
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Revisiting LSTM Networks for Semi-Supervised
Text Classification via Mixed Objective Function

Devendra Singh Sachan
Petuum Inc

sachan.devendra@gmail.com

Manzil Zaheer
Carnegie Mellon University

manzilz@cs.cmu.edu

Ruslan Salakhutdinov
Carnegie Mellon University

rsalakhu@cs.cmu.edu

Abstract

In this paper, we study bidirectional LSTM network for the
task of text classification using both supervised and semi-
supervised approaches. Several prior works have suggested
that either complex pretraining schemes using unsupervised
methods such as language modeling (Dai and Le 2015;
Miyato, Dai, and Goodfellow 2016) or complicated mod-
els (Johnson and Zhang 2017) are necessary to achieve a high
classification accuracy. However, we develop a training strat-
egy that allows even a simple BiLSTM model, when trained
with cross-entropy loss, to achieve competitive results com-
pared with more complex approaches. Furthermore, in ad-
dition to cross-entropy loss, by using a combination of en-
tropy minimization, adversarial, and virtual adversarial losses
for both labeled and unlabeled data, we report state-of-the-
art results for text classification task on several benchmark
datasets. In particular, on the ACL-IMDB sentiment analysis
and AG-News topic classification datasets, our method out-
performs current approaches by a substantial margin. We also
show the generality of the mixed objective function by im-
proving the performance on relation extraction task.1

1 Introduction
Text classification is an important problem in natural lan-
guage processing (NLP). The task is to assign a document
to one or more predefined categories. It has a wide range
of applications such as sentiment analysis (Pang and Lee
2008), topic categorization (Lewis et al. 2004), and email
filtering (Sahami et al. 1998). Early machine learning ap-
proaches for text classification were based on the extraction
of bag-of-words features followed by a supervised classifier
such as naı̈ve Bayes (McCallum and Nigam 1998) or a linear
SVM (Joachims 1998). Later, better word representations
were introduced, such as latent semantic analysis (Deer-
wester et al. 1990), skipgram (Mikolov et al. 2013), and
fastText (Joulin et al. 2017), which improved classification
accuracy. Recently, recurrent and convolutional neural net-
work (Kim 2014) models were introduced to utilize the word
order and grammatical structure. Many complex variations
of these models have been proposed to improve the text clas-
sification accuracy, e.g. training one-hot CNN (JZ15a; John-

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/DevSinghSachan/ssl text classification

son and Zhang 2015a) or one-hot bidirectional LSTM (BiL-
STM) network with dynamic max-pooling (JZ16; Johnson
and Zhang 2016).

Current state-of-the-art approaches for text classification
involve using pretrained LSTMs (DL15; Dai and Le 2015)
or complex computationally intensive models (JZ17; John-
son and Zhang 2017). DL15 argued that randomly initial-
ized LSTMs are difficult to optimize and can lead to worse
performance than linear models. Therefore, to improve the
performance, they proposed pretraining the LSTM with ei-
ther a language model or a sequence auto-encoder. How-
ever, pretraining or using complicated models can be very
time consuming, which is a major disadvantage and may not
be always feasible. In this paper, we consider a BiLSTM
classifier model similar to the one proposed by DL15 for
text classification. For this simple BiLSTM model with pre-
trained embeddings, we propose a training strategy that can
achieve accuracy competitive with the previous purely su-
pervised models, but without the extra pretraining step. We
also perform ablation studies to understand aspects of the
proposed training strategy that result in an improvement.

Pretraining approaches often use extra unlabeled data in
addition to the labeled data. We explore the applicability of
such semi-supervised learning (SSL) in our training frame-
work, where there is no prior pretraining step. In this re-
gard, we propose a mixed objective function for SSL that
can utilize both labeled and unlabeled data to obtain further
improvement in classification. To summarize, our contribu-
tions are as follows:

• We show that with proper model training, using a max-
imum likelihood objective with a simple one-layer BiL-
STM model (§2) can produce competitive accuracies,

• We propose a mixed objective function that can be applied
to text classification tasks (§2),

• On seven benchmark text classification tasks, we achieve
new state-of-the-art results despite having a much simpler
model, minimal model tuning, and fewer parameters (§4),

• We extend our proposed mixed objective function to rela-
tion extraction task, where we achieve better F1 score on
SemEval-2010 and TACRED datasets, again with a sim-
ple model and minimal model tuning (§6).

6940

LSTMF LSTMF LSTMF

LSTMB LSTMB LSTMB

Max Over Time

Linear

Softmax

Embedding Lookup Table

awesome movie :)

word vectors

bidirectional
LSTM

concatenated
hidden states

class probabilities

logits

pooling layer

Figure 1: Text classification model architecture.

2 Methods
In this section, we will describe the model architecture, our
training strategy, and our proposed mixed objective function.
For mathematical notation, we will use bold lowercase to
denote vectors, bold uppercase to denote matrices, and low-
ercase to denote scalars and individual words in a document.

Model Architecture
The classification model consists of an embedding layer,
a bidirectional long short-term memory (BiLSTM) en-
coder (Hochreiter and Schmidhuber 1997; Schuster and
Paliwal 1997), a max-pooling layer, a linear (fully-
connected) layer, and finally a softmax layer (see Figure 1).
First, the sequence of words (w1, . . . , wT) contained in a
document are passed through an embedding layer that con-
tains a lookup table which maps them to dense vectors
(v1, . . . ,vT, vt ∈ Rd). Next, the forward and backward
LSTM of the BiLSTM encoder processes these word vectors
in the forward (left to right) and backward (right to left) di-
rections respectively, updating corresponding hidden states
at each time-step
−→
ht =

−−−−−→
LSTMF(

−−→
ht−1,vt),

←−
ht =

←−−−−−
LSTMB(

←−−
ht−1,vt).

Next, these hidden state outputs from the forward LSTM
(
−→
ht) and backward LSTM (

←−
ht) are concatenated at every

time-step to enable encoding of information from past and
future contexts respectively

ht = [
−→
ht ||

←−
ht], t ∈ [1, T], ht ∈ Rn.

These concatenated hidden states are next fed to the pooling
layer that computes the maximum value over time to obtain
the feature representation of the input sequence (h ∈ Rn)

h` = max
t
h`t, t ∈ [1, T], ∀` ∈ {1, . . . , n}.

This max-pooling mechanism constrains the model to cap-
ture the most useful features produced by the BiLSTM en-
coder. Next, the linear layer applies an affine transformation
to the feature vector to produce logits (d)

d = Wh+ b, d ∈ RK,

where K is the number of classes, W is the weight matrix,
and b is the bias. Next, these logits are normalized using the
softmax function to give our estimated class probabilities as

p(y = k|x;θ) = exp(dk)∑K
j=1 exp(dj)

, ∀k ∈ {1, . . . ,K},

where (x, y) is a training example and θ denotes the model
parameters. For model training, we use supervised and un-
supervised loss functions, which are discussed next.

Supervised Training
Let there be m` labeled examples in the training set that
are denoted as {(x(1), y(1)), . . . , (x(m`), y(m`))}, where x(i)

represents a document’s word sequence, y(i) represents class
label such that y(i) ∈ {1, 2, . . . ,K}. For supervised training
of the classification model, we make use of two methodolo-
gies: maximum likelihood estimation and adversarial train-
ing, which are described next.

Maximum Likelihood (ML) This is the most widely used
method to learn the parameters of neural network models
from observed data for text classification task. Here, we min-
imize the average cross-entropy loss between the estimated
class probability and the ground truth class label for all train-
ing examples

LML(θ) =
−1
m`

m∑̀
i=1

K∑
k=1

1(y(i) = k) log p(y(i) = k|x(i);θ),

where 1(;) is an indicator function.

Adversarial Training (AT) Adversarial examples are cre-
ated from inputs by small perturbations to mislead the ma-
chine learning algorithm. The objective of adversarial train-
ing is to construct and give as input adversarial examples
during model training procedure to make the model more
robust to adversarial noise and thereby improving its gener-
alization ability (Goodfellow, Shlens, and Szegedy 2014).

In this work, we make adversarial perturbations to the in-
put word embeddings (v = [v1, . . . ,vT]) (MDG16, Miyato,
Dai, and Goodfellow 2016). These perturbations (rat) are
estimated by linearizing the supervised cross-entropy loss
around the input word embeddings. Specifically, to get the
adversarial embedding (v∗) corresponding to v, we use the
L2 norm of the training loss gradient (g) that is computed
by backpropagation using the current model parameters (θ̂)

rat = εg/‖g‖2, where g = −∇v log p(y = k|v; θ̂)
v∗ = v + radv

6941

where, k is the correct class label, ε is a hyperparameter that
controls the magnitude of the perturbation. We apply adver-
sarial loss to only the labeled data. It is defined as

LAT(θ) =
−1
m`

m∑̀
i=1

K∑
k=1

1(y(i) = k) log p(y(i) = k|v∗(i); θ̂).

Unsupervised Training
In this paper, in addition to supervised training, we also
experiment with two unsupervised methodologies: entropy
minimization and virtual adversarial training. These loss
functions when incorporated into the objective function act
as effective regularizers during model training. To describe
them, we assume that there exists an additional mu unlabeled
examples in the dataset {x(1), . . . ,x(mu)}.
Entropy Minimization (EM) In addition to supervised
cross-entropy loss, we also minimize the conditional entropy
of the estimated class probabilities (Grandvalet and Bengio
2004; Miyato et al. 2018). This can also be interpreted as a
special case of the missing label problem where the proba-
bility p(y(i) = k|x(i);θ) signifies a soft assignment of the
ith example to label k (i.e. soft clustering). Entropy mini-
mization loss is applied in an unsupervised manner to both
the labeled and unlabeled data.

LEM(θ) =
−1
m

m∑
i=1

K∑
k=1

p(y(i) = k|x(i)) log p(y(i) = k|x(i)),

where m = m` +mu and dependence on θ is suppressed.

Virtual Adversarial Training (VAT) As opposed to min-
imizing the cross-entropy loss of the adversarial examples in
AT, in VAT, we minimize the KL divergence between p(v)
and p(v∗), where v∗ = v+rvat. The motivation of using KL
divergence as an additional loss term in the objective func-
tion is that it tends to make the loss surface smooth at the cur-
rent example (Miyato et al. 2018). Also, computing the VAT
loss doesn’t require class labels, so it can be applied to unla-
beled data as well. In this work, we follow the approach pro-
posed by MDG16 that makes use of the second-order Taylor
expansion of distance followed by power iteration method
to approximate the virtual adversarial perturbation. First, an
i.i.d. random unit vector is sampled for every example from
the Normal distribution (d(i) ∼ N (0, I) ∈ Rd) and then
adversarial perturbation computed as ξd(i) is added to the
word embeddings, where ξ is a hyperparameter

v′(i) = v(i) + ξd(i).

Dataset Train Test K `

ACL-IMDB 25,000 25,000 2 268
Elec 25,000 25,000 2 125
AG-News 120,000 7,600 4 46
DBpedia 560,000 70,000 14 56
RCV1 15,564 49,821 51 120
IMDB 1,490,000 1,070,000 5 280
Arxiv 664,000 443,000 127 153

Table 1: Summary statistics for text classification datasets;
K = number of classes; ` = average length of a document.

Next, the gradient is estimated from the KL divergence as:

g = ∇v′DKL(p(. | v(i); θ̂) ‖ p(. | v′(i); θ̂)).
Virtual adversarial perturbation (rvadv) is generated using the
L2 norm of the gradient and added to the word embeddings

r
(i)
vat = εg/‖g‖2

v∗(i) = v(i) + r
(i)
vat .

Lastly, virtual adversarial loss can be computed from both
the labeled and unlabeled data as:

LVAT(θ) =
1

m

m∑
i=1

DKL(p(. | v(i);θ) ‖ p(. | v∗(i);θ)),

where m = m` +mu.

Mixed Objective Function
Our proposed mixed objective function combines the above
described supervised and unsupervised loss functions using
λML, λAT, λEM, and λVAT as hyperparameters

LMIXED = λMLLML + λATLAT + λEMLEM + λVATLVAT.

Training Strategy
We note that there are three main considerations to be
taken into account when training the text classifier. First,
the knowledge of the entire sequence is essential for good
classification performance. Thus, commonly used practice
of truncated backpropagation through time (Werbos 1988)
is a key limiting factor. One should perform gradient update
for the entire text sequence. To prevent out of memory issues
that can result from longer sequences, we propose to use dy-
namic batch size that consists of fixed number of total words
per mini-batch. Second, not only we need to use pretrained
word embeddings, but we need to finetune them for the spe-
cific task. Lastly, we should use a larger vocabulary size and
not limit to only high-frequency words. This is because rare
or tail words are often strong indicators of the class.

3 Experiments
Dataset Description
In this work, we experiment with seven datasets that are
summarized in Table 1. ACL-IMDB (Maas et al. 2011) and

Dataset BSize Vocab ε

ACL-IMDB 3,000 80,000 5
Elec 2,000 40,000 2
AG-News 2,000 75,000 1
DBpedia 7,500 50,000 1
RCV1 2,000 100,000 2
IMDB 15,000 150,000 5
Arxiv 8,000 100,000 1

Table 2: Dataset-specific hyperparameters; BSize = number
of tokens in a minibatch; Vocab = number of words present
in vocabulary; ε = adversarial perturbation.

6942

Model ACL-IMDB Elec AG-News DBpedia RCV1 IMDB Arxiv

Linear Model (TFIDF + SVM) 9.51 9.16 7.64 1.31 10.68 40.00 34.81
Vanilla LSTM [Dai and Le (2015)] 10.00 – – 13.64 – – –
DocVec [Le and Mikolov (2014)] 11.40 8.95 8.00 2.34 – 44.10 37.40
FastText [Joulin et al. (2017)] 11.34 – 7.50 1.40 – 42.13 33.23
CNN [Kim (2014)] 9.17 8.03 5.92 0.98 10.44 49.53 34.21
oh-CNN [Johnson and Zhang (2015b; 2017)] 7.67 7.14 6.88 0.88 9.17 38.15 35.89
char-CNN [Zhang, Zhao, and LeCun (2015)] – – 9.51 1.55 – – –

LML [Our Method] 6.43 7.40 5.62 0.91 7.78 35.64 31.76

Table 3: Error rates (%) when the model is trained using LML and comparison with previous best supervised methods.

Model ACL-IMDB Elec AG-News DBpedia RCV1 IMDB Arxiv

SA-LSTM [Dai and Le (2015)] 7.24 – – 1.19 7.40 – –
LSTM [Miyato, Dai, and Goodfellow (2016)] 5.91 5.40 6.78 0.76 6.68 35.85 30.97
oh-LSTM [Johnson and Zhang (2016; 2017)] 5.94 5.55 6.57 0.84 7.15 37.56 31.17
ULMFit [Howard and Ruder (2018)] 4.60 – 5.01 0.80 – – –

LMIXED [Our Method] 4.32 5.24 4.95 0.70 6.23 34.04 29.95

Table 4: Error rates (%) when the model is trained using LMIXED and comparison with previous best semi-supervised methods.

Elec (JZ15a) datasets are widely used for binary sentiment
classification of movie reviews and Amazon product reviews
respectively while AG-News, DBpedia (Zhang, Zhao, and
LeCun 2015), and RCV1 (Lewis et al. 2004) are for topic
classification of news articles, Wikipedia, and Reuters cor-
pus respectively. For the RCV1 dataset, we perform mul-
ticlass topic classification based on the second-level topics
and construct its training, dev, and test splits in accordance
with JZ15a. To show that our proposed method also scales
to larger datasets and categories, we also experiment with
large-scale datasets of IMDB reviews and Arxiv abstracts
that are used for fine-grained sentiment- and topic classifica-
tion respectively (Sachan, Zaheer, and Salakhutdinov 2018).
We preprocess all the datasets by converting the text to low-
ercase and treat all punctuations as separate tokens.

Implementation Details
All of our models were implemented in PyTorch frame-
work (Paszke et al. 2017) and were trained on a single GPU.
Our experimental setup is common for all the datasets un-
less specified otherwise. We use 300D pretrained vectors
to initialize the embedding layer. We learn embeddings for
the ACL-IMDB, RCV1, IMDB, and Arxiv datasets using
word2vec (Mikolov et al. 2013) and use fastText pre-
trained embeddings2 (Mikolov et al. 2018) for all the other
datasets. We use one-layer BiLSTM of size 512D. For regu-
larization, we apply dropout (pdrop = 0.5) to word embed-
dings and to LSTM’s hidden states. We also use the word
dropout strategy in which we randomly set a word to be
“UNK” with a probability pw = 0.1. For training, we em-
ploy SGD using Adam optimizer (Kingma and Ba 2014)
(learning rate = 10−3, β1 = 0, β2 = 0.98, εadam = 10−8)
with an exponential learning rate decay scheme. We per-

2These embeddings were trained on data containing 600B to-
kens from Common Crawl (crawl-300d-2M.vec).

form gradient clipping by having a maximum L2 norm of
1. For training, we backpropagate through time over en-
tire sequence, i.e. we did not truncate sequence. This differs
from DL15 where they perform truncated backpropagation
through time for 400 time-steps from the end of a sequence.

For semi-supervised training, we experiment with all the
objective functions described in §2. For LMIXED, we include
all the constituent terms with λML, λAT, λEM, λVAT set to 1
and ξ = 0.1. We want to emphasize that in contrast with
MDG16, we do not perform embedding layer normalization
during AT or VAT objectives, as by including it, we noticed
a drop in accuracy during our initial experiments. We select
the hyperparameters such as dynamic batch size, vocabulary
size, and adversarial perturbation (ε) by cross-validation on
the development set. We mention these dataset-specific hy-
perparameters in Table 2. For supervised experiments (LML),
we perform training till 20 epochs and for semi-supervised
experiments (LMIXED), training is done till 50 epochs. For
ACL-IMDB, Elec, RCV1, IMDB, and Arxiv datasets, we
use training and test set as unlabeled data, while for AG-
News and DBpedia datasets as their test sets are small, we
use only the training set as unlabeled data. During training,
we keep the batch size of the unlabeled data the same as that
of the labeled data.

4 Results
In this section, we report the classification accuracy on the
test set and perform ablation studies for both supervised and
semi-supervised training.

Maximum Likelihood Training
In Table 3, we present the error rates of our method and the
previous best-published models when training is done using
only the maximum likelihood objective (LML). We observe
that our model that consists of one-layer BiLSTM and pre-

6943

N Embedding pw BSize H Vocab ACL-IMDB

1 Finetune 0.1 3,000 512 80,000 6.43

2 6.47
Random 7.64

Static 8.17
0.0 6.57

1,000 6.98
256 6.67

1,024 7.05
30,000 7.78

No text preprocessing 8.80

Table 5: Error rates (%) of variations on the BiLSTM model
trained using LML on the ACL-IMDB dataset. Unlisted val-
ues are identical to those of the first row; N = number of
BiLSTM layers; H = LSTM hidden size.

trained embedding weights achieves a very competitive per-
formance on all the datasets compared with the more com-
plex approaches such as one-hot LSTM (JZ16) or pyrami-
dal CNN (JZ17). Specifically, for ACL-IMDB, AG-News,
IMDB, and Arxiv datasets, we report much better results
than earlier methods. Thus, our proposed model and training
strategy enjoy the following advantages: (a) it is very easy to
implement using current deep learning frameworks; (b) it re-
quires much less training time and GPU memory compared
with other complicated models; (c) it entirely avoids com-
plex initialization strategies such as pretraining the LSTM
weights using a language model; (d) Our results can serve
as strong baselines when developing more advanced task-
specific models.

To know the importance of various components in the
model and training regimen, we perform ablation studies
using the ACL-IMDB dataset (see Table 5). We verify that
good performance of our model mostly results from fine-
tuning the pretrained embeddings, using a larger vocabulary
size, and using a carefully preprocessed dataset. We also
see that excluding word dropout, smaller-sized LSTM, and
lowering the batch size causes a slight drop in performance
while using static pretrained or randomly initialized embed-
dings or smaller vocabulary size can cause a large drop.

Semi-Supervised Training
For our next set of experiments, we perform training using
LMIXED objective whose results are shown in Table 4. We
observe that the mixed objective improves over maximum
likelihood objective and achieves state-of-the-art results on
all the seven datasets. Specifically, on the widely used ACL-
IMDB dataset, there is a substantial reduction of 26.9%
in relative error compared with the previous best-published
model of JZ16, which was substantially more complex as
they use one-hot encodings of words along with a lot of
additional features such as multi-view region embeddings
from CNNs and LSTMs. We also want to highlight that,
although the model of MDG16 also experiments with ad-
versarial and virtual adversarial training, our approach per-
forms much better compared with them due to our improved

L U λML λAT λEM λVAT ACL-IMDB

1 0 1 0 0 0 6.43
1 0 1 1 0 0 5.96
1 0 1 0 1 0 6.46
1 0 1 0 0 1 5.98
1 0 1 1 1 1 5.68

1 1 1 0 1 0 5.78
1 1 1 0 0 1 5.52
1 1 1 0 1 1 4.47
1 1 1 1 1 1 4.32

Table 6: Error rates (%) for ablation study on the importance
of hyperparameters when the BiLSTM model is trained us-
ing LMIXED objective; L = was labeled data used? U = was
unlabeled data used?

training strategy and the use of LEM objective. Similarly, for
the benchmark AG-News dataset, we observe relative error
reduction of 26.6% compared with previous state-of-the-art
model of JZ17 who use a very deep pyramidal-CNN along
with region embeddings. Even on the Elec, DBPedia, and
RCV1 datasets, our results present significant improvements
over the previous best semi-supervised results. LMIXED ob-
jective also scales well to the dataset sizes, as on the large
datasets of IMDB and Arxiv, it outperforms the above men-
tioned previous approaches by a substantial margin. We note
here that the approach of Howard and Ruder (2018) is not di-
rectly comparable with our results as they use a three-layer
LSTM model. We discuss the effect of model size in §5.

Next, we perform ablation studies when the model is
trained using LMIXED on the ACL-IMDB dataset and analyze
the contributions of the different component terms present
in the objective (see Table 6). First, we observe that when
the model is trained using LMIXED objective on both the la-
beled and unlabeled data, the accuracy on ACL-IMDB dras-
tically improves by 33% compared with using only the LML
objective. Second, we also observe that when trained only
on labeled data the inclusion of LAT and LVAT can also sig-
nificantly improve the performance. However, LEM alone
doesn’t lead to any significant gains. Furthermore, when
LMIXED is trained with only labeled data, we see 12% rel-
ative increase in accuracy. Finally, when we add unlabeled
data to both LVAT and LEM, we see consistent improvements,
thus suggesting that these objective functions complement
each other and together improve the overall performance.

5 Analysis
Effect on Word Embeddings
To understand the effect on word embeddings due to train-
ing using LML and LMIXED objectives, we show the top-10
closest words for the query word “good” based on their co-
sine similarity in Table 7, where the word embeddings were
extracted from the models trained on ACL-IMDB dataset.
We see that for static embeddings, the closest words have a
mix of both positive (‘great’, ‘decent’, ‘nice’) and negative
sentiments (‘bad’, ‘but’). This can be understood as they are
syntactically similar adjectives. When these embeddings are

6944

query word: good

word2vec ML Objective Mixed Objective

great (0.64) great (0.66) funny (0.73)
really (0.61) nice (0.62) well-acted (0.72)
decent (0.60) decent (0.58) interesting (0.66)
nice (0.59) entertaining (0.56) fine (0.65)
ok (0.57) overall (0.55) nice (0.65)
but (0.56) really (0.55) thought-provoking (0.63)
pretty (0.56) liked (0.54) decent (0.62)
overall (0.55) lot (0.52) worth (0.60)
bad (0.54) enjoyable (0.52) recommend (0.60)
movie (0.53) fun (0.51) recommendable (0.60)

Table 7: Top-10 nearest neighbors according to cosine simi-
larity (shown in parentheses) for the word “good” computed
in the embedding space. “word2vec” refers to the static em-
beddings i.e. not finetuned during training.

finetuned using the LML objective, the network learns more
meaningful representations and accommodates more posi-
tive sentiment words close to the query word ‘good’. More-
over, when trained using the LMIXED objective, we see that
those words that have a very high correlation with the class
label (positive sentiment class in this case) are clustered to-
gether in the embedding space. Our hypothesis is that this
factor also contributes to an increase in the overall classifi-
cation accuracy.

Model Regularization Effect

0 10 20 30 40 50
Number of Epochs

10−2

10−1

100

101

T
ra

in
in

g
L

os
s

(l
og

sc
al

e) ML

AT

VAT

EM

MIXED

0 10 20 30 40 50
Number of Epochs

5

7

10

12

T
es

t
E

rr
or

ML

AT

VAT

EM

MIXED

Figure 2: (a) Training loss vs. epochs on ACL-IMDB; (b)
Test error vs. epochs on ACL-IMDB.

Figure 2a and Figure 2b show the moving average training
loss and test error respectively versus the number of epochs
on the ACL-IMDB dataset with the LML, LAT, LVAT, LEM,
and LMIXED objectives. We can see that LML begins to over-
fit after 5 epochs, LAT overfits after 10 epochs while LMIXED,
LEM, and LVAT don’t overfit much and thus achieve better
generalization than the LML and LAT objectives (see in Fig-
ure 2b). Moreover, as LMIXED and LVAT objectives can use
unlabeled data, their training loss decays gradually. Thus,
LMIXED objective while being very effective in performance
is also a very robust model regularizer. On the other hand,
from Figure 2b, we can see that LVAT, LEM, and LMIXED take
a long time to converge compared with LML and LAT and
are thus quite slow to train. In our experiments, one epoch
of LMIXED takes around 20m on GeForce GTX 1080 GPU
and it requires roughly 45 epochs to converge. This is con-
siderably slower than LML objective where each epoch takes

around 3m and the overall convergence time is thus 15m for
5 epochs.

Varying Data Size

1 4 7 10 13 16 19 22 25
Number of Training Examples (×103)

3

6

9

12

15

T
es

t
E

rr
or

ML

AT

VAT

EM

MIXED

5 10 15 20 25 30 35 40 45 50
Number of Unlabeled Examples (×103)

4

5

6

7

8

T
es

t
E

rr
or

ML

AT

VAT

EM

MIXED

Figure 3: Test Error on ACL-IMDB vs. (a) number of train-
ing examples (b) increasing number of unlabeled examples.

In this setup, we first analyze the test error on ACL-IMDB
dataset by feeding the model trained with different objective
functions (§2) with an increasing number of training exam-
ples (learning curve; see Figure 3a). We observe that all the
objective functions converge to lower error rates when train-
ing data is increased. We also see that mixed objective model
is always optimal (achieves lower test error rate) for any set-
ting of the number of training examples.

Next, we analyze the test error on ACL-IMDB dataset
by varying the amount of unlabeled data. For this experi-
ment, we use additional 50,000 reviews provided with the
ACL-IMDB dataset and its 25,000 reviews from test set as
unlabeled data. We evaluate the performance of each objec-
tive function by linearly increasing the amounts of unlabeled
data (see Figure 3b). Initially, increasing the amount of un-
labeled data tends to improve the performance of LVAT, LEM,
and LMIXED. However, we observe that their performance
saturates once 25,000 unlabeled examples are available. Fur-
thermore, as the amount of unlabeled data increases, the per-
formance tends to degrade sharply. As ACL-IMDB training
set also consists of 25,000 examples, from this observation,
it can be assumed that to obtain the best performance using
LMIXED, the size of unlabeled and labeled dataset should be
roughly the same. We also note that as LML and LAT are su-
pervised approaches, their performance remains unaffected.

Varying Model Size

128 256 512 768 1024
Hidden Layer Size

4

5

6

7

8

T
es

t
E

rr
or

ML

AT

VAT

EM

MIXED

1 2 3 4
Number of Hidden Layers

4

5

6

7

8

T
es

t
E

rr
or

ML

AT

VAT

EM

MIXED

Figure 4: Test error on ACL-IMDB vs. (a) hidden layer size
of LSTMs in the BiLSTM with one-hidden layer; (b) num-
ber of BiLSTM layers where each LSTM has size of 512.

We note that prior work in the supervised text classifi-
cation task has used smaller-sized LSTMs i.e. models with

6945

Sentiment Text

Mixed Objective Training (LMIXED)

Negative This movie is so over-the-top as to be a borderline comedy. Laws of physics are broken. Things explode for no good reason.
Great movie to sit down with a six-pack and enjoy. Do not - I repeat DO NOT see this movie sober. You will die horrible death!

Entropy Minimization Training (LEM)

Positive Coming from Oz I probably shouldn’t say it but I find a lot of the local movies lacking that cohesive flow with a weak storyline.
This comedy lacks in nothing. Great story, no overacting, no melodrama, just brilliant comedy as we know Oz can do it. Do
yourself a favour and laugh till you drop.

Virtual Adversarial Training (LVAT)

Negative The plot seemed to be interesting, but this film is a great dissapointment. Bad actors, a camera moving like in the hands of
an amateur. If there was C-movies, this would be a perfect example. A plus for a nice DVD cover though and a great looking
female actor.

Table 8: Examples from ACL-IMDB dataset for sentiment classification task that are correctly classified by the method indicated
directly above it and incorrectly classified by all the other methods.

hidden state sizes at most 512 units because larger models
didn’t give accuracy gains (DL15, JZ16). This is also con-
sistent with our observation, as we find that that supervised
approaches (LML) do not benefit much from increasing the
model size. However, when using additional loss functions
such as the mixed objective, accuracy scales much better
with model size (see Figure 4a). Further, we also observe
accuracy gains for all methods upon increasing the number
of layers in the model (see Figure 4b). Specifically, the er-
ror rate of LMIXED objective improves to 4.15% when using a
three-layer deep model. This suggests that larger-sized semi-
supervised methods can lead to the development of more ac-
curate models for text classification task. However, a four-
layer model hurts the LMIXED objective’s performance due
to the training instability of LEM method.

Effect on Prediction Probabilities
To study the behavior of different methods, we plot a his-
togram of the prediction probabilities for both the correct
(Figure 5a) and incorrect (Figure 5b) predictions. We ob-
serve that for correct predictions all the methods especially
LEM and LMIXED have very sharp and confident distribu-
tion of class probabilities. However, for incorrect predictions
only LEM has sharp peaks while LVAT, LAT, and LML encour-
age the model to learn a smoother distribution.

Ensemble Approach vs Mixed Objective
To understand if the above objectives have complementary
strengths, we combine their predicted probabilities with a
linear interpolation strategy. Given the output probability for
a class k as p(y = k|x), the interpolated probability pI(y =
k|x) is calculated as:

pI = αMLpML +αATpAT +αVATpVAT + αEMpEM |
∑

αi = 1,

where αi ∈ [0, 1] and is chosen based on grid search. This
simple interpolation technique results in an improved error
rate of 5.2%. However, the error rate of our proposed mixed
objective function is substantially lower (4.3%) thus high-
lighting the importance of performing joint training of the
model based on different objective functions.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

3.0

6.0

9.0

12.0
Correct Predictions

0.0 0.2 0.4 0.6 0.8 1.0

Confidence Score from Model (p(y|x;θ))

0.0

0.2

0.4

0.6

0.8
Incorrect Predictions

ML

AT

VAT

EM

MIXED

N
um

b
er

of
T

es
t

E
xa

m
pl

es
(×

10
3
)

Figure 5: Histogram of prediction probabilities on ACL-
IMDB test set for the case of (a) correct predictions; (b) in-
correct predictions.

Example Predictions
In Table 8, we show some example movie reviews from the
test set of ACL-IMDB dataset that are correctly classified by
the highlighted method and incorrectly by all the remaining
methods. We observe that methods such as LMIXED, LEM,
and LVAT that are based on unsupervised training are able
to correctly classify difficult instances in which the over-
all sentiment is determined by the entire sentence structure.
This illustrates the ability of these methods to learn complex
long-range dependencies.

6 Relation Extraction
To evaluate if the mixed objective function can generalize
to other tasks we also perform experiments on relation ex-
traction (RE) task. In this, the objective is to identify if a

6946

predefined semantic “relation category” exists (or doesn’t
exist) between a pair of subject and object entities present in
text. This task also presents specific challenges: the linguis-
tics coverage problem due to the lack of all possible training
examples of a relation class and longer text span between
the entities in a sentence.

For the RE task, we use a position-aware attention
model (Zhang et al. 2017) that consists of a word em-
bedding, position embedding, LSTM, attention layer, linear
layer, and softmax layer. We augment the word embeddings
by concatenating them with POS tag and NER category em-
beddings which is then fed to the LSTM to get hidden states
for each word. The position embeddings for a word is de-
rived based on the relative distance of the current word from
the subject and object entities. Next, the attention layer com-
putes the final sentence representation by focusing on both
the hidden states and position embeddings. Finally, sentence
representation is fed to the linear layer followed by a soft-
max layer for relation classification.

We perform experiments using our proposed mixed ob-
jective function on two RE datasets: TACRED and SemEval-
2010 Task 8 whose statistics are shown in Table 9. The
POS and NER tags are computed using the Stanford
CoreNLP toolkit.3 Following standard convention, we re-
port the micro-averaged F1 score on TACRED and offi-
cial macro-averaged F1 score on SemEval datasets. We per-
formed only a small number of experiments to search for
the hyper-parameter values of dropout, embedding size, hid-
den layer size, and learning rate on the development set, all
other parameters remained the same as the positional atten-
tion model of Zhang et al. (2017).4 Our results in Table 10
show that when trained with mixed objective function, our
model performs quite well, producing better results than all
previously reported models despite the lack of complex task-
specific hyper-parameter tuning.

7 Related Work

Neural Network Methods. Neural network models for
NLP have yielded impressive results on several benchmark
tasks (Collobert et al. 2011; Peters et al. 2018). To learn doc-
ument features for text classification task, several methods
have been proposed— Kim (2014) uses 1D CNNs, Lai et
al. (2015) uses a simple bidirectional recurrent CNN with
max-pooling, Zhou et al. (2016) applies 2D max-pooling
on top of BiLSTMs, Zhou et al. (2015) investigates a joint
CNN-LSTM model, and JZ15a, JZ16, JZ17 apply CNNs,
LSTMs, and pyramidal CNNs respectively to one-hot en-
coding of word sequences. An alternative approach is to
first learn sentence representations followed by combining
them to learn document features. To do this, Tang, Qin, and
Liu (2015) first apply a CNN or LSTM followed by a gated
RNN while Yang et al. (2016) learn the sentence and docu-
ment features in a hierarchical manner using a self-attention
mechanism.

3https://stanfordnlp.github.io/CoreNLP/
4https://github.com/yuhaozhang/tacred-relation

Dataset Train Dev Test % Neg K `

TACRED 68,124 22,631 15,509 79.5% 42 36
SemEval 8,000 – 2,717 17.4% 19 19

Table 9: Summary statistics for RE datasets; % Neg = per-
centage of examples with class label of “no relation” be-
tween entities; K = number of classes including the no rela-
tion class; ` = average length of a sentence in the dataset.

TACRED SemEval-2010

Model P R F1 P R F1

CNN-PEa 70.3 54.2 61.2 82.1 83.1 82.5
SDP-LSTMb 66.3 52.7 58.7 – – 83.7
PA-LSTMc 65.7 64.5 65.1 – – 82.7

Our Method 66.4 67.3 66.8 83.5 84.8 84.1

Table 10: Model performance on TACRED and SemEval
datasets; P = Precision; R = Recall; aSantos, Xiang, and
Zhou (2015); bXu et al. (2015); cZhang et al. (2017). For fair
comparison, we only report results from models that don’t
use ensembling or ranking-based approaches.

Semi-Supervised Learning. SSL approaches can be
broadly categorized into three types: multi-view, data aug-
mentation, and transfer learning. First, under multi-view
learning, the objective is to use multiple views of both the
labeled and unlabeled data to train the model. These multi-
ple views can be obtained either from raw text (Blum and
Mitchell 1998) or from the features (JZ15b). Second, under
data augmentation, as the name implies, involves pseudo-
augmenting either the features or the labels. For text classifi-
cation, Nigam et al. (2000) performed semi-supervised train-
ing using naı̈ve Bayes and expectation-maximization algo-
rithms and demonstrated substantial improvements in per-
formance. MDG16 compute embedding perturbations us-
ing adversarial and virtual adversarial approaches to im-
prove model training. Third, under transfer learning, the
approach of initializing the task-specific model weights by
pretrained weights from an auxiliary task is a widely used
strategy that has shown to improve the performance in
tasks such as text classification (Dai and Le 2015; Howard
and Ruder 2018), question-answering (Devlin et al. 2018),
and machine translation (Ramachandran, Liu, and Le 2017;
Qi et al. 2018).

8 Conclusion

We show that a simple BiLSTM model using maximum like-
lihood training can result in a competitive performance on
text classification tasks without the need for an additional
pretraining step. Also, in addition to maximum likelihood,
using a combination of entropy minimization, adversarial,
and virtual adversarial training, we report state-of-the-art re-
sults on several text classification datasets. This mixed ob-
jective function also generalizes well to other tasks such as
relation extraction where it outperforms current best models.

6947

References
Blum, A., and Mitchell, T. 1998. Combining labeled and unlabeled
data with co-training. In COLT.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.;
and Kuksa, P. 2011. Natural language processing (almost) from
scratch. JMLR.
Dai, A. M., and Le, Q. V. 2015. Semi-supervised sequence learn-
ing. In NIPS.
Deerwester, S.; Dumais, S. T.; Furnas, G. W.; Landauer, T. K.; and
Harshman, R. 1990. Indexing by latent semantic analysis. JAIST.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018. Bert:
Pre-training of deep bidirectional transformers for language under-
standing. Computing Research Repository arXiv:1810.04805.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining and
harnessing adversarial examples. Computing Research Repository
arXiv:1412.6572.
Grandvalet, Y., and Bengio, Y. 2004. Semi-supervised learning by
entropy minimization. In NIPS.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural Computation.
Howard, J., and Ruder, S. 2018. Universal language model fine-
tuning for text classification. In ACL.
Joachims, T. 1998. Text categorization with support vector ma-
chines: Learning with many relevant features. In ECML.
Johnson, R., and Zhang, T. 2015a. Effective use of word order for
text categorization with convolutional neural networks. In NAACL.
Johnson, R., and Zhang, T. 2015b. Semi-supervised convolutional
neural networks for text categorization via region embedding. In
NIPS.
Johnson, R., and Zhang, T. 2016. Supervised and semi-supervised
text categorization using lstm for region embeddings. In ICML.
Johnson, R., and Zhang, T. 2017. Deep pyramid convolutional
neural networks for text categorization. In ACL.
Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2017. Bag
of tricks for efficient text classification. In EACL.
Kim, Y. 2014. Convolutional neural networks for sentence classi-
fication. In EMNLP.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. Computing Research Repository arXiv:1412.6980.
Lai, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Recurrent convolutional
neural networks for text classification. In AAAI.
Le, Q., and Mikolov, T. 2014. Distributed representations of sen-
tences and documents. In ICML.
Lewis, D. D.; Yang, Y.; Rose, T. G.; and Li, F. 2004. Rcv1: A new
benchmark collection for text categorization research. JMLR.
Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.; and
Potts, C. 2011. Learning word vectors for sentiment analysis. In
ACL.
McCallum, A., and Nigam, K. 1998. A comparison of event models
for naive bayes text classification. In Workshop on Learning for
Text Categorization, AAAI.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; and Dean, J.
2013. Distributed representations of words and phrases and their
compositionality. In NIPS.
Mikolov, T.; Grave, E.; Bojanowski, P.; Puhrsch, C.; and Joulin, A.
2018. Advances in pre-training distributed word representations.
In LREC.

Miyato, T.; Maeda, S.-i.; Koyama, M.; and Ishii, S. 2018. Vir-
tual adversarial training: a regularization method for supervised
and semi-supervised learning. IEEE TPAMI.
Miyato, T.; Dai, A. M.; and Goodfellow, I. 2016. Adversarial
training methods for semi-supervised text classification. Comput-
ing Research Repository arXiv:1605.07725.
Nigam, K.; McCallum, A. K.; Thrun, S.; and Mitchell, T. 2000.
Text classification from labeled and unlabeled documents using
EM. Machine Learning.
Pang, B., and Lee, L. 2008. Opinion mining and sentiment analy-
sis. Found. Trends Inf. Retr.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic differentiation in pytorch. In NIPS-W.
Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee,
K.; and Zettlemoyer, L. 2018. Deep contextualized word represen-
tations. In NAACL.
Qi, Y.; Sachan, D.; Felix, M.; Padmanabhan, S.; and Neubig, G.
2018. When and why are pre-trained word embeddings useful for
neural machine translation? In NAACL.
Ramachandran, P.; Liu, P.; and Le, Q. 2017. Unsupervised pre-
training for sequence to sequence learning. In EMNLP.
Sachan, D. S.; Zaheer, M.; and Salakhutdinov, R. 2018. Investigat-
ing the working of text classifiers. In COLING.
Sahami, M.; Dumais, S.; Heckerman, D.; and Horvitz, E. 1998. A
bayesian approach to filtering junk E-mail. In Workshop on Learn-
ing for Text Categorization, AAAI.
Santos, C. d.; Xiang, B.; and Zhou, B. 2015. Classifying relations
by ranking with convolutional neural networks. In ACL.
Schuster, M., and Paliwal, K. 1997. Bidirectional recurrent neural
networks. Trans. Sig. Proc.
Tang, D.; Qin, B.; and Liu, T. 2015. Document modeling with gated
recurrent neural network for sentiment classification. In EMNLP.
Werbos, P. J. 1988. Generalization of backpropagation with appli-
cation to a recurrent gas market model. Neural networks.
Xu, Y.; Mou, L.; Li, G.; Chen, Y.; Peng, H.; and Jin, Z. 2015.
Classifying relations via long short term memory networks along
shortest dependency paths. In EMNLP.
Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; and Hovy, E.
2016. Hierarchical attention networks for document classification.
In NAACL.
Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; and Manning, C. D.
2017. Position-aware attention and supervised data improve slot
filling. In EMNLP.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level convo-
lutional networks for text classification. In NIPS.
Zhou, C.; Sun, C.; Liu, Z.; and Lau, F. C. M. 2015. A C-LSTM
neural network for text classification. Computing Research Repos-
itory arXiv:1511.08630.
Zhou, P.; Qi, Z.; Zheng, S.; Xu, J.; Bao, H.; and Xu, B. 2016.
Text classification improved by integrating bidirectional lstm with
two-dimensional max pooling. In COLING.

6948

