph1, ‘fat in their · · · insulating effect fat’ has a high con-
fidence to be an answer span under independence assump-
tion.

In this paper, we propose a Hierarchical Answer Span
Model, named HAS-QA, based on a new three-level prob-
abilistic formulation of OpenQA task, as shown in Figure 2.

At the question level, the conditional probability of the an-
swer string given a question and a collection of paragraphs,
named answer probability, is defined as the product of the
paragraph probability and conditional answer probability,
based on the law of total probability.

At the paragraph level, paragraph probability is defined
as the degree to which a paragraph can answer the question.
This probability is used to measure the quality of a para-
graph and targeted to tackle the first problem mentioned,
i.e. identify the useless paragraphs. For calculation, we first
apply bidirectional GRU and an attention mechanism on
the question aware context embedding to obtain a score.
Then, we normalize the scores across the multiple para-
graphs. In the training phase, we adopt a negative sampling
strategy for optimization. Conditional answer probability is
the conditional probability that a text string is the answer
given the paragraph. Considering multiple answer spans in
a paragraph, the conditional answer probability can be fur-
ther represented as the aggregation of several span probab-
ility, defined later. In this paper, four types of functions, i.e.
HEAD, RAND, MAX and SUM, are used for aggregation.

At the span level, span probability represents the probab-
ility that a text span in a paragraph is the answer span. Simil-
arly to previous work (Wang and Jiang 2016), span probabil-
ity can be computed as the product of two location probabil-
ity, i.e., location start probability and location end probabil-
ity. Then a conditional pointer network is proposed to model
the probabilistic dependences between the start and end po-
sitions, by making generation of end position depended on
the start position directly, rather than internal representation
of start position (Vinyals, Fortunato, and Jaitly 2015).

The contributions of this paper include:
1) a probabilistic formulation of the OpenQA task, based

on the a three-level hierarchical structure, i.e. the question
level, the paragraph level and the answer span level;

2) the proposal of an end-to-end HAS-QA model
to implement the three-level probabilistic formulation of
OpenQA task (Section 4), which tackles the three problems
of direct applying existing RC models to OpenQA;

3) extensive experiments on QuasarT, TriviaQA and
SearchQA datasets, which show that HAS-QA outperforms
traditional RC baselines and recent OpenQA baselines.

2 Related Works
Research in reading comprehension grows rapidly, and
many successful RC models have been proposed (Dhingra
et al. 2017; Seo et al. 2016; Wang and Jiang 2016) in this
area. Recently, some works have treated OpenQA task as
an RC task and directly applied existing RC models. In this
section, we first review the approach of typical RC models,
then introduce some recent OpenQA models which are dir-
ectly based on the RC approach.

RC models typically have two components: context en-
coder and answer decoder. Context encoder is used to ob-
tain the embeddings of questions, paragraphs and their in-
teractions. Most of recent works are based on the atten-
tion mechanism and its extensions. The efficient way is to
treat the question as a key to attention paragraph (Wang
and Jiang 2016; Chen et al. 2017). Adding the attention
from paragraph to question (Seo et al. 2016; Xiong, Zhong,
and Socher 2016), enriches the representations of context
encoder. Some works (Wang et al. 2017; Pan et al. 2017;
Clark and Gardner 2018) find that self-attention is use-
ful for RC task. Answer decoder aims to generate an-
swer string based on the context embeddings. There ex-
ist two sorts of approaches, generate answer based on the
entail word vocabulary (Tan et al. 2018) and retrieve an-
swer from the current paragraph. Almost all works in RC
task choose the retrieval-based method. Some of them use
two independently position classifiers (Chen et al. 2017;
Weissenborn, Wiese, and Seiffe 2017), the others use the
pointer networks (Wang and Jiang 2016; Seo et al. 2016;
Wang et al. 2017; Pan et al. 2017). An answer length limita-
tion is applied in these models, i.e. omit the text span longer
than 8. We find that relaxing length constrain leads to per-
formance drop.

Some recent works in OpenQA research directly in-
troduce RC model to build a pure data driven pipline.
DrQA (Chen et al. 2017) is the earliest work that applies RC
model in OpenQA task. However, its RC model is trained
using typical RC dataset SQuAD (Rajpurkar et al. 2016),
which turns to be over-confidence about its predicted res-
ults even if the candidate paragraphs contain no answer
span. R3 (Wang et al. 2018) introduces a ranker model to
rerank the original paragraph list, so as to improve the in-
put quality of the following RC model. The training data of
the RC model is solely limited to the paragraphs containing
the answer span and the first appeared answer span loca-
tion is chosen as the ground truth. Shared-Norm (Clark and
Gardner 2018) applied a shared-norm trick which considers
paragraphs without answer span in training RC models. The
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trained RC model turns to be robust for the useless para-
graphs and generates the lower span scores for them. How-
ever, it assumes that the start and the end positions of an
answer span are independent, which is not suitable for mod-
eling multiple answer spans in one paragraph.

Therefore, we realize that the existing OpenQA models
rarely consider the differences between RC and OpenQA
task. In this paper, we directly model the OpenQA task based
on a probabilistic formulation, in order to identify the use-
less paragraphs and utilize the multiple answer spans.

3 Probabilistic Views of OpenQA
In OpenQA task, the question Q and its answer string A
are given. Entering question Q into a search engine, top
K relevant paragraphs are returned, denote as a list P =
[P1, . . . , PK ]. The target of OpenQA is to find the max-
imum probability of P (A|Q,P), named answer probability
for short. We can see the following three characteristics of
OpenQA:

1) we cannot guarantee that paragraph retrieved by search
engine contains the answer span for the question, so the
paragraphs without answer span have to be deleted when us-
ing the above RC models. However, these paragraphs are
useful for distinguishing the quality of paragraphs in train-
ing. More importantly, the quality of a paragraph plays an
important role in determining the answer probability in the
inference phase. It is clear that directly applying RC models
fails to meet this requirement.

2) only answer string is provided, while the location of the
answer string is unknown. That means there may be many
answer spans in the paragraph. It is well known that tradi-
tional RC models are only valid for a single answer span.
To tackle this problem, the authors of (Joshi et al. 2017)
propose a distantly supervised method to use the first ex-
act match location of answer string in the paragraph as the
ground-truth answer span. However, this method omit the
valuable multiple answer spans information, which may be
important for the calculation of the answer probability.

3) the start and end positions are coupled together to de-
termine a specific answer span, since there may be multiple
answer spans. However, existing RC models usually assume
that the start and end positions are independent. That’s be-
cause there is only one answer span in the RC scenario. This
may introduce serious problem in the OpenQA task. For ex-
ample, if we do not consider the relations between the start
and end position, the end position may be another answer
span’s end position, instead of the one determined by the
start position. Therefore, it is not appropriate to assume in-
dependence between start and end positions.

In this paper, we propose to tackle the above three prob-
lems. Firstly, according to the law of total probability, the
answer probability can be rewritten as the following form.

P (A|Q,P)=

K∑
i=1

P (Pi|Q,P)P (A|Q,Pi). (1)

We name P (Pi|Q,P) and P (A|Q,Pi) as the paragraph
probability and conditional answer probability, respectively.
We can see that the paragraph probability measures the

quality of paragraph Pi across the list P, while the con-
ditional answer probability measures the probability that
string A is an answer string given paragraph Pi.

The conditional answer probability can be treated as a
function of multiple span probabilities {P (Lj(A)|Q,Pi)}j ,
as shown in Eq 2.

P (A|Q,Pi) := F({P (Lj(A)|Q,Pi)}j),
j ∈ [1, |L(A,Pi)|],

(2)

where the aggregation function F treats a list of spans
L(A,Pi) as input, and |L(A,Pi)| denotes the number of
the text spans contain the string A. A proper aggregation
function makes use of all the answer spans information in
OpenQA task. Previous work (Joshi et al. 2017) can be
treated as a special case, which uses a function of selecting
first match span as the aggregation function F .

The span probability P (Lj(A)|Q,Pi) represents the
probability that a text span Lj(A) in the paragraph Pi is an
answer span. We further decompose it into the product of
location start probability P (Ls

j(A)|Q,Pi) and location end
probability P (Le

j(A)|Q,Pi, L
s
j(A)), shown in Eq 3.

P (Lj(A)|Q,Pi) =P (Ls
j(A)|Q,Pi)

·P (Le
j(A)|Q,Pi, L

s
j(A)).

(3)

Some previous work such as DrQA (Chen et al. 2017)
treats them as the two independently position classification
tasks, thus Ls(A) and Le(A) are modeled by two differ-
ent functions. Match-LSTM (Wang and Jiang 2016) treats
them as the pointer networks (Vinyals, Fortunato, and Jaitly
2015). The difference is that Le(A) is the function of the
hidden state of Ls(A), denote as Ms. However, Ls(A) and
Le(A) are still independent in probabilistic view, because
Le(A) depends on the hidden state Ms, not the start po-
sition Ls(A). In this paper, the span positions Ls

j(A) and
Le
j(A) are determined by the question Q and the paragraph

Pi. Specially, end position Le
j(A) is also conditional on start

position Ls
j(A) directly. With this conditional probability,

we can naturally remove the answer length limitation.
With above formulation, we find that RC task is a

special case of OpenQA task, where we set the num-
ber of paragraph K to 1, set the paragraph probability
to constant number 1, treat P (A|Q,P )=P (L(A)|Q,P ),
P (L(A)|Q,P )=P (Ls(A)|Q,P )P (Le(A)|Q,P ), where P
is the idealized paragraph that contain the answer string A,
and the right position L(A) is also known.

4 HAS-QA Model
In this section, we propose a Hierarchical Answer Span
Model (HAS-QA) for OpenQA task, based on the probabil-
istic view of OpenQA in Section 3. HAS-QA has four com-
ponents: question aware context encoder, conditional span
predictor, multiple spans aggregator and paragraph quality
estimator. We will introduce them one by one.

4.1 Question Aware Context Encoder
The question aware context embeddings C is generated by
the context encoder, while HAS-QA do not limit the use
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of context encoder. We choose a simple but efficient con-
text encoder in this paper. It takes advantage of previous
works (Clark and Gardner 2018; Wang and Jiang 2016),
which contains the character-level embedding enhancement,
the bi-directional attention mechanism (Seo et al. 2016) and
the self-attention mechanism (Wang et al. 2017). We briefly
describe the process below 2.

Word Embeddings: use size 300 pre-trained GloVe (Pen-
nington, Socher, and Manning 2014) word embeddings.

Char Embeddings: encode characters in size 20, which
are learnable. Then obtain the embedding of each word by
convolutional layer and max pooling layer.

Context Embeddings: concatenate word embeddings
and char embeddings, and apply bi-directional GRU (Cho
et al. 2014) to obtain the context embeddings. Both question
and paragraph get their own context embeddings.

Question Aware Context Embeddings: use bi-
directional attention mechanism from the BiDAF (Seo
et al. 2016) to build question aware context embeddings.
Additionally, we subsequently apply a layer of self-attention
to get the final question aware context embeddings.

After the processes above, we get the final question aware
context embeddings, denoted C ∈ Rn×r, where n is the
length of the paragraph and r is size of the embedding.

4.2 Conditional Span Predictor
Conditional span predictor defines the span probability for
each text span in a paragraph using a conditional pointer net-
work.

We first review the answer decoder in traditional RC mod-
els. It mainly has two types: two independently position
classifiers (IndCls) and the pointer networks (PtrNet). Both
of these approaches generate a distribution of start position
ps ∈ Rn and a distribution of end position pe ∈ Rn, where
n is the length of the paragraph. Starting from the con-
text embeddings C, two intermedia representations Ms ∈
Rn×2d and Me ∈ Rn×2d are generated using two bidirec-
tional GRUs with the output dimension d.

Ms = BiGRU(C) (4)
IndCls: Me = BiGRU(C), (5)
PtrNet: Me = BiGRU([C,Ms]). (6)

Then an additional Softmax function is used to generate
the final positional distributions,

ps=softmax(Msws),

pe=softmax(Mewe).
(7)

where ws, we ∈ R2d denotes the linear transformation para-
meters.

As mentioned in Section 3, IndCls and PtrNet both treat
start and end position as probabilistic independent. Given
the independent start and end positions can not distinguish
the different answer spans in a paragraph properly, so it is
necessary to build a conditional model for them. Therefore,
we proposed a conditional pointer network which directly

2For more detailed computational steps, see reference paper
(Clark and Gardner 2018).

feed the start position to the process of generating the end
position:

Me
j = BiGRU([C,Ms,OneHot(Ls

j)]),

pe
j = softmax(Me

jwe),
(8)

where Ls
j denotes the start position selected from the start

positional distribution ps and OneHot(·) denotes the trans-
formation from a position index to an one-hot vector.

In the training phase, we are given the start and end pos-
itions of each answer span, denote as Ls

j and Le
j . The span

probability is:

P (Lj(A)|Q,Pi) = sj = ps[Ls
j ] · pe

j [L
e
j ]. (9)

In the inference phase, we first select the start position Ls
j

from the start distribution ps. Then we yield its correspond-
ing end distribution pe

j using Eq 8, and select the end pos-
ition Le

j from it. Finally, we get the span probability using
Eq 9.

4.3 Multiple Spans Aggregator
Multiple span aggregator is used to build the relations
among multiple answer spans and outputs the conditional
answer probability. In this paper, we design four types of
aggregation functions F :

HEAD: P (A|Q,Pi) = s1

RAND: P (A|Q,Pi) = Random(sj)

MAX: P (A|Q,Pi) = maxj(sj)

SUM: P (A|Q,Pi) =
∑

j
(sj)

(10)

where sj denotes the span probability defined in Eq 9, s1
denotes the first match answer span and Random denotes a
stochastic function for randomly choosing an answer span.

Different aggregation functions represent different as-
sumptions about the distribution of the oracle answer spans
in a paragraph. The oracle answer span represents the an-
swer of the question that can be merely determined by its
context, e.g. in Figure 1, the first answer span ‘fat’ is the or-
acle answer span, while the second one is not, because we
could retrieval the answer directly, if we have read ‘concen-
trating body fat in their humps’.

HEAD operation simply chooses the first match
span probability as the conditional answer probability,
which simulates the answer preprocessing in previous
works (Wang et al. 2018; Joshi et al. 2017). This function
only encourages the first match answer span as the oracle,
while punishes the others. It can be merely worked in a para-
graph with definition, such as first paragraph in WikiPedia.

RAND operation randomly chooses a span probability as
the conditional answer probability. This function assumes
that all answer spans are equally important, and must be
treated as oracle. However, balancing the probabilities of an-
swer spans is hard. It can be used in paraphrasing answer
spans appear in a list.

MAX operation chooses the maximum span probability
as the conditional answer probability. This function assumes
that only one answer span is the oracle. It can be used in a
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noisy paragraph, especially for those retrieved by a search
engine.

SUM operation sums all the span probabilities as the con-
ditional answer probability. This function assumes that one
or more answer spans are the oracle. It can be used in a broad
range of scenarios, for its relatively weak assumption.

In the training phase, all annotated answer spans contain
the same answer string A, we directly apply the Eq 10 to
obtain the conditional answer probability in paragraph level.

In the inference phase, we treat the top K span prob-
abilities sj as the input of the aggregation function. How-
ever, we have to check all possible start and end positions
to get the precise top K span probabilities. Instead, we use
a beam search strategy (Sutskever, Vinyals, and Le 2014)
which only consider the top K1 start positions and the top
K2 end positions, where K1K2 ≥ K. Different span prob-
abilities sj represent variance answer strings At. Following
the definition in Eq 10, we group them by different answer
strings respectively.

4.4 Paragraph Quality Estimator
Paragraph quality estimator takes the useless paragraphs into
consideration, which implements the paragraph probability
P (Pi|Q,P) directly.

Firstly, we use an attention-based network to generate a
quality score, denotes as q̂i, in order to measure the quality
of the given paragraph Pi.

Mc = BiGRU(C),

q̂i = (Mc> · ps) · wc.
(11)

where Mc ∈ Rn×2d is the intermedia representation ob-
tained by applying bidirectional GRU on the context embed-
ding C. Then, let start distribution ps ∈ Rn as a key to at-
tention Mc and transform it to 1-d value using weight wc ∈
R2d. Finally, we get the quality score q̂i. Paragraph probab-
ilities P (Pi|Q,P) are generated by normalizing across P,

P (Pi|Q,P)=qi =
exp(q̂i)∑

Pj∈P exp(q̂j)
. (12)

In the training phase, we conduct a negative sampling
strategy with one negative sample, for efficient training.
Thus a pair of paragraphs, P+ as positive and P− as negat-
ive, are used to approximate q+ ≈ P (P+|Q, [P+, P−]) and
q− ≈ P (P−|Q, [P+, P−]).

In the inference phase, the probability qi is obtained by
normalizing across all the retrieved paragraphs P.

Above all, we describe our model with Algorithm 1 in the
training phase and Algorithm 2 in the inference phase.

5 Experiments
5.1 Datasets
We evaluate our model on three OpenQA datasets, Quas-
arT (Dhingra, Mazaitis, and Cohen 2017), TriviaQA (Joshi
et al. 2017) and SearchQA (Dunn et al. 2017).

QuasarT3: consists of 43k open-domain trivia ques-
tions whose answers obtained from various internet sources.

3https://github.com/bdhingra/quasar

Algorithm 1 HAS-QA Model in Training Phase

Require: Q: question; A: answer string;
P: retrieved paragraphs;

Ensure: L: loss function
1: for P+, P− in P do:
2: Get answer locations Ls, Le for P+;
3: Get the context embedding C;
4: Compute ps; (Eq 7)
5: for Ls

j , L
e
j in Ls,Le do:

6: psj ← ps[Ls
j ];

7: Compute pe
j ; (Eq 8)

8: pej ← pe
j [L

e
j ];

9: sj ← psjp
e
j ;

10: Apply function: p+ ← F({sj});
11: Compute q+ in [P+, P−]; (Eq 11, Eq 12)
12: Li ← −(log(q+) + log(p+));
13: L ← Avg({Li}).

Algorithm 2 HAS-QA Model in Inference Phase

Require: Q: question; P: retrieved paragraphs;
Ensure: Abest: answer string

1: for Pi in P do:
2: Get the context embedding C;
3: Compute ps; (Eq 7)
4: for Ls

j in Top-K1 p
s do:

5: psj ← ps[Ls
j ];

6: Compute pe
j ; (Eq 8)

7: for Le
jk in Top-K2 p

e
j do:

8: pejk ← pe
j [L

e
jk];

9: sjk ← psjp
e
jk;

10: Group sjk by extracted answer string At;
11: Apply function: pAt

i ← F({sjk}At);
12: Compute q̂i; (Eq 11)
13: Normalize {q̂i} get {qi}; (Eq 12)
14: S(At)←

∑
i qi · pAt

i ;
15: Abest ← argmax(S(At)).

ClueWeb09 (Callan et al. 2009) serves as the background
corpus for providing evidences paragraphs. We choose the
Long version, which is truncated to 2048 characters and 20
paragraphs for each question.

TriviaQA4: consists of 95k open-domain question-
answer pairs authored by trivia enthusiasts and independ-
ently gathered evidence documents from Bing Web Search
and Wikipedia, six per question on average. We focus on the
open domain setting contains unfiltered documents.

SearchQA5: is based on a Jeopardy! questions and col-
lects about top 50 web page snippets from Google search
engine for each question.

As we can see in Table 1, there exist amounts of negat-
ive paragraphs which contains no answer span, especially

4http://nlp.cs.washington.edu/triviaqa/
5https://github.com/nyu-dl/SearchQA
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Dataset Neg Para. Ratio Avg Ans. Span Count
QuasarT 1.21% 5.09
TriviaQA 37.24% 4.20
SearchQA 25.06% 6.80

Table 1: The negative paragraph ratio and average answer
span count are statistic on three datasets, in order to illustrate
the problems mentioned above in OpenQA task.

in TriviaQA and SearchQA. For all datasets, more than
4 answer spans averagely obtained per paragraph. These
statistics illustrate that problems mentioned above exist in
OpenQA datasets.

5.2 Experimental Settings
For RC baseline models GA (Dhingra et al. 2017), BiDAF
(Seo et al. 2016) and AQA (Buck et al. 2017), their experi-
mental results are collected from published papers (Dunn et
al. 2017; Joshi et al. 2017).

The DrQA (Chen et al. 2017), R3 (Wang et al. 2018) and
Shared-Norm (Clark and Gardner 2018) are evaluated using
their released code6.

Our model 7 adopts the same data preprocessing and ques-
tion context encoder presented in (Clark and Gardner 2018).
In training step, we use the Adadelta optimizer (Zeiler 2012)
with the batch size of 30, and we choose the model per-
formed the best on develop set 8. The hidden dimension of
GRU is 200, and the dropout ratio is 0.8. We use 300 dimen-
sional word embeddings pre-trained by GloVe (released by
(Pennington, Socher, and Manning 2014)) and do not fine-
tune in training step. Additionally, 20 dimensional charac-
ter embeddings are left as learnable parameters. In inference
step, for baseline models we set the answer length limitation
to 8, while for our models it is unlimited. We analyze differ-
ent answer length limitation settings in the Section 5.4. The
parameters of beam search are K1 = 3 and K2 = 1.

5.3 Overall Results
The experimental results on three OpenQA datasets are
shown in Table 2. It concludes as follow:

1) HAS-QA outperforms traditional RC baselines with
a large gap, such as GA, BiDAF, AQA listed in the first
part. For example, in QuasarT, it improves 16.8% in EM
score and 20.4% in F1 score. As RC task is just a spe-
cial case of OpenQA task. Some experiments on stand-
ard SQuAD dataset(dev-set) (Rajpurkar et al. 2016) show
that HAS-QA yields EM/F1:0.719/0.798, which is compar-
able with the best released single model Reinforced Mne-
monic Reader (Hu et al. 2017) in the leaderboard (dev-set)

6DrQA: https://github.com/facebookresearch/DrQA.
R3: https://github.com/shuohangwang/mprc.
Shared-Norm: https://github.com/allenai/document-qa.

7The code will be released at https://gitlab.com/pl8787/has-qa.
8QuasarT and SearchQA have official develop set and test set,

while TriviaQA’s test set is unknown, thus we split a develop set
from train set and evaluate on official develop set.
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About Celebrating the contributions of Louis Braille January 5th , 2009
On the 200th anniversary of Louis Braille ‘ s birth , people around the
world are saluting a man whose tactile alphabet has provided a lifeline to
people with impaired vision . Shared-Norm HAS-QA

Figure 3: Results of Shared-Norm and HAS-QA on Quas-
arT. TopLeft: EM performance against answer length lim-
itation, TopRight: predicted answer length against answer
length limitation, Bottom: an example of a paragraph and
the predicted answer spans of two models.

EM/F1:0.721/0.816. Our performance is slightly worse be-
cause Reinforced Mnemonic Reader directly use the accur-
ate answer span, while we use multiple distantly supervised
answer spans. That may introduce noises in the setting of
SQuAD, since only one span is accurate.

2) HAS-QA outperforms recent OpenQA baselines, such
as DrQA, R3 and Shared-Norm listed in the second part.
For example, in QuasarT, it improves 4.6% in EM score and
3.5% in F1 score.

5.4 Model Analysis
In this subsection, we analyze our model by answering the
following fine-grained analytic questions:

1) What advantages does HAS-QA have via modeling an-
swer span using the conditional pointer network?

2) How much does HAS-QA gain from modeling multiple
answer spans in a paragraph?

3) How does the paragraph quality work in HAS-QA?
The following three parts are used to answer these ques-

tions respectively.

Effects of Conditional Pointer Networks In order to
demonstrate the effect of the conditional pointer networks,
we compare Shared-Norm, which uses pointer networks,
with our model. Then, we gradually remove the answer
length limitation, from restricting 4 words to 128 words until
no limitation (denote as∞). Finally, we draw the tendency
of the EM performance and average predicted answer length
according to the different answer length limitations.

As shown in Figure 3 (TopLeft), the performance of
Shared-Norm decreases when removing the answer length
limitation, while the performance of HAS-QA first increases
then becomes stable. In Figure 3 (TopRight), we find that
the average predicted answer length increases in Shared-
Norm when removing the answer length limitation. How-
ever, our model stably keeps average about 1.8 words, where
the oracle average answer length is about 1.9 words. Ex-
ample in Figure 3 (Bottom) illustrates that start/end point-
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QuasarT TriviaQA SearchQA
Model EM F1 EM F1 EM F1
GA (Dhingra et al. 2017) 0.264 0.264 - - - -
BiDAF (Seo et al. 2016) 0.259 0.285 0.411 0.474 0.286 0.346
AQA (Buck et al. 2017) - - - - 0.387 0.456
DrQA (Chen et al. 2017) 0.377 0.445 0.323 0.383 0.419 0.487
R3 (Wang et al. 2018) 0.353 0.417 0.473 0.537 0.490 0.553
Shared-Norm (Clark and Gardner 2018) 0.386 0.454 0.613 0.672 0.598 0.671
HAS-QA (MAX Ans. Span) 0.432 0.489 0.636 0.689 0.627 0.687

Table 2: Experimental results on OpenQA datasets QuasarT, TriviaQA and SearchQA. EM: Exact Match.

Model EM F1
HAS-QA (HEAD Ans. Span) 0.372 0.425
HAS-QA (RAND Ans. Span) 0.341 0.394
HAS-QA (SUM Ans. Span) 0.423 0.484
HAS-QA (MAX Ans. Span) 0.432 0.489

Table 3: Results on QuasarT with different types of aggreg-
ation functions (K1 = 3,K2 = 1).

ers in Shared-Norm search their own optimal positions in-
dependently, such as two ‘Louis’ in paragraph. It leads to an
unreasonable answer span prediction.

Effects of Multiple Spans Aggregation The effects of
utilizing multiple answer spans lay into two aspects, 1)
choose the aggregation functions in training phase, and 2)
select the parameters of beam search in inference phase.

In the training phase, we evaluate four types of aggrega-
tion functions introduced in Section 4.3. The experimental
results on QuasarT dataset, shown in Table 3, demonstrate
the superiority of SUM and MAX operations. They take ad-
vantages of using multiple answer spans for training and im-
prove about 6% - 10% in EM comparing to the HEAD op-
eration. The performance of MAX operation is a little bet-
ter than the SUM operation. The failure of RAND opera-
tion, mainly comes down to the conflicting training samples.
Therefore, simple way to make use of multiple answer spans
may not improve the performance.

In the inference phase, Table 4 shows the effects of para-
meters in beam search. We find that the larger K1 yields
the better performance, while K2 seems irrelevant to the
performance. As a conclusion, we choose the parameters
K1 = 3,K2 = 1 to balance the performance and the speed.

Effects of Paragraph Quality The paragraph probability
is efficient to measure the quality of paragraphs, especially
for that containing useless paragraphs.

Figure 4 (Left) shows that with the increasing number
of given paragraphs which ordered by the rank of a search
engine, EM performance of HAS-QA sustainably grows.
However, EM performance of Shared-Norm stops increas-
ing at about 15 paragraphs and our model without para-
graph quality (denotes PosOnly) stops increasing at about
5 paragraphs. So that with the help of paragraph probab-
ility, model performance can be improved by adding more
evidence paragraphs.

K1-K2 EM F1 K1-K2 EM F1
1-1 0.428 0.483 1-1 0.428 0.483
1-3 0.428 0.484 3-1 0.432 0.489
1-5 0.428 0.484 5-1 0.431 0.488
3-3 0.431 0.489 5-5 0.431 0.489

Table 4: Results on QuasarT with different beam search
parameters K1-K2.
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Figure 4: Results of PosOnly, Shared-Norm and HAS-QA
on QuasarT. Left: EM performance against number of para-
graphs, Right: paragraph MAP on different models.

We also evaluate the Mean Average Precision (MAP)
score between the predicted scores and the label whether
a paragraph contains answer spans (Figure 4 (Right)). The
paragraph probability in our model outperforms PosOnly
and Shared-Norm, so that it can rank the high quality para-
graphs in the front of the given paragraph list.

6 Conclusions
In this paper, we point out three distinct characteristics of
OpenQA, which make it inappropriate to directly apply ex-
isting RC models to this task. In order to tackle these prob-
lems, we first propose a new probabilistic formulation of
OpenQA, where the answer probability is written as the
question, paragraph and span, three-level structure. In this
formulation, RC can be treated as a special case. Then, Hier-
archical Answer Spans Model (HAS-QA) is designed to im-
plement this structure. Specifically, a paragraph quality es-
timator makes it robust for the paragraphs without answer
spans; a multiple span aggregator points out that it is neces-
sary to combine the contributions of multiple answer spans
in a paragraph, and a conditional span predictor is proposed
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to model the dependence between the start and end positions
of each answer span. Experiments on public OpenQA data-
sets, including QuasarT, TriviaQA and SearchQA, show that
HAS-QA significantly outperforms traditional RC baselines
and recent OpenQA baselines.
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