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Abstract

Diagnostic reasoning is a key component of many professions.
To improve students’ diagnostic reasoning skills, educational
psychologists analyse and give feedback on epistemic activ-
ities used by these students while diagnosing, in particular,
hypothesis generation, evidence generation, evidence evalua-
tion, and drawing conclusions. However, this manual analysis
is highly time-consuming. We aim to enable the large-scale
adoption of diagnostic reasoning analysis and feedback by
automating the epistemic activity identification. We create the
first corpus for this task, comprising diagnostic reasoning self-
explanations of students from two domains annotated with
epistemic activities. Based on insights from the corpus cre-
ation and the task’s characteristics, we discuss three challenges
for the automatic identification of epistemic activities using AI
methods: the correct identification of epistemic activity spans,
the reliable distinction of similar epistemic activities, and the
detection of overlapping epistemic activities. We propose a
separate performance metric for each challenge and thus pro-
vide an evaluation framework for future research. Indeed, our
evaluation of various state-of-the-art recurrent neural network
architectures reveals that current techniques fail to address
some of these challenges.

1 Introduction
Diagnostic reasoning is a crucial skill in many professions:
Physicians determine a patient’s disease based on clinical
tests, teachers recognise behavioural disorders in children
based on observations, and engineers debug errors in ma-
chines or programs based on their analyses of log files or
sensor data. To become competent employees in these pro-
fessions, students thus need to actively engage with their
own diagnostic reasoning behaviour to understand the im-
portance, structure, and validity of their reasoning. However,
even if diagnostic reasoning skills are taught as part of the
curriculum, it is rarely possible for instructors to give ex-
tensive feedback regarding each student’s reasoning process.
Therefore, our vision is to automatically analyse and evaluate
students’ diagnostic reasoning by means of innovative educa-
tional AI applications, which facilitate teaching and fostering
diagnostic skills at large scale.

*New affiliation: Babylon Health, London, UK
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Fischer et al. (2014) suggest to capture and analyse diag-
nostic – and more generally scientific – reasoning in terms
of eight epistemic activities: problem identification, question-
ing, hypothesis generation (HG), construction and redesign
of artefacts, evidence generation (EG), evidence evaluation
(EE), drawing conclusions (DC), and communicating and
scrutinising. While educational psychologists can manually
identify and analyse these activities to give feedback regard-
ing students’ diagnostic reasoning, automatic methods for
epistemic activity analysis are required to scale this up.

We tackle this task by creating the first cross-domain cor-
pus of epistemic activities in diagnostic reasoning.1 Our cor-
pus consists of 1,200 anonymised German texts written by
medical students and pre-service teachers (henceforth called
“teacher students”) while diagnosing, respectively, the cause
of a patient’s symptoms and the reason underlying the signs
of motivational problems or learning difficulties of a pupil.
We annotated all texts with HG, EG, EE, and DC, the main
epistemic activities used in diagnostic reasoning texts (Lenzer
et al. 2017; Ghanem et al. 2016). Figure 1 shows an example
from the teaching domain: A student first generates evidence,
evaluates it, and draws an initial conclusion. This is followed
by the generation of a hypothesis about two potential devel-
opmental disorders, the evaluation of further evidence, and
the drawing of a final conclusion.

Our corpus and task formalization has three characteristics
that raise three major challenges for AI methods aiming to
automatically identify epistemic activities: (C1) Epistemic
activities are bound to neither token nor sentence level, but
may constitute arbitrary spans. (C2) The distinction of sim-
ilar epistemic activities, such as hypothesis generation and
drawing conclusions, is highly challenging. (C3) Epistemic
activities may be nested or overlapping. We argue that a mere
overall performance measure is not adequate for complex
tasks such as epistemic activity identification and propose
three challenge-specific metrics, each measuring how well an
automatic identification method tackles this challenge. Our
evaluation of various state-of-the-art recurrent neural network
architectures reveals that current techniques are unable to ad-
equately address these challenges (particularly C2 and C3),
which cannot be deduced from an overall performance score.

1Code and data available at https://github.com/UKPLab/
aaai19-diagnostic-reasoning
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First I wanted to see if the problem was new, so I checked the teacher’s observations. As it was the same back then,
I ruled out a trauma or another dramatic event. I was then undecided between autism and ADHD, since his social
behaviour seems to be problematic and that’s a sign for both diagnoses. In the end, I settled on ADHD since his script
seems chaotic and unorganised and because he seems to have some friends despite his difficult behaviour.

Figure 1: Exemplary diagnostic reasoning text from the teaching domain, annotated with epistemic activity segments: evidence
generation (green), evidence evaluation, drawing conclusions (yellow), hypothesis generation (blue).

Our contributions can be summarised as follows: (1) We
create and publish a novel corpus of German diagnostic rea-
soning texts annotated with epistemic activities in two dif-
ferent domains. (2) We identify three key challenges of the
epistemic activity identification task and propose a perfor-
mance measure for each, providing an evaluation framework
for future AI research progress on each challenge. (3) We
compare multiple state-of-the-art recurrent neural network
architectures for the automatic identification of epistemic
activities, showing that some of the challenges of our task
are not addressed by current methods.

2 Related Work
Natural Language Processing approaches have been suc-
cessfully applied to clinical diagnosis and decision-making
(Demner-Fushman, Chapman, and McDonald 2009; Prakash
et al. 2017). These works focus on predicting a diagnosis
from clinical narratives (i.e. descriptions of clinical findings)
without considering the diagnostic reasoning process. In con-
trast, our goal is to form the basis for fostering students’
diagnostic reasoning skills by providing a resource for the
automatic identification of students’ reasoning steps.

Diagnostic Reasoning. The process of diagnostic reason-
ing, in particular in terms of epistemic activities (Fischer et
al. 2014), has been investigated in both educational and pro-
fessional contexts (Ghanem et al. 2016; Lenzer et al. 2017).
These studies focus on protocols to capture reasoning while
diagnosing. In contrast, we rely on students’ self-explanations
of their reasoning. Furthermore, we annotate epistemic ac-
tivities as text segments that can have any length rather than
using pre-segmented phrases. Based on datasets from these
previous studies, Csanadi et al. (2016) and Daxenberger et al.
(2017) automatically classify the pre-segmented phrases into
epistemic activities using a conditional random field. Lerner
et al. (2016) further propose visualisation tools for scientists,
illustrating the results of such automatic classification algo-
rithms. Since no existing datasets are publicly available, it
is hard to reproduce and build upon these previous efforts.
We thus make our corpus and the corresponding analysis
software publicly available.

Meng, Rumshisky, and Sullivan (2018) propose an annota-
tion schema for problem-solving dialogues. While some of
their categories are similar to epistemic activities (e.g. anal-
ysis), the schema focuses on dialogues and is limited to
their specific robotics use case (e.g. query robot, algorithmic
thinking-variable). Similar to our work, they test LSTM-
based tagging approaches, but neither their implementation
nor their data is publicly available.

Argumentation Mining. Related to the study of diagnos-
tic reasoning is argumentative reasoning, which has recently
received growing attention from the NLP community. The
focus has been on identifying argument components (Lippi
and Torroni 2015; Schulz et al. 2018) or whole arguments,
made of components (such as premises and claims) as well
as attacking and supporting relations between them (Menini
et al. 2018; Habernal and Gurevych 2017). Like us, Stab and
Gurevych (2014) and Nguyen and Litman (2018) investigate
arguments in an educational setting by automatically identi-
fying arguments in students’ persuasive essays. These and
other works in argumentation mining generally investigate
arguments as the product (see e.g. Habernal and Gurevych
2017) of the argumentative reasoning process. In contrast, we
analyse the argumentative, in this case diagnostic, reasoning
process. Our work thus adds not only a new corpus, but also
a new research angle to the field of argumentation mining.

3 A Corpus of Epistemic Activities
To simulate professional diagnostic decision-making, case
scenarios that ask students for a diagnosis in a specific
problem-solving scenario are frequently used (Thistlethwaite
et al. 2012). The underlying data of our corpus was col-
lected by educational psychologists using eight case scenar-
ios for the medicine and eight for the teaching domain. In the
medicine domain, the anamnesis and results of various medi-
cal tests of fictional patients were given to medical students.
In the teaching domain, the information provided to teacher
students comprised observations about fictional pupils’ be-
haviour, a report of grades, and a transcript of a meeting with
the parents.

Diagnostic reasoning of medical and teacher students was
captured by means of self-explanations, prompting them to
reflect on their reasoning process (Renkl 2014). In each case
scenario, the students were asked ‘What is the diagnosis?’
and ‘How did you come up with this diagnosis?’. The written
explanations constitute the (diagnostic) reasoning texts used
for our corpus. Figure 1 depicts such a reasoning text.

3.1 Guideline Development and Annotation Setup
To analyse students’ diagnostic reasoning, educational psy-
chologists (Fischer et al. 2014) suggest a taxonomy of epis-
temic activities. The ones relevant for our context are: hy-
pothesis generation (HG; the derivation of possible answers
to the problem), evidence generation (EG; the derivation
of evidence, e.g. through deductive reasoning or observing
phenomena), evidence evaluation (EE; the assessment of
whether and to which degree evidence supports an answer to
the problem), and drawing conclusions (DC; the aggregation
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Domain αU αU -HG αU -EG αU -EE αU -DC αU -segment ↑αU -pair ↓αU -pair

medicine 0.67 0.60 0.65 0.75 0.56 0.86 0.71 0.62
teaching 0.65 0.43 0.56 0.75 0.49 0.82 0.67 0.63

Table 1: Inter annotator agreement (IAA) in terms of Krippendorff’s αU .

Domain αU -HG&DC αU -EE&DC αU -HG&EE αU -EG&EE αU -EG&HG αU -EG&DC

medicine 0.71 0.85 0.78 0.78 0.61 0.56
teaching 0.62 0.81 0.77 0.72 0.47 0.48

Table 2: IAA (αU ) when merging epistemic activities. Bold indicates a value higher than both single activities.

and weighing of evidence and knowledge to derive a final
answer to the problem).

Drawing upon the expertise of educational psychologists
and implementing their requirements as to what constitutes
an epistemic activity in a reasoning text, we aim to capture
epistemic activities as accurately and naturally as possible.
Thus, annotators simultaneously identify epistemic activity
segments and their type (HG, EG, EE, or DC). Epistemic
activities can therefore have any length and are not restricted
to predefined segments. Our only rule for identifying epis-
temic activity segments is that any word indicative of the role
an epistemic activity plays in the reasoning process should
be part of the segment. Note that the unrestricted segment
length also allows for the annotation of overlapping or nested
epistemic activity segments. Especially the definition of DC
indicates potential overlaps between DC and EE.

In four pilot annotations with educational psychologists,
we further refined the definitions of EG and EE to the context
of diagnostic reasoning texts: Due to the case scenario setup,
students cannot generate evidence in the original sense, for
example by performing tests or studies, since such evidence is
already given in the case scenario information. We thus define
EG as explicit statements of obtaining evidence from the case
information or of recalling own knowledge, as shown in
Figure 1. Moreover, many students do not explicitly evaluate
evidence concerning its degree of relevance in supporting
or refuting a potential answer, as defined for EE. We thus
interpret the mentioning of evidence as an active selection of
information considered relevant and define EE in this manner.

The resulting cross-domain annotation guidelines are un-
derstandable by annotators without previous knowledge
about epistemic activities, which makes the guidelines easily
adaptable to new domains. We recruited four expert annota-
tors from the teaching and five from the medicine domain,
who are all native German speakers.

Using the open-source INCEpTION Annotation Tool (Klie
et al. 2018), we performed three rounds of annotations, each
followed by a discussion to identify and resolve difficulties.
This ensured a high quality of our corpus. In the first and
second annotation rounds, a set of (respectively) 100 and
50 reasoning texts was annotated by all domain annotators.
Since we found satisfactory inter-annotator agreement, each
annotator then annotated a different set of 100 texts in the
third round. We thus obtained annotations for 550 reasoning
texts in the teaching and 650 in the medicine domain.

3.2 Reliability of Annotations
We evaluate the quality of annotations in terms of agreement
between the domain annotators in the first two annotation
rounds. Since our annotation task involves not only clas-
sifying the type of epistemic activity but also identifying
segments, we apply Krippendorff’s αU (Krippendorff 1995)
as implemented in DKPro Agreement (Meyer et al. 2014).

The first five columns in Table 1 show the overall agree-
ment and the agreement for each epistemic activity. We note
that the agreement between annotators in the medicine do-
main is slightly higher than in the teaching domain. This
result is in line with comments by the teaching annotators,
that reasoning texts vary widely in terms of writing style and
terminology, making the annotation task more difficult than
in the medicine domain, where most students use a similar ter-
minology. This is further reflected in the lower agreement on
segments (when not considering the type of epistemic activ-
ity) in the teaching domain (αU -segment in Table 1). Overall,
the agreement of more than 0.8 on segments shows that epis-
temic activity segments can be reliably identified by human
annotators. Note that the fact that there were five annotators
in the medicine and only four in the teaching domain does not
affect the comparability of agreement scores: when forming
groups of four medicine annotators, the αU scores are 0.66,
0.66, 0.66, 0.67, and 0.68, which are in correspondence with
the score of all five annotators.

To make sure that none of the annotators produced unre-
liable annotations, we compute pairwise agreement scores.
The highest and lowest scores are reported in the last two
columns of Table 1, showing that even the lowest pairwise
agreement still indicates reliable annotations. Upon closer
inspection, none of the annotators has consistently low agree-
ment with all other annotators. We thus conclude that all
of our annotators produce annotations of similar reliability,
justifying the third annotation round with only one annotator
per reasoning text.

3.3 Annotation Difficulties
The agreement scores in Table 1 indicate that HG and DC are
the most difficult to identify amongst the epistemic activities.
In Table 2, we further investigate this difficulty and show that
the reason for this is that HG and DC are often confused:
when treating HG and DC as a single epistemic activity, the
annotators’ agreement improves by at least 18% compared
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EG EE HG DC EG/EE HG/DC DC/EE EG/HG HG/EE EG/DC

M
eD

# 219 2124 623 493 5 4 342 0 12 4
av. # 0.35 3.27 0.96 0.76 – – – – – –
av len. 10.1 11.6 9.0 16.0 3.8 8.5 9.8 – 5.7 6.8

Te
D

# 354 2671 311 444 8 2 143 3 8 3
av. # 0.64 4.86 0.57 0.81 – – – – – –
av. len. 12.4 12.1 13.5 15.4 7.9 22.0 10.9 6.0 11.1 11.7

Table 3: Corpus statistics in terms of absolute number (#), average number per text (av. #), and average number of tokens (av.
len), where EE/EG (and similar) denotes an overlap of an EG and EE segment.

to the agreements for the two separate epistemic activities.
We observe a similar trend when treating EE and DC as a
single epistemic activity, where the agreement increases by
at least 8%. This indicates that EE and DC are also difficult
to distinguish. These two distinction problems suggest that it
may also be problematic to distinguish HG and EE. Indeed
our findings in Table 2 show that treating the two as a sin-
gle epistemic activity also increases the agreement. Overall,
our analysis suggests that distinguishing HG, DC, and EE is
more difficult in the teaching domain, as we observe a larger
increase of agreement when merging the epistemic activi-
ties. This difficulty in distinguishing epistemic activities may
prove to be a challenge for AI methods that automatically
identify epistemic activities.

EG is seldom confused with other epistemic activities (see
Table 2). The only distinction problem, especially in the
medicine domain, is with EE. We attribute this to the implicit
use of evidence, such as naming medical tests rather than the
results of these tests as evidence. For example, “important
for the diagnosis are the neurological and physical examina-
tions” is EE as it provides information considered relevant
for making a diagnosis. However, some annotators marked
this as EG, as it implicitly expresses that the student obtained
evidence from the case scenario information (namely the
neurological and physical examination notes).

3.4 Gold Annotations
Given our annotations, we generate gold segments and labels
for both domains, which results in our final corpus consisting
of 550 annotated text from the teaching domain (TeD) and
650 annotated text from the medicine domain (MeD).

Gold Standard Creation. For the first and second anno-
tation round, where each text was annotated by all domain
annotators, we first apply majority voting and subsequently
resolve the annotations not decidable in a discussion between
the annotators. In the medicine domain, an annotated segment
is considered a gold annotation by majority voting, if this
exact segment is annotated as the same epistemic activity by
four out of the five annotators. We opt for a majority of four
instead of three to ensure a high quality of our corpus, thus
avoiding segments incorrectly labeled by three of the five
annotators. Indeed, 20% of the 517 annotations not decidable
by our majority voting were given a different label during the
annotators’ discussion than a majority voting of three would
have assigned. In the teaching domain, a segment annotated

exactly the same by three out of the four annotators is con-
sidered a gold annotation. For the third annotation round, the
annotations of each annotator are taken as gold annotations.

A distinguishing feature of our new corpus is that segments
with different labels may overlap, i.e. a token may belong
to two different epistemic activity segments. Overlapping
segments have so far mostly been studied for lower-level
tasks such as named-entity recognition (Alex, Haddow, and
Grover 2007; Ling and Weld 2012) or as arising from jointly
modeled lower-level tasks (McDonald, Crammer, and Pereira
2005). However, named entities constitute much shorter seg-
ments than the ones found in our corpus. For high-level tasks,
overlapping segments provide a new direction of research,
which has so far only been explored for discourse units in
Wikipedia and news articles (Afantenos et al. 2010), where,
in contrast to our corpus, overlapping segments do not be-
long to different classes. Due to the lack of resources so far,
the identification of overlapping segments may prove to be
challenging for AI methods aiming to automatically identify
epistemic activities.

Corpus Analysis. In an analysis of our new corpus, we find
that reasoning texts in TeD are over 50% longer than those
in MeD (average token count per text: 100 versus 64). This
difference in length can be partly attributed to the inclusion
of more statements not constituting an epistemic activity by
teacher students, on average ten tokens as compared to three
tokens by the medical students. Our analysis also reveals that
epistemic activity segments may consist of anything between
one or two tokens, and two or three sentences. This supports
the requirement of educational psychologists that epistemic
activities should be annotated without pre-segmentation.

Table 3 compares the two parts of our corpus in more de-
tail. We observe that, overall, teacher students use more and
longer epistemic activities than medical students. Interest-
ingly, there is nearly no difference in the length or average
number of DCs used in the medicine and teaching domain.
Furthermore, HG is used more frequently by medical stu-
dents, while teacher students engage more frequently in EE
and EG. We attribute the former observation to the diagnostic
training included in the medical but not in the teacher educa-
tion curriculum, so medical students are more aware of the
importance of forming hypotheses than teacher students. The
latter observation may be due to the less concise writing and
reasoning style of teacher students, leading to the annotation
of multiple EE segments rather than a single one. Table 3
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also highlights that overlaps between all types of epistemic
activities occur in our corpus. As can be expected from the
definition of DC, the majority is between DC and EE.

Concluding the analysis of our corpus, we note that the
distribution of epistemic activities is highly skewed, with
62/70% (MeD/TeD) being EE and only 6/10% (MeD/TeD)
being EG. This in combination with the fact that annotators
found it difficult to distinguish HG, DC, and EE suggests that
our new corpus may prove challenging for algorithms aiming
to automatically identify epistemic activities.

4 Automatic Identification of
Epistemic Activities

Having created a high-quality corpus of epistemic activities,
which naturally captures the epistemic activity identification
task performed by educational psychologists, this section fo-
cuses on how to apply machine learning methods to scale up
this task. Our corpus has three intrinsic characteristics: it pro-
vides segments of arbitrary length (C1), it distinguishes differ-
ent epistemic activity types (C2), and it includes overlapping
epistemic activity segments (C3). These can be interpreted
as challenges that an ideal method should address.

4.1 Modeling the Task
Challenges C1 and C2 imply that we are dealing with a multi-
class sequence labeling task, as for example encountered in
the related task of argument component identification (Schulz
et al. 2018). This is commonly modeled by assigning a label
to each token that expresses both the type of segment, here
the type of epistemic activity A = {HG,EG,EE,DC},
and the segment boundaries in terms of BIO-labels S =
{B, I,O}, indicating the beginning (B), continuation (I), or
absence (O) of a segment. That is, the possible labels for each
token are C = ({B, I} ×A) ∪ {O}. However, challenge C3
turns our task into a multi-label problem (Tsoumakas and
Katakis 2007), in which each token may be associated with
multiple labels, i.e. a subset C ′ ⊆ C.

One way to tackle multi-label tasks is through problem
transformation. Here, we use three transformation strategies
to obtain: 1) multiple (single-label) multi-class problems, 2)
a unique (single-label) multi-class problem, and 3) a multi-
dimensional classification problem.

For the first transformation strategy, called SEPARATE, we
map the class labels C to four separate class labels CHG =
CEG = CEE = CDC = S. Each Ci represents a separate
multi-class classification problem, i.e. the identification of
each epistemic activity is treated as a separate task. This
setup has the obvious drawback of having to optimize each
epistemic activity separately.

The second transformation, called CONCAT, creates a new
set of class labels, which consists of all possible combina-
tions of different epistemic activity segments that may be
associated with a token, i.e. concatenations of BIO-labels
for each epistemic activity: Cconcat = S|A|. For example,
the first token of the last sentence in Figure 1 is labeled
as O-O-O-B (beginning DC), the following tokens up to
‘ADHD’ asO-O-O-I (continuation DC), ‘since’ asO-O-B-I
(beginning EE, continuation DC), all following tokens up to

‘unorganised’ as O-O-I-I (continuation EE and DC), and the
full stop as O-O-O-O. The transformation thus results in a
single-label multi-class task. In theory, this transformation
implies an explosion in possible class labels (namely 81).
However, in practice only a small portion of these occur in
our data (12 in MeD, 16 in TeD).

Finally, our third transformation, called MULTI-OUTPUT,
models the multi-label task as a multi-output (also called
multi-dimensional) classification problem (Read, Bielza, and
Larrañaga 2014; Borchani et al. 2015), where CHG, CEG,
CEE , and CDC are the class labels of the four-dimensions to
be jointly predicted.

4.2 Neural Architectures
Recurrent Neural Networks are state-of-the-art for multi-
class sequence labeling tasks (Ma and Hovy 2016). We ap-
ply Reimers and Gurevych’s (2017) implementation of a
bidirectional long short-term memory (BiLSTM) network
with a conditional random field (CRF) output layer for the
two transformations SEPARATE and CONCAT, as these re-
sult in multi-class tasks. For SEPARATE, we train a separate
BiLSTM-CRF for each epistemic activity, each predicting
one of the sequence classes CHG, CEG, CEE , and CDC

per token. For CONCAT, we train a single BiLSTM-CRF to
predict a single Cconcat label per token.

For MULTI-OUTPUT, we implement a multi-output archi-
tecture similar to Reimers and Gurevych’s (2017), but using
a shared BiLSTM with multiple CRF output layers instead of
only one. Each CRF layer predicts one of the classes CHG,
CEG, CEE , and CDC .

As a reference, we use two baselines: First, a majority
baseline, denoted MAJ-BASELINE, which always predicts
the most frequent C ′ ⊆ C, resulting in the single label I-EE
(continuation EE) for all tokens. Second, a single-label multi-
class classification setup PREF-BASELINE, which trains a
BiLSTM-CRF to predict a single label (rather than multiple)
from C = ({B, I}×A)∪{O}. This necessarily ignores any
overlaps of epistemic activity segments. To train this model,
we apply the following preference order over epistemic ac-
tivities derived from the label frequencies in our corpus (see
Table 3) and an importance rating by educational psycholo-
gists: DC � HG � EG � EE. The most frequent activity
EE receives the lowest preference (i.e. it is only used as a
label if it does not overlap with other activities), while DC
is preferred over all other labels due to its importance and to
ensure a sufficient amount of training instances. Note that the
preference order is applied on a segment rather than token
level. For example, the first token of the last sentence in Fig-
ure 1 receives the label B-DC, all following tokens before
the full stop I-DC and the full stop itself the label O.

Experimental Setup: We split our data into 60% train,
20% dev, and 20% test sets, using the same proportion of
case scenarios in all splits. We perform ten runs for each
architecture, applying the following parameters for all of
them: one hidden layer of 100 units, variational dropout rates
for input and hidden layer of 0.25, and the nadam optimizer.
We furthermore use the German fastText word embeddings
(Grave et al. 2018).
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HL MS MA MO

Architecture all EG EE HG DC all EG EE HG DC
M

eD
MULTI-OUTPUT 0.07 71.60 80.20+ 69.28 65.32 22.21+ 63.09 66.39+ 45.50 44.76
SEPARATE 0.07 70.87 80.24+ 68.53 65.80 21.25+ 63.15 65.31+ 50.26 49.26
CONCAT 0.06+++ 71.05 79.96+ 69.36 65.18 23.01++ 67.86 66.43+ 44.51 45.40

PREF-BASELINE 0.07 70.02 75.46 69.32 65.74 19.77 52.91 38.87 46.34 49.03
MAJ-BASELINE 0.11 32.70 23.49 30.48 29.96 4.25 33.13 31.00 32.61 1.39

human upper bound 0.04 85.61 90.25 86.37 85.58 35.06 100.00 76.15 91.38 76.50

Te
D

MULTI-OUTPUT 0.07 78.53 78.87+ 57.16 61.77 19.96+ 58.42 71.98+ 32.61+ 47.10
SEPARATE 0.07 76.38 79.47+ 57.05 57.52 18.34 54.68 78.89+++ 32.09 36.11
CONCAT 0.06++ 78.71+ 79.07+ 57.12 62.53+ 21.68+++ 56.75 68.75+ 32.51 51.97+

PREF-BASELINE 0.06 77.60 77.21 55.67 61.02 18.93 57.25 45.15 36.62 49.71
MAJ-BASELINE 0.11 31.75 23.11 32.03 30.97 4.42 31.21 30.75 32.61 6.28

human upper bound 0.03 93.29 90.71 81.77 82.11 30.58 78.68 88.99 79.96 95.04

Table 4: Performance of our architectures and human upper bound. The + indicate how many other methods (excluding
MAJ-BASELINE) this method significantly outperforms (Mann-Whitney U Test, P < 0.05 with Bonferroni correction).

4.3 Evaluation Metrics
Multi-label classification tasks are typically evaluated using
hamming loss (Schulz et al. 2014; Sokolova and Lapalme
2009). This metric quantifies the amount of incorrect labels
per token, averaged over all tokens:

HL =
1

|X |
∑
x∈X

1

|C|
∑
c∈C

xor(yx,c, ŷx,c) (1)

where X is the dataset (set of tokens to be classified), yx,c is
1 if token x has label c in the the gold data, and 0 otherwise,
and ŷx,c is 1 if token x has label c in the prediction, and 0
otherwise. xor(·, ·) is the usual exclusive-or function.

Given the three challenges associated with the automatic
identification of epistemic activities that a machine learning
method should be able to tackle, we propose to evaluate each
challenge using a separate metric, rather than merely relying
on one overall performance score such as HL. Regarding
C1, we measure the segmentation performance in terms of
how well the segmentation labels S are predicted for each
epistemic activity, thus obtaining a separate performance
score for each a ∈ A:

MS(a) = macro-F1(Ca,X ) (2)

where macro-F1 is the macro-averaged harmonic mean be-
tween precision and recall across all labels in Ca.

The performance of C2 is assessed as performance in
predicting the correct epistemic activity, or a combination
thereof2, for each token. Whether a token constitutes the be-
ginning or continuation of an epistemic activity is disregarded
by this metric:

MA = macro-F1(P(A),X ) (3)

To evaluate C3 – the ability to predict overlapping seg-
ments – we measure the performance only on those tokens

2The empty set in P(A) denotes label O ∈ C. Note that the
upper bound of MA is 62.5 due to label sets that never occur in the
gold data, e.g. {HG,EG,EE,DC}.

that are associated with at least two labels, i.e. where for
the set of associated labels C ′ ⊆ C it holds that |C ′| ≥ 2.
We denote this set of tokens by Xoverlap and again obtain a
separate performance score for each a ∈ A:

MO(a) = macro-F1(Ca,Xoverlap) (4)

In the next section, we evaluate our different neural archi-
tectures using HL and the three challenge-specific metrics to
measure how well the architectures address the challenges.

4.4 Analysis and Discussion of Results
Table 4 presents our performance results in terms of averages
over ten runs. Since each of the four metrics evaluates dif-
ferent class labels and sets of tokens, a mapping from the
outputs of all neural architectures to the respective classes
and token sets is applied. For better interpretability of the
scores achieved by the architectures, Table 4 also reports the
best score for each metric achieved by some annotator as the
human upper bound.

Overall Performance. As can be expected given the com-
plexity of this task, the MAJ-BASELINE does not address any
of the three challenges, performing poorly across all per-
formance metrics. In contrast, PREF-BASELINE achieves
comparable results to the other neural architectures.

All three neural architectures achieve similar overall per-
formance in terms of the hamming loss HL, confirming the
necessity for additional performance measures able to assess
performance along multiple dimensions. As there is still a
prominent performance gap to the human upper bound, we
now analyse each identified challenge in detail to understand
which research direction is most promising to improve the
current state-of-the-art methods in the future.

C1. Regarding the challenge of segmentation and the as-
sociated metric MS , we again observe that all architectures
exhibit similar performance, including our second baseline
model PREF-BASELINE. It only exhibits a disadvantage in
predicting EE segments, which can be attributed to the ‘pe-
nalisation’ of EE in cases where EE overlaps with other
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epistemic activities (due to the preference order). In such
cases, PREF-BASELINE is trained to predict one of the other
epistemic activities, rather than EE.

Overall, segmenting EE is easiest for the other architec-
tures. One reason for this may be the less skewed distribution
of segment labels (B: 6%, I: 53%, O: 43%) as compared to
the other epistemic activities, which all exhibit a similarly
skewed distribution of B: 1%, I: 9%, and O: 90%. The better
performance on EG compared to HG and DC can thus be
attributed to easier identifiability of EG, for example due to
linguistic cues, rather than the label distribution.

We observe that the performance trends on segmenting
the different epistemic activities as well as the differences in
MeD and TeD match the trends in the human upper bound.
Overall, our architectures achieve 78–89% of the human
upper bound on MeD and 70–88% on TeD, indicating that
state-of-the-art methods can perform segmentation reason-
ably well.

C2. Concerning the distinction of epistemic activities as
measured by MA, all architectures achieve less than 66%
(MeD) and 71% (TeD) of the human upper bound, with the
CONCAT architecture performing best. Our detailed analysis
reveals that this is due to the more reliable prediction for
tokens associated with only one epistemic activity compared
to the other architectures. However, the relatively low per-
formance highlights that the task of distinguishing different
epistemic activities is highly challenging.

Figure 2 shows an exemplary confusion matrix (of CON-
CAT for MeD) regarding the task measured by MA, i.e. for
labels P(A). Each row indicates the percentage of tokens
associated with this label that were (in)correctly classified.
Labels that do not occur in the gold data or in predictions
are omitted in the figure. We observe that most confusion
occurs due to prediction of the majority label EE, indicating
that the skewed distribution of epistemic activities is a prob-
lem for the neural architectures. Furthermore, DC and HG
are frequently confused, mirroring the distinction difficulty
observed during corpus creation.

C3. The evaluation of overlapping segments in terms of
MO shows that our architectures can reasonably identify EE
in overlapping segments (87%/89% of human upper bound in
MeD/TeD), but perform poorly on identifying HG segments
involved in overlaps (55%/46% of human upper bound in
MeD/TeD). This may be due to the small amount of over-
laps involving HG (see Table 3). However, the equally infre-
quent overlaps involving EG can be predicted more reliably,
whereas the frequently occurring overlaps with DC achieve
poor results. Thus, the poor performance on overlaps is not
only due to the skewed label distribution, but also to the in-
herent difficulty of overlapping epistemic activities, which is
highly challenging for state-of-the-art methods.

The confusion matrix (Figure 2) sheds further light on
the prediction of overlaps: For overlaps of two epistemic
activities, our architectures often identify only one of them.
For example,EE-DC is mostly wrongly predicted to be only
EE or only DC. Note that CONCAT only predicts overlaps
between epistemic activities that also occur in the training
data. In contrast, SEPARATE also predicts other overlaps,
even overlaps between three epistemic activities.

Figure 2: Confusion matrix of CONCAT for MeD.

5 Conclusion and Discussion

We presented a novel corpus of diagnostic reasoning texts
written by medical students and pre-service teachers, which
are annotated with epistemic activities. We identified three
intrinsic characteristics of our corpus, which constitute chal-
lenges for AI methods aiming to automatically identify epis-
temic activities. To measure the performance of AI systems
on each of these challenges, we propose a separate perfor-
mance metric for each challenge. These provide an evaluation
framework for future research.

Indeed, we show that state-of-the-art recurrent neural net-
work architectures are unable to satisfactorily tackle two of
the three challenges, namely the accurate distinction of dif-
ferent epistemic activities and the correct identification of
overlapping epistemic activity segments. This leads to two
conclusions: On the one hand, it is crucial to evaluate AI
systems along different task-specific characteristics, instead
of simply using common overall metrics, such as the overall
F1 score or hamming loss. On the other hand, future work
needs to focus on the development of systems specifically
designed to tackle the challenges of our novel corpus. Such
systems will also prove useful for other multi-label sequence
labeling tasks.

We expect that our work will have a large impact for edu-
cational psychologists as it is a crucial step towards automat-
ically generating feedback on students’ reasoning at a large
scale. As a next step, we will investigate new approaches to
better solve the three challenges of epistemic activity identifi-
cation and extend our task to the automatic assessment and
feedback generation for diagnostic reasoning.
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