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Abstract

Current neural network based community question answer-
ing (cQA) systems fall short of (1) properly handling long
answers which are common in cQA; (2) performing under
small data conditions, where a large amount of training data is
unavailable—i.e., for some domains in English and even more
so for a huge number of datasets in other languages; and (3)
benefiting from syntactic information in the model—e.g., to
differentiate between identical lexemes with different syntactic
roles. In this paper, we propose COALA, an answer selection
approach that (a) selects appropriate long answers due to an ef-
fective comparison of all question-answer aspects, (b) has the
ability to generalize from a small number of training examples,
and (c) makes use of the information about syntactic roles of
words. We show that our approach outperforms existing an-
swer selection models by a large margin on six cQA datasets
from different domains. Furthermore, we report the best results
on the passage retrieval benchmark WikiPassageQA.

Introduction
Question answering (QA) systems generally retrieve facts
from knowledge bases (Bao et al. 2014) or from web doc-
uments (Wang et al. 2018). However, many types of ques-
tions require information that cannot be found in these re-
sources, e.g., explanations, descriptions, or advice. In this
work, we focus on community question answering (cQA),
and in particular on cQA answer selection, where we re-
trieve relevant answers to non-factoid questions from social
Q&A communities (Verberne et al. 2010; Tay et al. 2017;
Nakov et al. 2017). In contrast to factoid QA where ques-
tions can be answered with an individual entity or a single
sentence (Yang, Yih, and Meek 2015; Wang, Smith, and Mi-
tamura 2007), in cQA we often deal with long multi-sentence
texts—e.g., in StackExchange Academia we observe an av-
erage answer length of 229 words. This presents a difficult
challenge to current neural answer selection approaches be-
cause they were primarily designed to retrieve short answers
(Cohen, Yang, and Croft 2018).

A popular state-of-the-art approach for answer selection is
the relevance matching model by Wang and Jiang (2017). It is
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based on the general compare-aggregate framework (He and
Lin 2016; Parikh et al. 2016; Wang and Jiang 2017), which
first compares the aspects of the answer (e.g., individual
words) to the aspects of the question and then aggregates
this information. Wang and Jiang (2017)’s approach is rather
complex and consists of several deep layers.

Despite their strong performances across a number of text
matching tasks, such approaches have three important limita-
tions on which we focus in this work.

First, the ability to deal with long answers is a crucial
property of cQA as opposed to classical QA, and typically
state-of-the-art answer selection approaches fall short in these
cases (Cohen, Yang, and Croft 2018).

Second, since they are based on complex deep neural net-
work architectures, current cQA approaches require large
amounts of training data. However, such data is not avail-
able in many cQA communities,1 let alone non-English data.
Thus, we need approaches that can effectively learn from
small training data to handle low-resource scenarios.

And third, neural models often ignore the linguistic struc-
ture of sentences such as dependency relations. These struc-
tures can, however, discriminate similar words in different
contexts, which is beneficial when all candidate answers have
high lexical similarity to the question.

In this work, we tackle these three challenges and propose
compare-aggregate for long answers (COALA), an answer
selection approach based on the compare-aggregate frame-
work with a coverage-based method that ranks answers based
on the extent of covered question aspects. While our general
neural network architecture is motivated by Wang and Jiang
(2017)’s success on different text matching tasks, our pro-
posed approach has three unique properties that correspond
to the previously identified limitations.

First, Wang and Jiang (2017) focus on answer aspects and
aggregate the comparisons of all answer aspects to the ques-
tion. COALA, on the other hand, focuses on question aspects
and measures to which extent all question aspects are covered
by the answer. Therefore, its aggregation is independent from
the answer’s complexity.

1For instance, there are 35 communities in StackExchange with
less than 2,000 questions in total (including unanswered questions).
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Second, COALA uses simple yet effective operations: in-
stead of attention-based alignment and neural aggregation,
it uses max-pooling and averaging techniques, respectively.
Therefore, our network does not require large amounts of
training data and can be applied to low-resource scenarios.

And third, our approach is extensible with linguistic struc-
tures and more complex aggregation functions. We present
two enhanced variants of COALA, one that utilizes the syn-
tactic structures of sentences, which allows the network to
differentiate similar words in different local contexts, and
one that uses a number of (learned) power means (Hardy, Lit-
tlewood, and Pólya 1952) to extract additional information
from the aspect comparisons for aggregation.

We evaluate COALA on six cQA answer selection datasets
from different domains and show that:

(a) As a result of being independent of the answers’s com-
plexity, COALA outperforms different state-of-the-art
answer selection models by a large margin, i.e., by more
than 4.5pp accuracy. Our improved aggregation with
power mean further improves the results by 1.6pp. Most
importantly, COALA can handle long answers substan-
tially better than other approaches; it achieves 21pp im-
provement over the state of the art when answers are
longer than 250 words.

(b) Due to its simple network architecture, COALA can be
applied to low-resource scenarios. For example, our ap-
proach outperforms a strong unsupervised baseline by
more than 3pp and a state-of-the-art supervised approach
by 32pp when both have access to only 25 training ques-
tions.

(c) The incorporation of syntactic information leads to
consistent gains, which highlights the benefit of
linguistically-informed language representations.

Further, we evaluate COALA on WikiPassageQA (Cohen,
Yang, and Croft 2018), a recent benchmark dataset for pas-
sage retrieval and non-factoid QA within larger documents.
Here, our approach also achieves new state-of-the-art results,
which demonstrates its potential to serve as a strong baseline
for other tasks that deal with the retrieval of long texts.

Finally, our analysis shows that while COALA is highly
effective for tasks with long answers, other approaches that
take all aspects of the answer into account are better suited
to deal with very short answers. This reveals that tasks with
varying answer lengths, e.g., cQA and factoid QA, require
fundamentally different approaches to obtain optimal results.

Related Work
We divide cQA answer selection into two categories:

Semantic similarity approaches compare learned dense
vector representations of questions and answers for scoring.

Early approaches use CNNs with max pooling (Feng et al.
2015), whereas more recent approaches rely on attentional
LSTMs. For example, Tan et al. (2016) use an attention mech-
anism that assigns higher weight to words in the answer that
are related to the question, Dos Santos et al. (2016) use bidi-
rectional attention based on the similarity between question
and answer representations, Wang, Liu, and Zhao (2016)

propose attention inside and before GRUs, and Rücklé and
Gurevych (2017) use a self-attentive approach with a separate
LSTM that learns the importance of text segments.

Relevance matching varies from unsupervised approaches
like TF*IDF and BM25 (Robertson and Walker 1994) to
simple neural networks (Yu et al. 2014), tree kernels (Ty-
moshenko, Bonadiman, and Moschitti 2016; Romeo et al.
2016), and more complex multilayer neural networks.

For example, Lu and Li (2013) match short texts with
local and hierarchical structures in a neural network, Hu
et al. (2014) and Shen et al. (2015) use multiple CNNs to
compare and match short texts, Severyn and Moschitti (2015)
use interaction matrices and learned text representations for
relevance scoring, Yang et al. (2016) propose a model based
on attention and question term importance, and Zhang et al.
(2017) combine question-answer interactions with attention
mechanisms and additional hand-crafted features. Similar
models have also been proposed in the context of ad-hoc
retrieval (Guo et al. 2016; Pang et al. 2017).

Many of the existing relevance matching approaches can
be described in the compare-aggregate framework (He and
Lin 2016; Parikh et al. 2016; Wang and Jiang 2017) that first
compares the relevance of individual aspects of question and
answer and then aggregates this information for prediction.

A popular state-of-the-art approach, which achieves the
best results on several text matching tasks, including relevant
answer selection datasets, is the compare-aggregate variant
by Wang and Jiang (2017). Their approach consists of four
steps: (1) aspect extraction, which learns a representation for
each word of the question and answer using either LSTM
(for SNLI) or a gated importance-weighted representation of
words; (2) attention, which learns an alignment between ques-
tion and answer aspects using a standard attention mechanism
such that the jth element of the attention vector represents
the parts of the question that best match the jth aspect of the
answer; (3) comparison, which combines the results of the
question attention vector and answer aspects and captures
their interactions; (4) aggregation, which uses a CNN with
max-pooling to aggregate the interactions over the answer.

The most distinguishing difference of our approach com-
pared to Wang and Jiang (2017) is that their comparison
(and aggregation) determines how well each answer aspect is
related to one or more question aspects. In contrast, we ex-
plicitly determine the coverage of all question aspects by the
answer. Our aggregation is thus independent of the answer
complexity and can scale better to long answers, which has
recently been identified as an important and difficult problem
in passage retrieval (Cohen, Yang, and Croft 2018).

COALA:
Compare Aggregate for Long Answers

Answer selection requires finding a function f that scores
each answer A in a pool of candidate answers according to
its relevancy in regard to the question Q. The best candidate
answer is then selected according to this score.

In this setup we can formalize relevance matching ap-
proaches as follows:

f(Q,A) = Ω (Φ(Q),Φ(A)) (1)
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Figure 1: A simplified visualization of COALA. Dark colors
visualize high interactions, i.e., larger values.

where Φ is a function that identifies aspects in Q and A (e.g.,
n-grams or syntactic structures), and Ω is a function that
scores A based on interactions between these aspects.

In the following, we present our choices of Φ and Ω for
COALA in more detail. A simplified visualization of the
overall network architecture is shown in Figure 1.

Aspect Identification
There are different ways of identifying aspects in a text: as-
pects could be modeled as individual words, word n-grams
(and representations thereof), or more linguistically aware
units of the text, which take the syntax or semantic struc-
ture of the sentence into account—e.g., syntactic n-grams
(Sidorov et al. 2012) or predicate-argument structures.

To capture local context in questions and answers, we
define the aspects of Q and A as vector representations of
all observed n-grams2 and extract them with a convolutional
operation. We apply a CNN on Q ∈ R|Q|×e and A ∈ R|A|×e
which represent the sequence of word embeddings of Q and
A, respectively (with dimensionality e):

Φ(Q) = CNN(Q) (2)
Φ(A) = CNN(A) (3)

where Φ(Q) ∈ R|Q|×d and Φ(A) ∈ R|A|×d are learned
aspect representations (with d CNN filters). We share the
parameters between the CNNs and use tanh activation to
learn representations with positive and negative components.

By capturing local context information instead of the
global context (e.g., with LSTMs) our approach needs less
training data (which would be required for learning to opti-
mally process the global context of long answers).

The extraction of aspects based on word sequences is gen-
erally advantageous because it does not require any prepro-
cessing beyond tokenization. Extracting aspects from lin-
guistic structures, however, could result in more informed

2We use n = 2, i.e., bigrams. Preliminary experiments showed
that bigrams usually achieve the best results with a slight improve-
ment over trigrams and a significant improvement over unigrams.

comparisons between aspects. Thus, later, we propose a lin-
guistically motivated extension of this approach.

Relevance Matching
We determine the matching of question aspects by the an-
swer with three steps: (1) modeling the interaction between
question and answer aspects, (2) determining the matching
of question aspects by the answer, and (3) inferring the final
score by aggregation.

Interactions We compute the dot product to capture the
interactions between all aspects of Q and A in the interaction
matrix H. This does not introduce additional parameters to
the network and has proved to be successful in other domains
before (Cui et al. 2017).

H = Φ(Q)Φ(A)ᵀ (4)

Here, the value of the ith row and the jth column in H
indicates the similarity of aspect i of Q to aspect j of A.

Aspect Matching We now determine how well the ith as-
pect of the question is covered by all aspects of the answer
by selecting the maximum of each row in H:

[c]i = max
j

([H]i,j) (5)

This greatly simplifies the aggregation because we now deal
with a vector instead of a matrix.

It is worth mentioning that—unlike in (Wang and Jiang
2017)—our aggregation function is now fully independent
of the answer’s complexity (and length) as we only consider
the best match of a question aspect by all answer aspects.
Furthermore, the aggregation determines how well all ques-
tion aspects are covered (in contrast to aggregating how well
the aspects of the answer are related to some aspects of the
question). This better tests how well the whole content of the
question is addressed by the answer.

Aggregation We finally infer a score with an aggregation
function g that summarizes the sequence c:

Ω = g (c) (6)

To keep our approach conceptually and computationally
simple, and to not introduce additional network parameters,
we summarize the values in c with the arithmetic mean:

g(c) =
1

|c|
∑

i=1...|c|

[c]i (7)

With these operations COALA contains only a small num-
ber of parameters and has a shallow network structure. Both
can be advantageous for long answer selection and low-
resource scenarios. To further improve the aggregation and
to include syntactic information, in the following we propose
two extensions to this approach.
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Power Means for Aggregation

To extract more descriptive statistics, we use the power mean
(Hardy, Littlewood, and Pólya 1952) defined as:

power -mean(x, p) =

(
[x]p1 + · · ·+ [x]pn

n

)1/p

(8)

where x ∈ Rn and p ∈ R ∪ {±∞}.
A unique attribute of the power mean is its ability to re-

trieve well-known means that summarize different properties
of a sequence, e.g., the arithmetic mean (p = 1), the geomet-
ric mean (p = 0) or the harmonic mean (p = −1). Recently,
power means have been applied in the context of sentence em-
beddings to improve upon the average word embedding base-
line (Rücklé et al. 2018). In contrast, we use power means
to extract a number of complementary summaries from the
question aspect coverage (i.e., from the vector c).

In our extended approach COALA p-means we replace the
arithmetic mean with m different power means, where we
learn the values for p as part of the network (initialized with
1.0, i.e., the arithmetic mean). To infer a final score from the
summaries, we use two feedforward layers.3

Learning the values for p has the unique advantage that
we are not required to pre-define different power means here.
Instead, the network itself learns the best operations for sum-
marization. To the best of our knowledge, we are the first to
learn power means for aggregation in a neural network.

Syntax-Aware Aspects
In our extended approach COALA syntax-aware, we add
structured input to the network by obtaining (enhanced) de-
pendency parse trees (Schuster and Manning 2016). We in-
corporate this information in the aspect identification layer,
i.e., in addition to standard word embeddings we also feed
syntactic embeddings of the words to the CNN. Here our syn-
tactic embeddings are dense vector representations of each
word’s dependency relation, and the embeddings are learned
as part of the network. As a result, COALA syntax-aware
now learns to identify syntax-aware aspect representations.

With this approach, similar words (and n-grams) with dif-
ferent dependency relations are represented by different syn-
tactic embeddings, whereas different words with the same
dependency relation share common components.

More complex extensions of this approach are possible:
we can identify aspects via connections in the dependency
tree, or learn the importance of each aspect based on the
syntactic roles of its containing words. However, based on our
preliminary experiments, we find that our proposed extension
through syntactic embeddings is the most effective of such
integrations because the overall network is less affected by
parsing errors.

3We use relu as activation for the first layer and sigmoid function
for the output layer (to ensure that it is in [0, 1]). The number of
hidden units is equal to m (number of power means).

Dataset Number of Questions Answer
Train Valid Test Length

Benchmarks

InsuranceQA 12,889 1,592 1,625 112
WikiPassageQA 3,332 417 416 153

StackExchange (SE)

Travel 3,572 765 766 214
Cooking 3,692 791 792 189
Academia 2,856 612 612 229
Apple 5,831 1,249 1,250 114
Aviation 3,035 650 652 281

Table 1: Dataset statistics. The answer length is the average
number of tokens in an answer.

Experimental Setup
Data
We evaluate our approaches on several different datasets that
cover a broad spectrum of domains for cQA answer selection.
An overview of the datasets is given in Table 1.

InsuranceQA is a well-known answer selection benchmark
and was introduced in (Feng et al. 2015). We use the most
recent version (v2) in which candidate answers are retrieved
with a search engine (using the question as a query). WikiPas-
sageQA (Cohen, Yang, and Croft 2018) is a recent benchmark
for passage retrieval where queries are non-factoid questions
and relevant passages are paragraphs from Wikipedia. Even
though this dataset does not contain cQA data, it models a
related scenario.

For a more thorough evaluation we also obtain data from
travel, cooking, academia, apple (computer), and aviation
communities of StackExchange and create datasets that re-
flect real-life cQA scenarios. For a given question we retrieve
similar questions in the dataset and use their accepted answers
as candidate answers to the initial question.4 The accepted
answer of the initial question (and the accepted answers of
the question’s duplicates) are labeled as correct answers.

As we can see in Table 1, one of the distinguishing differ-
ences is the length of the answers in our different domains.
However, all datasets contain long multi-sentence answer
texts (e.g., explanations) which is different to classical QA.

Models and Baselines
We compare our approaches against a number of strong base-
lines and the recent state of the art:

(1) IR baselines: TF*IDF and BM25 are generally consid-
ered as strong baselines in both cQA (Lei et al. 2016) and
passage retrieval (Cohen, Yang, and Croft 2018).5

(2) Semantic similarity: state-of-the-art approaches com-
pare learned semantic representations of questions and an-

4We use the title of the question and discard the detailed de-
scription in the question body. We use ElasticSearch with BM25 to
retrieve 100 similar questions.

5We use the gensim implementation of BM25 and the sklearn
implementation of TF*IDF. We use NLTK’s Porter stemmer to
preprocess the texts.
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Model
∑

InsuranceQA Travel Cooking Academia Apple Aviation WikiPassageQA

Unsupervised IR Baselines

BM25 30.3 24.9 38.1 30.9 29.2 21.8 37.0 53.00 / 61.71
TF*IDF 32.4 18.7 39.9 35.1 32.2 26.7 41.9 39.92 / 46.38

Semantic Similarity Methods

InferSent 23.0 14.8 27.0 21.3 22.5 22.8 29.3 43.62 / 50.53
p-mean Embeddings 25.7 17.0 32.1 29.3 24.3 19.6 31.7 42.82 / 50.44

CNN 25.9 24.4 36.9 25.9 22.5 20.2 25.3 27.33 / 31.48
BiLSTM 34.8 32.4 45.3 35.2 31.5 27.2 37.3 46.16 / 52.89
Att.-BiLSTM 34.5 37.9 43.0 36.2 31.2 24.7 33.9 47.04 / 54.36
AP-BiLSTM 31.3 31.9 38.8 32.2 27.3 22.9 34.5 46.98 / 55.20
LW-BiLSTM 34.1 36.9 43.2 32.3 30.2 23.4 38.5 47.56 / 54.33

Relevance Matching Methods

Bigrams 18.3 19.4 19.3 16.7 19.8 13.0 21.5 39.84 / 47.55
CA-Wang 39.1 37.0 46.5 39.4 36.1 29.2 46.5 48.71 / 56.11

COALA 43.6 38.0 53.8 47.3 42.2 32.0 48.4 60.58 / 69.40
COALA p-means 45.2 39.9 53.4 46.5 44.2 34.5 52.9 59.29 / 68.48

COALA syntax-aware 44.3 39.5 54.1 47.8 43.5 32.7 48.3 60.48 / 68.75

Table 2: Accuracies of the different models on the cQA datasets and MAP/MRR on WikiPassageQA. Σ denotes the average
accuracy over all cQA datasets.

swers with cosine similarity. We evaluate AP-BiLSTM
(Dos Santos et al. 2016), Attentive-BiLSTM (Tan et al. 2016),
and LW-BiLSTM (Rücklé and Gurevych 2017). Further, we
also test the standard CNN and BiLSTM models.

Apart from supervised semantic similarity approaches, we
also evaluate universal sentence embeddings. To score a can-
didate answer, we embed the question sentence and all an-
swer sentences and compute the maximum cosine similarity
between the question embedding and all answer sentence em-
beddings.6 We test two recent models: supervised InferSent
(Conneau et al. 2017) and unsupervised p-mean Embeddings
(Rücklé et al. 2018).

(3) Relevance matching methods: We implement CA-
Wang, which is the compare-aggregate architecture proposed
by Wang and Jiang (2017) that constitutes the current state of
the art on different text matching tasks. Since we use bigrams
for extracting aspects, we also include a simple bigram model
among our baselines where we count the number of bigrams
of the question that appear in the answer.

Finally, we evaluate COALA and its extensions with power
mean aggregation (COALA p-means) and syntax-aware as-
pects (COALA syntax-aware).

Training Procedure
To train the semantic similarity approaches we replicate the
setup of Tan et al. (2016). Here we use triples of (ques-
tion, answer, incorrect candidate) and train models with the
max-margin hinge loss. During training, we obtain triples
by randomly sampling 50 (incorrect) candidate answers and

6In preliminary experiments we found that this technique out-
performs comparisons between the question embedding and the
average over all answer sentence embeddings.

choosing the one with the highest similarity to the question
according to the current trained model.

We train all other approaches on triples of (question, can-
didate answer, label), where the label is a binary class (cor-
rect/incorrect answer). For each question/answer pair, we
sample one corresponding pair of question/incorrect answer
during the training with the same method as described above.
Here we minimize the cross-entropy loss.

For all approaches, we use SGD with Adam.

Neural Network Setup
We performed a random search for the hyperparameters of all
models. This included the number of CNN filters, learning
rate, batch size, and dropout rate. Random search for a model
and dataset was stopped after 48 hours. We evaluate models
with the hyperparameters that achieved the best validation
score (values are given in our source code).

All models use 300d pre-trained GloVe embeddings.

Experiments
Results
We compare all approaches across the InsuranceQA and
WikiPassageQA benchmarks as well as the five StackEx-
change datasets in Table 2. For the cQA answer selection
datasets we measure the accuracy, which is the ratio of
correctly selected answers, and for the passage retrieval in
WikiPassageQA we report MAP/MRR.

The results show that COALA substantially outperforms
all other relevance matching and semantic similarity ap-
proaches on all seven datasets. For instance, on the cQA
datasets COALA improves by 4.5pp over CA-Wang and by
8.8pp over the best semantic similarity method on average.
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Our extended approach COALA p-means improves the
performance of COALA on these datasets by an additional
1.6pp. The proposed power mean aggregation achieves a
strong improvement on four datasets and results in a small
performance decrease in the remaining three cases. This
shows that it is often beneficial to capture more informa-
tion during aggregation whereas for individual datasets the
standard arithmetic mean can already sufficiently capture the
most important information.7

The results of InferSent and p-mean Embeddings on the
other hand show that universal sentence embeddings do not
perform well in cQA answer selection, which indicates that
the task requires more information beyond semantic similar-
ity. This assumption is further supported by the results of
the supervised semantic similarity approaches, which only
perform slightly better than the IR baselines (on average).

Finally, on the passage retrieval dataset WikiPassageQA,
COALA also achieves new state-of-the-art results with an
improvement of 3.21 MAP and 1.48 MRR over the best
reported results in (Cohen, Yang, and Croft 2018), which
they obtained with a complex model, named Memory-LSTM-
CNN-TF. This demonstrates that COALA can also serve as a
strong baseline for other tasks in NLP and IR that deal with
the retrieval of long texts.

Syntax-Aware Aspects
The results in Table 2 show that our proposed syntax-aware
extension COALA syntax-aware, which incorporates syn-
tactic roles of word sequences to learn syntax-aware aspect
representations, improves the results in five out of seven cases.
It thereby achieves an an average improvement of 0.7pp over
COALA in our cQA datasets. Although the improvement is
lower than the one obtained with power means on average, it
is more consistent across datasets.8 This suggests that while
texts in the cQA domain are not necessarily grammatically
well formed and the syntax information can be noisy, the
integration of syntactic structure still leads to more informed
decisions. This is consistent with the findings of previous
work in cQA that used non-neural approaches that relied on
structural information (Tymoshenko, Bonadiman, and Mos-
chitti 2016).

Low-Resource cQA Answer Selection
While COALA achieves good results on a number of datasets,
its network structure is shallow. All parameters are within
the CNN for aspect identification. This can be beneficial
when we only have access to a small number of training
samples, e.g., in low-resource scenarios and within small-
scale cQA platforms. This is an important practical scenario
because there exist a large number of more specialized—and

7We also tested feeding c into a standard MLP without p-
mean aggregation. Here we observed substantially decreased perfor-
mances in most datasets. Therefore, the improvement of COALA
p-means vs. COALA is not just due to the added complexity.

8We also experiment with a combination of the syntax-aware
and power mean extensions, but the combined approach did not
improve upon the power mean extension on average.
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Figure 2: Model accuracies as a function of available training
questions (averaged over the six cQA datasets).

thus smaller—cQA platforms. For example, StackExchange
contains 35 sites with less than 2,000 questions.

To test and compare the effectiveness of our approach
in such scenarios, we train COALA and CA-Wang on the
cQA datasets from Table 2 with a reduced number of 25, 50,
100, . . . , 3.2k training questions.9

Figure 2 contains the averaged accuracies over all six cQA
datasets. The results show that COALA already performs
better than the unsupervised baseline with 25 training ques-
tions. This is notable given that CA-Wang needs at least 1.6k
training questions to achieve similar results. At the same time
CA-Wang has a much steeper learning curve, which is, how-
ever, the expected behavior for a deep network and due to its
lower initial performance. When both approaches are trained
on the full datasets the learning curve finally flattens.

This demonstrates that COALA can be applied to a wide
variety of different scenarios, e.g., to small-scale cQA plat-
forms where only few questions exist. This is often the case
for highly specialized cQA platforms and even more so for
non-English platforms. Even if there exist no labeled ques-
tion/answer pairs, it is still possible to use our approach
because the manual annotation of 25 examples would suffice
to train a good model.

Analysis
Answer Length
In Figure 3 we report the average accuracy over all cQA
datasets for COALA, CA-Wang, and TF*IDF as a function
of the length of the correct answers.

Here we observe that COALA performs better especially
for very long answers. Our approach achieves an average
accuracy of 57% for questions with correct answers that are
longer than 250 words, which is substantially higher than
the accuracy of 36% for CA-Wang. More importantly, we

9For experiments with less than 200 questions we average over
five runs with different random network initialization and for the
rest we average over three runs.
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Figure 3: Model accuracies as a function of the length of
the correct answers (averaged over the six cQA datasets).
We group the results into six buckets: results for answers of
length 0–50 (shown as “50”), 50–100 (“100”), . . . , and more
than 250 (“more”).

observe a steady increase in COALA’s performance as the
answer length increases. This is due to the coverage-based
network architecture of our approach: longer answers are
likely to contain more aspects of the question and COALA is
able to retrieve all related aspects independent of the answer’s
complexity. CA-Wang on the other hand needs to process the
full answer context, which is more difficult for long answers.

For answers that are shorter than 100 words, CA-Wang is
more effective than COALA. This indicates that processing
the full answer context is beneficial (and possible) in these
cases. To further test this we also evaluated COALA on
WikiQA (Yang, Yih, and Meek 2015), which is a well-known
benchmark for factoid short answer selection (with an av-
erage answer length of 25 words). The results of COALA
(69.7 MRR) are on the same level as strong semantic similar-
ity methods such as AP-LSTM (Dos Santos et al. 2016) but
below CA-Wang (75.5 MRR) as in (Wang and Jiang 2017).

This especially highlights that different tasks with differ-
ent answer lengths, in particular cQA answer selection and
factoid answer selection, require fundamentally different ap-
proaches to obtain optimal results.

Error Analysis
In most cases when COALA selects an incorrect candidate
answer, the text either covers all aspects of the question or
it covers more aspects compared to the correct answer. The
aspects of the question then typically appear individually
in the answer but within different contexts. The following
question gives an example:

Does car insurance improve credit?
Here, COALA selects an incorrect candidate answer that
covers all important aspects, i.e., car insurance and improving
a credit score:

Bad credit can have an impact on the premium rates
you are asked to pay for car insurance when first apply-

ing. Many auto insurers utilize credit scores to make
underwriting decisions on new applications. If you
have bad credit take steps to improve your score. Shop
around for auto insurance from companies that use more
traditional data in pricing policies. Or stick with your
current carrier and drive safely. Of course you want to
drive safely no matter what!

The contexts of the question and answer aspects are differ-
ent and thus the answer should not be selected.

Such errors occur because COALA does not utilize the
global answer context. On the other hand, models that do so
often fail to properly recognize the coverage of aspects when
the answers are long.

Overall, this suggest that it could be beneficial to combine
COALA with other, context-aware approaches. For example,
this could be done in a two-step ranking process in which
COALA first selects a number of candidate answers that
cover most aspects of the question, and afterwards a context-
aware model chooses the answer that refers to these covered
aspects in the right context. Alternatively, one could also
use standard ensemble learning techniques. In both cases,
however, it would be necessary to ensure that the global an-
swer context is utilized correctly—e.g., only in cases where
COALA finds multiple answers that cover all or most ques-
tion aspects.

Conclusion
We proposed COALA, an efficient relevance matching ap-
proach for cQA answer selection based on the compare-
aggregate framework with three important attributes: (1) our
approach scales well to long answers—which are common
in cQA—and outperforms the recent state of the art on six
cQA datasets from different domains by a large margin; (2)
it generalizes well from (very) small data and outperforms
different unsupervised baselines already when trained with
25 questions—it is therefore suitable for low-resource sce-
narios, i.e., our approach can be applied to a large number
of small-scale cQA platforms; (3) COALA can be efficiently
enhanced, e.g., by incorporating syntactic information in the
input layer and by using learned power means during aggre-
gation. Both extensions lead to gains in our experiments.

In addition, our approach is not specific to cQA: it achieves
state-of-the-art results on the passage retrieval benchmark
dataset WikiPassageQA. It can therefore serve as a strong
baseline for other tasks that rank or retrieve long texts.

Finally, our analysis revealed fundamental differences be-
tween the model’s capabilities to deal with answers of dif-
ferent lengths. Whereas COALA can deal with long answers
especially well, context-aware approaches are better suited to
handle very short answers. This not only shows that different
scenarios—e.g., cQA and factoid answer selection—require
different types of approaches to achieve optimal results, but
also that both types of approaches could be combined in
future work to achieve improvements in both cases.

Our source code and data are publicly available.10

10https://github.com/UKPLab/aaai2019-coala-cqa-answer-
selection
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Parikh, A. P.; Täckström, O.; Das, D.; and Uszkoreit, J. 2016. A
Decomposable Attention Model for Natural Language Inference. In
EMNLP, 2249–2255.
Robertson, S. E., and Walker, S. 1994. Some simple effective
approximations to the 2-poisson model for probabilistic weighted
retrieval. In SIGIR, 232–241.
Romeo, S.; Da San Martino, G.; Barrón-Cedeño, A.; Moschitti, A.;
Belinkov, Y.; Hsu, W.-N.; Zhang, Y.; Mohtarami, M.; and Glass,
J. 2016. Neural Attention for Learning to Rank Questions in
Community Question Answering. In COLING, 1734–1745.
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