
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Analysis of Joint Multilingual Sentence
Representations and Semantic K-Nearest Neighbor Graphs

Holger Schwenk, Douwe Kiela, Matthijs Douze
Facebook AI Research

{schwenk,dkiela,matthijs}@fb.com

Abstract

Multilingual sentence and document representations are be-
coming increasingly important. We build on recent advances
in multilingual sentence encoders, with a focus on efficiency
and large-scale applicability. Specifically, we construct and
investigate the k-nn graph over the joint space of 566 mil-
lion news sentences in seven different languages. We show
excellent multilingual retrieval quality on the UN corpus of
11.3M sentences, which extends to the zero-shot case where
we have never seen a language. We provide a detailed analy-
sis of both the multilingual sentence encoder for twenty-one
European languages and the learned graph. Our sentence en-
coder is language agnostic and supports code switching.

1 Introduction
Multilingual representations, at the word, sentence or docu-
ment level, are becoming increasingly important. The main
motivation for such joint multilingual representations is the
desire to transfer NLP applications across languages, using
no or only a limited amount of resources for the target lan-
guage. This is particularly useful in cases where the target
language is low-resourced, as is the case for most languages
in the world. Multilingual representations tend to be eval-
uated on cross-lingual document classification, where the
standard task is based on the Reuters corpus (Klementiev,
Titov, and Bhattarai 2012; Schwenk and Li 2018) or senti-
ment analysis (Chen et al. 2016). More recently, SemEval-
17 (Bethard et al. 2017) organized a task on multi- and
cross-lingual semantic word similarity, as well as a task on
semantic textual similarity for multiple monolingual and a
few cross-lingual pairs. These examples illustrate that mul-
tilingual representation learning has mostly been focused on
constructing optimal representations only for specific tasks,
and has often been limited to two languages only. Recently,
a natural language inference task (NLI) was extended to fif-
teen languages (Conneau et al. 2018).

At the same time, a large body of research has devel-
oped that concerns itself with learning “universal represen-
tations” for a single language, usually English. The goal
of such representations is to perform well on many tasks.
On the one hand, unsupervised approaches have shown to
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be promising, e.g. (Kiros et al. 2015; Peters et al. 2018),
due to their ability to take advantage of huge corpora.On
the other hand, it was shown that state-of-the-art results
can be obtained with supervised training on an NLI cor-
pus (Conneau et al. 2017). Extending this idea, multi-
task learning was successfully applied to learning univer-
sal sentence representations, e.g. (Subramanian et al. 2018;
Cer et al. 2018).

In this paper we learn universal multilingual sentence rep-
resentations for twenty-one languages, and show how they
can be applied to a variety of problems efficiently and at a
large scale, going beyond the traditional limited set of eval-
uations. The major contributions of this work are:
• we train a joint multilingual sentence embedding with a

shared byte-pair-encoding for 21 European languages;
• we construct a large k-nn graph over the joint space of

566M sentences in seven languages.
• we provide a detailed quantitative analysis comprising im-

portant open questions such as:
– how many BPE tokens are shared between languages?
– to what extent does this overlap reflect the linguistic

properties of the languages and their categorization into
language families?

– how dense are the k nearest neighbors?
– is it possible to extract trajectories between sentences

in the graph that are linguistically plausible?
– does the model support code-switching, i.e. words from

multiple languages in one sentence?
• we show that our multilingual encoder outperforms pre-

vious work on large scale similarity search: we achieve a
precision@1 of 83.3 on the reconstruction of the UN cor-
pus of 11.3M English/French sentences, in comparison to
P@1 of 48.9 obtained by (Guo et al. 2018);

• we define new quantitative evaluation tasks to analyze the
generalization behavior of multilingual sentence embed-
dings with respect to unseen domains and languages;

• we show that our system is able to handle zero-shot trans-
fer to several linguistically related languages without us-
ing any resources of those languages;

• the code used in this paper is freely available in
the LASER toolkit (Language Agnostic SEntence
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Representations).1 We also make available the entire k-nn
graph over all 566M sentences.
This paper is organized as follows. We first summarize

related work, and then describe our approach for learning
a multilingual joint sentence representation space and de-
scribe efficient ways to calculate an k-nn graph over 566M
sentences. Section 4 provides a detailed qualitative analy-
sis, in order to more closely examine the learned represen-
tations. Full quantitative results, including comparison with
other works, are then presented in section 5. Finally, we con-
clude this paper with directions for future research.

2 Related Work
There is an increasing body of research on the topic of learn-
ing multilingual sentence representations, for instance (Her-
mann and Blunsom 2014; Pham, Luong, and Manning 2015;
Zhou, Wan, and Xiao 2016; Chandar et al. 2013; Mogadala
and Rettinger 2016). In this paper, we build upon the ap-
proach of (Schwenk and Douze 2017), who experiment with
multiple sequence encoders and decoders, trained with N -
way aligned corpora from the machine translation commu-
nity. The paper shows that the cosine distance in the joint
embedding space appears to be proportional to the linguis-
tic similarity of the sentences, independently of the original
languages that the sentences were written in. Their analysis
was limited to multilingual similarity search and paraphras-
ing. In follow up work (Schwenk 2018), one single shared
BiLSTM encoder for all input languages was used, similar to
ideas in multilingual neural MT (Johnson et al. 2016). How-
ever, this system was only evaluated on the task of filter-
ing and mining parallel data for neural machine translation.
A very similar approach for bitext mining was proposed in
(España-Bonet et al. 2017). A joint NMT system with atten-
tion is trained on several languages pairs, similar to (John-
son et al. 2016), including a special token to indicate the tar-
get language. After training, the sum of the encoder output
states is used to obtain a fixed size sentence representation.
More recently, (Guo et al. 2018) train bilingual sentence
embeddings and report bitext filtering performance and re-
construction of the UN corpus. Other approaches which
use the distance between sentence representations in two
different languages include (Grégoire and Langlais 2017;
Bouamor and Sajjad 2018; Hassan and et al. 2018)

We are not aware of other works concerned with the in-
depth analysis of the generalization behavior of multilingual
sentence embeddings, nor of the construction and analysis
of large scale k-nn graphs in a multilingual space.

3 Approach
In this section, we describe the process for learning univer-
sal multilingual sentence representations, as well as how we
construct the k-nn graph over the joint space.

3.1 Multilingual sentence representations
In this paper, we build on the encoder/decoder approach of
(Schwenk 2018), and its open-source LASER implementa-
tion. The basic architecture is the same as used in (Artetxe

1https://github.com/facebookresearch/LASER

and Schwenk 2018), see Figure 1. We use a single shared
BiLSTM encoder for all twenty-one languages. The word
embeddings are 384 dimensional, and the BiLSTM uses five
layers of size 512, respectively. Dropout is set to 0.1. The
1024-dimensional sentence embedding is obtained by max-
pooling over the BiLSTM outputs. The decoder is a 5-layer
LSTMs with 2048-dimensional hidden layers, and shared
for two target languages: English and Spanish. An addi-
tional 32-dimensional embedding layer is used to give the
language information to the decoder.

We use byte-pair encoding (BPE) (Sennrich, Haddow, and
Birch 2016) with 40k merge operations to learn a joint vo-
cabulary for all the twenty-one languages.2 Larger vocabu-
laries achieve only slight improvements. As such, we hope
to learn better multilingual models, and to be able to gen-
eralize to languages not seen during training. In contrast to
(Johnson et al. 2016), we do not use a special input token to
indicate the target language. Our joint encoder has no infor-
mation at all on the encoded language, or what will be done
with the sentence representation.

The purpose of this work is not to train multilingual joint
sentence embeddings for as many languages as possible, but
to study several properties of the joint embedding space. We
trained our model on the twenty-one languages of the Eu-
roparl corpus (Koehn 2005). These cover several and diver-
sified language families:

• Germanic: English (en), Danish (da), Dutch (nl), Ger-
man (de) and Swedish (sv);

• Romance: French (fr), Italian (it), Portuguese (pt) and
Romanian (ro) and Spanish (es);

• Slavic: Bulgarian∗ (bg), Czech (cs), Polish (pl),
Slovak (sk) and Slovenian (sl);

• Baltic: Latvian (lv) and Lithuanian (lt);

• Uralic: Estonian (et), Hungarian (hu) and Finish (fi);

• Hellenic: Greek∗ (el)

An important aspect of this work is the analysis of the
generalization behavior to new languages (see Sections 5.2
and 5.4). For this purpose, we evaluate additional languages
which are in the same linguistic family as some of the trained
ones:

• Germanic: Afrikaans (af), Norwegian Bokmål (no) and
Norwegian Nynorsk (nn);

• Romance: Catalan (ca), Chavacano (cbk)
and Galician (gl);

• Slavic: Bosnian∗ (bs), Croatian (hr), Macedonian∗ (mk),
Russian∗ (ru) and Serbian∗ (sr)

We would like to stress that no resources of these gen-
eralization languages are used during training, not even
monolingual resources. There are two official written stan-
dards of Norwegian: “Bokmål” is the preferred one, while
“Nynorsk” is used by an estimated 15% of the population.
Galician is spoken by more than two million people in North
West Spain, and Chavacano by 600 thousand people in the

2We use https://github.com/glample/fastBPE
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Figure 1: Architecture of our approach to learn joint
multilingual sentence embeddings, based on (Artetxe and
Schwenk 2018).

Philippines. All languages with an asterisk use the Cyrillic
script. We transliterate these languages into the Latin script
using an open-source tool.3 The shared encoder can handle
multiple scripts, but a common script is needed for our anal-
ysis of the joint BPE vocabulary (see Section 4.1). Train-
ing is done using bitexts, separately aligned with two target
languages: English and Spanish. We use the aligned texts
available on the OPUS web site (Tiedemann 2012).4 This
implements multi-task training with two target languages.
For each mini-batch, one language pair is selected.

3.2 Creating the multilingual k-nn graph
In the framework of the WMT evaluations,5 large collec-
tions of monolingual news texts are provided. Those can
be used for language modeling, for the purpose of mining
parallel data, see for instance (Schwenk 2018), or for back-
translation, e.g. (Edunov et al. 2018). We use these freely
available texts to construct our multilingual k-nn graph, cov-
ering the following languages: Czech, English, Estonian,
French, Finish, German and Spanish.

We performed some basic cleaning of the data: removal of
sentences with email addresses or references to WEB pages,
and sentences with less than 4 or more than 60 words. This
is motivated by the fact that it is very unlikely to find similar
long sentences. This totals to 566M sentences and roughly
10 billion words (see Table 1). For each sentence, we cre-
ate the k-nn graph by finding the 20 closest sentences in
the embedding space, i.e., k=20. These k closest sentences
can come from different languages. Calculating, storing and
searching in this graph is a significant computational chal-
lenge. Our sentence embeddings are of dimension 1024 and
are stored as floating point numbers with 4 bytes. All the
embeddings thus require 566M × 1024 × 4 = 2.4 TB for
storage. A brute force approach to obtain the k-nn graph, i.e.,
calculating the L2-distance between all vectors and keeping
the k smallest values, would require at least 566M2 × 1024
≈ 3.3× 1020 floating point operations.

We tackle this computational challenge with the highly
optimized FAISS library for efficient similarity search and
clustering of dense vectors (Johnson, Douze, and Jégou
2017).6 FAISS is mainly used for indexing and searching in
huge image collections, but it can operate on any type of ob-

3https://pypi.org/project/transliterate/
4http://opus.nlpl.eu/Europarl.php
5http://www.statmt.org/wmt18/translation-task.html
6https://github.com/facebookresearch/faiss

Lang. en de fr es cs fi et
# sents 186M 251M 39.0M 12.3M 61.8M 13.5M 2.7M
# words 4.2G 4.5G 929M 166M 104M 335M 45M

Table 1: Size of WMT’18 monolingual corpora (limited to
lower cased sentences with 4–60 words).

ject represented by fixed-size vectors. It offers a collection of
methods for reducing memory requirements and speeding up
searching over huge indices. In general, one has to aim for a
compromise between storage size, speed and search errors.
One straight-forward possibility would be to perform PCA
to reduce the dimension of the vectors. However this quickly
leads to high search errors and is unlikely to offer space
reductions larger than 10 times. After several experiments
with the available compression, quantization and search al-
gorithms available in FAISS, we found a good compromise
with the following setting: the collection of vectors is split
up with k-means into 16 384 well-balanced clusters, and
compressed with OPQ (Ge et al. 2013) to 32 bytes. This cor-
responds to the index type “OPQ32,IVF16384,PQ32” in
FAISS terms. By these means, we were able to reduce the
storage requirement of the index over the 566M sentences to
22 GB, i.e. a hundred times smaller than all the embedding
vectors. This index can be easily loaded into main mem-
ory of a standard server. The k-nn graph is built in brute-
force fashion: each vector in turn is used as a query. To
query a vector, a subset of 512 clusters is visited and query-
to-distance codes are computed without decompressing the
codes (Jegou, Douze, and Schmid 2011).

The calculation of the 566M sentence embeddings took
about 100h on GPU (which can be run in parallel by splitting
the data), and the creation of the compressed index needed
12h on a multi-threaded CPU. All the distances of the 20-nn
graph are calculated in a distributed way on 4 GPUs. This re-
quired about 55h of compute time. This k-nn graph is freely
available in the LASER toolkit, together with tools to ma-
nipulate and search the graph.

4 Qualitative Analysis
In this section, we provide a qualitative analysis of the
learned multilingual sentence representations. Having ob-
tained a better understanding of the sentence space, the next
section quantitatively evaluates its properties for retrieval.

We first analyze the joint BPE vocabulary and show its
potential for understanding differences between languages:
is there an overlap among the tokens used for each lan-
guage ?; to what extent does this overlap reflect the linguistic
properties of the languages and their categorization into lan-
guage families? Second, we believe that the k-nn graph over
566M sentences in seven languages will be a very useful re-
source to study relations between sentences and languages.
We study the distribution of the distances in the k-nn graph,
and subsequently examine a new algorithm for “warping”
from one sentence to another, making only small linguis-
tic changes at each step, leading to similarity trajectories
through semantic space.
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Figure 2: Graphical visualization of a phylogenetic tree over
the symmetrized KL-divergence between the BPE vocabu-
laries for each language pair. An asterisk at the language
name means that the texts are romanized.

4.1 Joint BPE vocabulary
Our shared multilingual sentence encoder uses a joint multi-
lingual BPE vocabulary. It is calculated by concatenating the
training corpora of all the twenty-one languages and finding
the most frequent character n-grams. We are interested in
knowing whether the vocabularies for each languages are
totally separate, i.e. each one has 40 k / 21 ≈ 1900 BPE to-
kens, or whether some tokens are used in several languages.
All the statistics in this section are calculated on ten million
sentences of Common Crawl data. Please remember that we
apply romanization for the languages which use a Cyrillic
script (Greek, Bosnian, Bulgarian, Macedonian, Serbian and
Russian).

The number of unique BPE tokens per language varies
between 11.9k (Slovak) and 13.9k (Finish), with less than
100 tokens appearing in each language only. This clearly
indicates that almost all BPE tokens are used by at least
two languages. Aiming at a detailed comparison, we cal-
culated the symmetrized KL-divergence between the dis-
tributions over the BPE tokens for all language pairs, ap-
plied a bottom-up neighbor joining algorithm and build a

0.0 0.2 0.4 0.6 0.8
squared distance

PD
F

nearest neighbor
20th neighbor

Figure 3: Distribution of squared distances between sentence
embeddings, for a sample of 50k sentences, it shows the dis-
tance to the nearest sentence and the 20th nearest sentence.

“phylogenetic tree”. The length of the branches reflects the
statistical closeness. As can be seen in Figure 2, the ob-
served statistical similarities based on the BPE vocabulary
distributions correspond surprisingly well to the linguisti-
cally defined languages families. All Germanic and Ro-
mance languages are clustered accordingly, and we even re-
cover the various sub-categories of Slavic languages. Within
one language family, we also see intuitive associations,
like Dutch/Afrikaans, Northern and Southern Germanic lan-
guages, Spanish/Galician or Czech/Slovak. The only excep-
tion is Hungarian which is considered as an Uralic language
but clustered with Slavic languages in our tree. The linguis-
tic classification of Hungarian does not seem to be unani-
mous between linguists – an affinity to the Turkic language
family has also been proposed. A detailed comparison of our
statistical clustering of the languages into a tree structure
with linguistic theories is beyond the focus of this paper.

4.2 Distance distributions
Figure 3 shows the distribution of distances between sen-
tences. Distances of 0 were removed, as these are just occur-
rences of the same sentence with minor changes in punctua-
tion or unicode normalization artifacts. Distances below 0.1
correspond to tiny changes in word choice “But it comes at
a cost”↔ “But this comes at a cost”.

Around 0.2 corresponds to more important changes, like
“In Europa sind wir Spitze” ↔ “Wir sind zurück an der
Spitz”. Above 0.3 usually means the sense is likely to be
different like “How were these sales considered illegal ?”
↔ “The sale of these products is illegal .”.

4.3 Linguistic trajectories
Once the multilingual k-nn graph is constructed, we can find
paths between two arbitrary sentences, of the same or in dif-
ferent languages. Given a source and destination sentence,
S and D respectively, the shortest path connecting these two
sentences is defined by P = {p1, . . . , pn} with p1 = S and
pn = D such that

min
P

max
i=1..n

Dist(pi, pi+1),

i.e., we want to find a path that follows nearby sentences,
such that the largest step in the path is as small possible.
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Example 1 Example 2

en It’s just painful.” en 5 slices of lemon
en It’s painful.” en 3 slices of lemon
en It’s been painful.” en 3 teaspoons lemon zest
en That was painful.” en 1 teaspoon lemon zest
en That’s been tricky.” de 1 großer Bund Schnittlauch
en It’s tricky.” de 1 kleines Bund Schnittlauch
en It is gorgeous.” en 1 small bouquet garni
en It’s gorgeous.’ en 1 small butternut squash
en But it’s gorgeous.’
en But it was foul.”
en But it was fun.”

Example 3

fr Le but est de montrer qu’ensemble, on y arrive mieux
de Ziel ist es, gemeinsam für Verbesserungen zu sorgen.
de Ich bin überzeugt, dass wir gemeinsam etwas weiterbringen

können.
de Ich könnte mir vorstellen, dass wir mal etwas zusammen

unternehmen.
de Da habe ich mir gleich gedacht, dass man doch zusammen

etwas machen könnte.
de Sie überlegten, ob sie zusammen etwas machen könnten.
de Sie müsse entscheiden, ob etwas unternommen würde.
fr Il pourra par la suite déterminer si des actions sont

nécessaires.
de Dann werde man sehen, ob es Handlungsbedarf gebe.
de Dann wird klar werden, ob überhaupt Bedarf besteht.
de Wir werden erst einmal prüfen, ob Bedarf besteht.
fi Palaamme asiaan myöhemmin, jos tarvetta ilmenee.
en This is something I can use should the need arise.

Example 4

en Sometimes I don’t know whether I’m coming or going.
en I don’t know whether I’m coming or going.
en I don’t know whether to go or not.
de Ich muss überlegen, ob ich gehe oder nicht.
en It depends if I score or not.
en Tell me if I’m crazy or not.
en And tell me if I’m crazy.
de Mal gucken, ob ich das hinbekomme.
de Oh Gott, wenn ich das geahnt hätte.
cs Určitě, právě kvůli tomu si ho pamatuju.
cs Stále je mi do pláče, když si na to vzpomenu.
cs Měl bych jı́ zavolat, připomenout se.
fi Luistoa riitti, hän muistelee.
fi Olihan se aika luksusta, Niko muistelee.
fi Se oli kovaa aikaa, Nagelsmann muistelee.
cs Už je to dlouho a málokdo si vzpomene.
cs Tělo si pamatuje a pamatuje si dlouho.
fr Et lorsque ça t’arrive, tu t’en rappelles longtemps.
en You go step by step and finally when you look back it’s a

long time.
en You get past that and after a while you don’t think about it.
en You forget that when you haven’t seen him in a while.
en Make it again, if you have forgotten it for a while.
de Oder so lange singt, bis man es vergisst.
de So lange, bis er irgendwann begann, sich selbst zu

vergessen.
en So before he starts, he takes a moment to remember that.
en And when things occasionally go awry, take a moment to

remember this.
de Manchmal werden wir, wenn wir etwas vorgeblich Neuem

begegnen, an etwas ziemlich Altes erinnert.
en But once in a great while, someone says something truly

memorable.

Figure 4: Examples of linguistic trajectories found in the public WMT news texts by the shortest connected path algorithm. For
each example, the first sentence is the starting point and the last sentence is the target.

This algorithm was first proposed for a k-nn graph over
images. It has been shown to find smooth transitions be-
tween images (see Figure 6 in (Johnson, Douze, and Jégou
2017)). What might constitute a “smooth transition” or “a
small change” between sentences in NLP, when handling
sequences of discrete units, is less straightforward. Intu-
itively, one would probably accept that replacing a word by
a synonym or paraphrasing a sequence of words constitutes
a small enough linguistic change. However, if we want to
find a path between two sentences that have a very different
meaning, coming up with several consecutive small linguis-
tic changes that together form the trajectory between them
is less obvious. Figure 4 shows some examples of these lin-
guistic trajectories in our embedding space. It is important
to remember that we do not use a generative model: the al-
gorithm tries to find the nearest sentence in the pool of avail-
able sentences. This naturally favors sentences in languages
with more indexed sentences (in decreasing order: German,
English, Czech, French, . . .).

In the first example, we request a path between two
English sentences with opposite meaning. The algorithm
finds a path, using the available sentences, which “slowly”
changes the sentiment from negative to positive. We are

also able to connect two recipes, gracefully switching the
amounts and ingredients (example 2). In the third example,
the two sentences are in a different language, French and
English. The path uses mainly German sentences, probably
because they are simply more frequent which makes it more
likely to find a linguistically close one. In the the forth exam-
ple on the right, we ask for the best path between two very
different English sentences. Note that the algorithm switches
many times between five different languages. This suggests
that our embeddings are language agnostic. In most cases,
there is only a small linguistic difference between subse-
quent sentences. Each sub-path between two sentences is
also a shortest path.

We believe that the paths between sentences in the graph
can shed new light on the question of semantic sentence sim-
ilarity. While there are benchmarks such as STS (seman-
tic textual similarity) that measure agreement with human
similarity ratings, the question of what makes two sentences
more or less similar remains poorly understood. It may well
be that we can get a better understanding of the similarity
between two sentences by observing these trajectories.
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Query: The law will be debated next week. (en)
0.159 The motion will be debated next week. (en)
0.175 Le texte sera examiné la semaine prochaine. (fr)
0.176 Das Gesetz soll in der kommenden Woche

beschlossen werden. (de)
0.182 Das Gesetz soll kommende Woche erneut diskutiert

werden. (de)
0.186 Parliament will debate the new legislation next week.

(en)
0.188 It will be voted on next week. (en)
0.189 Debate on the resolution is expected next week. (en)
0.190 It is to be voted on next week. (en)
0.195 The chamber will begin debating legislation next

week. (en)
0.196 Das Gesetz soll in der kommenden Woche verab-

schiedet werden. (en)
0.197 Sopimus vahvistetaan ensi viikolla. (fi)
0.201 Darüber wird in der kommenden Woche entschieden.

(de)
0.202 Entschieden wird in der kommenden Woche. (de)
0.205 They will vote on the matter next week. (en)
0.206 Raportti julkaistaan ensi viikolla. (fi)
0.207 The law is expected to be ratified next week. (en)
0.207 The matter will be heard next week. (en)

Figure 5: Examples of multilingual paraphrases found in the
public WMT news texts (1st column: multilingual distance).

4.4 Paraphrasing
Another application of the multilingual joint embedding is
paraphrasing: we simply need to consider the k-nn sentences
and threshold the distance. On the one hand, we cannot guar-
antee that close sentences exist, i.e. to find paraphrases for
all possible queries, since we do not use a generative model
like most other approaches to paraphrasing. On the other
hand, we can be sure to produce valid “existing” sentences
(given of course that the indexed corpus is not too noisy).
Figure 5 shows an example of paraphrasing. The k near-
est neighbors include sentences in other languages, which
are all valid translations. One can clearly see that the differ-
ences between the sentences go well beyond changing iso-
lated words with synonyms.

4.5 Code switching
In many NLP applications the language may change within
a short section, sentence or even within words, e.g. for ci-
tations, foreign named entities, loanwords or when multi-
lingual people communicate on social media. Such code-
switching—i.e. the tendency for multilingual speakers to al-
ternate between multiple languages or language varieties—
poses important challenges for NLP systems: traditional
monolingual techniques quickly deteriorate with input from
mixed languages. Even for well-known problems such as
POS-tagging and language identification, which the com-
munity often considers “solved”, performance deteriorates
proportional to the degree of code-switching in the data
(Aguilar et al. 2018).

Our shared BiLSTM encoder is jointly trained on all
twenty-one languages, which should allow for it to grace-
fully handle code-switching. It was already observed in the

Src/Tgt cs de en es fr avg

cs – 0.83 0.99 0.79 0.83 0.86
de 0.75 – 0.99 0.79 1.07 0.90
en 0.63 0.79 – 0.75 0.67 0.71
es 0.83 0.79 0.99 – 0.91 0.88
fr 0.79 1.03 0.83 0.75 – 0.85

avg 0.75 0.86 0.95 0.77 0.87 0.84

Table 2: Europarl 2009 news test set: average similarity
search error rates in percent for all language pairs.

framework of multilingual NMT that such encoders are able
to handle code-switching within sentences (Johnson et al.
2016). We are not aware of a well-established test set to
evaluate code-switching at the sentence level, and it is not
straightforward to construct one. Instead, we push this idea
to the limit and test sentences which combine words of up to
seven languages. Figure 6 part 2 shows several sentences in
which we have replaced the English words arbitrarily with
words in the other known languages. For each sentence the
original English sentence was still the closest in the huge
k-nn graph of 566M sentences. In reality, code-switching
is unlikely to occur in such extreme combinations, and will
be restricted to two or three languages at most. The exam-
ples illustrates how robust the approach is to code-switching,
which makes it an interesting direction for learning repre-
sentations on noisy user-generated data and real-world use-
cases.

5 Quantitative Experiments
In this section, we provide a quantitative evaluation of sev-
eral important properties of multilingual sentence embed-
dings. We first give baseline results of the proposed ap-
proach for performing multilingual similarity search on in-
domain data, and compare our approach to published results
for the reconstruction of the UN corpus. We subsequently
analyze the transfer to an informal domain and new lan-
guages.

5.1 Multilingual similarity search
We perform a first evaluation with multilingual similarity
search on the WMT 2009 news test set of 5,000 sentences
which are 5-way parallel. For each sentence, we search the
closest one in a different language. If this sentence is not
identical to the official translation, an error is counted.

Our results suggest that the similarity error rate is very
low and remarkably homogeneous for all language pairs. We
achieve an average error rate over the 20 language pairs be-
low 0.9% (see Table 2). Note that the table is not symmetric,
e.g. encoding sentences in Czech and searching for the clos-
est English sentence yields an error rate of 0.99%, while we
obtain 0.63% in the reverse setting.

5.2 Reconstructing the United Nations corpus
In order to compare the performance of our sentence em-
beddings with published results, we also report the recon-
struction error of the whole UN corpus of 11.3M sentences
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1) Query in all nine trained languages :
en Can you buy a home for less than half a million in San Francisco ?
de Können Sie ein Haus für weniger als eine halbe Million in San Francisco kaufen?
da Kan du købe et hjem for mindre end en halv million i San Francisco?
nl Kun je een huis kopen voor minder dan een half miljoen in San Francisco?
fr Pouvez-vous acheter une maison pour moins d’un demi-million à San Francisco?
es ¿Puedes comprar una casa por menos de medio millón en San Francisco?
it Puoi comprare una casa per meno di mezzo milione a San Francisco?
pt Você pode comprar uma casa por menos de meio milhão em San Francisco?
fi Voitko ostaa talon vähemmän kuin puoli miljoonaa san franciscoa?

2) Multiple languages in one sentence (code-switching)
mix ¿Puedes comprar︸ ︷︷ ︸

es

een huis︸ ︷︷ ︸
nl

for mindre end︸ ︷︷ ︸
da

medio millón︸ ︷︷ ︸
es

in San Francisco kaufen?︸ ︷︷ ︸
de

mix Voitko︸ ︷︷ ︸
fi

comprar︸ ︷︷ ︸
es

ein︸︷︷︸
de

huis︸︷︷︸
nl

per meno︸ ︷︷ ︸
it

than︸︷︷︸
en

en halv︸ ︷︷ ︸
da

miljoen︸ ︷︷ ︸
nl

a San Francisco?

Figure 6: Example of multilingual queries. The original English sentence was translated by an online MT system. 1) Query
in eight trained languages; 2) mixing multiple languages within one sentence (code-switching). In all examples the closest
sentence in the multilingual space of 566M is the original English sentence.

(Ziemski, Juncys-Dowmunt, and Pouliquen 2016), as de-
fined by (Guo et al. 2018). We follow the methodology
of that work and report precision at 1 for textual matches.
These results are summarized in Table 3. Our method out-
performs the previously published results by a large margin.
The method proposed in (Guo et al. 2018) learns joint sen-
tence embeddings for two languages only, usually English
and a foreign language. This does not guarantee that sen-
tences in two foreign languages, i.e. French and Spanish,
are also close in the embedding space. The authors do not
report results for that language pair. We also achieve a very
high precision of 83.65 for that language pair. Finally, we
tested the generalization performance of our approach on a
language which was not used during training: Russian, an
Eastern Slavic language using the Cyrillic script. We achieve
a precision of about 60 for all language pairs with Russian.
This is quite remarkable, given the fact that we used no Rus-
sian resources at all to train the sentence embeddings, not
even monolingual ones.

5.3 Domain transfer to informal language
The results in Table 2 and 3 have been obtained on a test
set of the same domain as the training data. In practice, this
is rarely the case, so it is important to know how well the
system generalizes to a different type of domain.

In need of a freely available corpus that provides texts in
English, from a different domain than formal parliament lan-
guage, and with high quality translations to many languages,
we decided to use the Tatoeba corpus.7 Tatoeba is a collec-
tion of English sentences and community-provided transla-
tions into more than 300 languages. However, the amount
of available data varies a lot, from a couple of sentences
(e.g. Sinhala), to several hundreds of thousands (e.g. Turk-
ish, Russian, Italian or Japanese). More than 1 000 sentences

7https://tatoeba.org/eng/

(Guo et al. 2018) Proposed
method

EN-FR 48.90 83.30
EN-ES 54.94 85.40
ES-FR n/a 83.65
EN-RU n/a 65.84
ES-RU n/a 62.80
FR-RU n/a 59.89

Table 3: Results on UN corpus reconstruction for trained
languages, and zero-shot generalization to Russian (P@1).

are available for 72 languages, and at least 100 sentences
for 112 languages. This makes Tatoeba a very interesting re-
source to evaluate highly multilingual sentence embeddings.
We performed the following pre-processing steps:

• exclude sentences with WEB addresses or emails;

• keep only sentences with at least three words
before tokenization;

• remove duplicates, either in source or target.

In Table 4, we first provide the similarity error for all the
languages on which our system was trained on. All the re-
sults reported in this paper use a test set of 1 000 sentences
of the Tatoeba corpus. We will make this test set available
to encourage the publication of comparative results. It is im-
portant to note that the English source texts are not the same
for all the target languages and the numbers are not neces-
sarily comparable between the languages.

The average error rate is higher than on the Europarl test
set (cf. Table 2). This can probably be explained by the fact
that sentences in the Tatoeba corpus are shorter, with an av-
erage of 7 words compared to Europarl’s average of more
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Germanic Romance Hellenic

de da nl sv es fr it pt ro el
2.8 7.7 6.3 6.8 5.8 3.3 5.5 4.1 10.7 15.4

Slavic Baltic Uralic

bg cs pl sk sl lt lv et fi hu
17.5 12.8 13.1 11.6 15.2 14.6 14.0 15.4 12.4 18.7

Table 4: Tatoeba corpus: similarity error rates between En-
glish and the twenty-one trained languages.

than 20 words. Short sentences are easier to confuse, as they
may differ by only a few words. It was also observed in neu-
ral machine translation that LSTMs tend to perform best on
sentences with a similar length distribution as the training
corpus, see for instance (Kocmi and Bojar 2017). We have
trained the multilingual model on the proceedings of the Eu-
ropean Parliament only, which consists of rather formal and
polite language and so is from a different domain. As an ex-
ample, it can be observed that the second person singular is
rarely used in morphologically rich languages like German
(“du”) or French (“tu”). This is typically not the kind of
language we are faced with in many multilingual NLP ap-
plication, in particular when social media are involved. We
provide preliminary experimental evidence that our multi-
lingual sentence encoder generalizes to a non-formal lan-
guage as well. Training on parallel data of multiple sources
is likely to improve the generalization performance of the
multilingual embeddings. This is left for future research.

5.4 Zero-shot transfer to new languages
We now turn to the question of generalization with respect
to languages that were never seen by the system. We con-
sider the zero-shot setting, i.e. no resources for these lan-
guages have been used during training. We have shown in
section 4.1 that many BPE tokens of our 40k joint vocabu-
lary are shared among all languages. Our hope is that these
generic BPE building blocks, together with our single shared
encoder that is trained on several languages, will allow our
system to handle additional languages of the same family,
but that have not at all been seen during training. It is im-
portant to point out that we are using no resources whatso-
ever from these additional languages, not even monolingual
texts. We are not aware of previous work in this direction.
This is as a pilot study of the generalization capacities of a
shared BiLSTM encoder trained simultaneously on several
languages, a useful future direction for the fields of histori-
cal and comparative linguistics (Jaeger 2018).

Table 5 shows the similarity error rates on eleven gener-
alization languages, with 1 000 sentences each. Thus, a ran-
dom choice of the closest sentence would yield and error rate
of 99.9%. The two Germanic languages, Afrikaans and Nor-
wegian, achieve error rates below 50%. Norwegian Bokmål
(no), the most used written form, performs significantly bet-
ter, with an error rate of 30%. For Romanic languages, we
observe reasonable performance on Catalan (ca=47.7%) and

Germanic Romance Slavic
af no nb ca cbk gl bs∗ hr mk∗ ru∗ sr∗

49.3 30.7 43.9 47.7 50.9 20.1 36.4 42.0 45.4 49.2 44.5

Table 5: Tatoeba corpus zero-shot transfer: similarity error
between English and languages never seen during training.

Chavacano (cbk=50.9%). Galician achieves an similarity er-
ror rate of 20%. Finally, we tested five languages which be-
long to the family of Slavic languages: Bosnian, Croatian,
Macedonian, Russian and Serbian. All achieve similarity
search error rates of roughly 40%, the best being Bosnian
with 36.4%, and Russian achieving the highest error rate
with 49.2%. This can be compared to our results for English-
Russian on the UN corpus: an error rate below 35% on
11.3M sentences (see Table 3). This clearly shows that the
big difference in the length distribution of the training and
testing corpus seems to have an important impact, or more
generally speaking, the domain mismatch.

As an ablation experiment, we tested five languages that
use a Latin script, but which are not at all related to the ones
the system was trained on: Turkish (Turkic language); Viet-
namese, Indonesian and Tagalog (Austronesian languages);
and Esperanto (artificial language). The similarity error is
higher than 95% for Turkish and the three Austronesian lan-
guages, as expected. These languages have no linguistic sim-
ilarities to the languages our encoder is trained on and we
can not expect that the encoding of a sentence is closed to
the English translation. Esperanto is an artificial language,
but has some overlap with European languages. This leads
to a similarity error rate of 71%.

6 Conclusion
We have trained a single BiLSTM sentence encoder on all
twenty-one languages of the Europarl corpus using a small
joint 40k BPE vocabulary. We embedded more than 500 mil-
lion news sentences in seven languages in the same joint
space and calculated the k-nn graph over the “linguisti-
cally closest” sentences. Our experiments illustrated sev-
eral important applications: large-scale paraphrasing, arbi-
trary code-switching between many languages, and the ca-
pacity to handle similar languages without the need to use
any resource in that language. An analysis of the shared
BPE vocabulary allowed us to recover all language fami-
lies. Additionally, we introduced a new technique for ana-
lyzing the semantic similarity of sentences by studying the
path that connects them in the k-nn graph. The source code,
trained networks, and the whole multilingual k-nn graph are
freely available in the LASER toolkit.8 We believe that these
graphs have many applications, in particular when scaling up
to more languages and sentences.
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