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Abstract

Many natural language questions require recognizing and rea-
soning with qualitative relationships (e.g., in science, eco-
nomics, and medicine), but are challenging to answer with
corpus-based methods. Qualitative modeling provides tools
that support such reasoning, but the semantic parsing task of
mapping questions into those models has formidable chal-
lenges. We present QUAREL, a dataset of diverse story
questions involving qualitative relationships that character-
ize these challenges, and techniques that begin to address
them. The dataset has 2771 questions relating 19 different
types of quantities. For example, “Jenny observes that the
robot vacuum cleaner moves slower on the living room car-
pet than on the bedroom carpet. Which carpet has more
friction?” We contribute (1) a simple and flexible concep-
tual framework for representing these kinds of questions;
(2) the QUAREL dataset, including logical forms, exempli-
fying the parsing challenges; and (3) two novel models for
this task, built as extensions of type-constrained semantic
parsing. The first of these models (called QUASP+) signif-
icantly outperforms off-the-shelf tools on QUAREL. The sec-
ond (QUASP+ZERO) demonstrates zero-shot capability, i.e.,
the ability to handle new qualitative relationships without re-
quiring additional training data, something not possible with
previous models. This work thus makes inroads into answer-
ing complex, qualitative questions that require reasoning, and
scaling to new relationships at low cost. The dataset and mod-
els are available at http://data.allenai.org/quarel.

1 Introduction
Many natural language tasks require recognizing and rea-
soning with qualitative relationships. For example, we may
read about temperatures rising (climate science), a drug dose
being increased (medicine), or the supply of goods being
reduced (economics), and want to reason about the effects.
Qualitative story problems, of the kind found in elementary
exams (e.g., Figure 1), form a natural example of many of
these linguistic and reasoning challenges, and is the target
of this work.

Understanding and answering such questions is particu-
larly challenging. Corpus-based methods perform poorly in
this setting, as the questions ask about novel scenarios rather
than facts that can be looked up. Similarly, word association
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Qualitative Story Problem:
Alan noticed that his toy car rolls further on a wood floor
than on a thick carpet. This suggests that:

(A) The carpet has more resistance
(B) The floor has more resistance

Solution: (A) The carpet has more resistance
Identification of worlds being compared:

Question Interpretation (Logical Form):
qrel(distance, higher, world1)→

qrel(friction, higher, world2) ;
qrel(friction, higher, world1)?

Figure 1: An example problem from QUAREL and its log-
ical form (LF), from which the answer can be inferred
(Section 3). The problem is conceptualized as comparing
two worlds which the semantic parser needs to identify
and track. In the LF, qrel(p, higher|lower, w) denotes that
p is higher/lower in world w (compared with the other
world). Styling shows approximate correspondence between
the question and the LF.

methods struggle, as a single word change (e.g., “more” to
“less”) can flip the answer. Rather, the task appears to re-
quire knowledge of the underlying qualitative relations (e.g.,
“more friction implies less speed”).

Qualitative modeling (Forbus 1984; Weld and De Kleer
2013; Kuipers 1994) provides a means for encoding and rea-
soning about such relationships. Relationships are expressed
in a natural, qualitative way (e.g., if X increases, then so will
Y), rather than requiring numeric equations, and inference
allows complex questions to be answered. However, the se-
mantic parsing task of mapping real world questions into
these models is formidable and presents unique challenges.
These challenges must be solved if natural questions involv-
ing qualitative relationships are to be reliably answered.

We make three contributions: (1) a simple and flexi-
ble conceptual framework for formally representing these
kinds of questions, in particular ones that express qualita-
tive comparisons between two scenarios; (2) a challenging
new dataset (QUAREL), including logical forms, exemplify-
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ing the parsing challenges; and (3) two novel models that
extend type-constrained semantic parsing to address these
challenges.

Our first model, QUASP+, addresses the problem of
tracking different “worlds” in questions, resulting in sig-
nificantly higher scores than with off-the-shelf tools (Sec-
tion 7.1). The second model, QUASP+ZERO, demonstrates
zero-shot capability, i.e., the ability to handle new qualitative
relationships on unseen properties, without requiring addi-
tional training data, something not possible with previous
models (Section 7.2). Together these contributions make in-
roads into answering complex, qualitative questions by link-
ing language and reasoning, and offer a new dataset and
models to spur further progress by the community.

2 Related Work
There has been rapid progress in question-answering (QA),
spanning a wide variety of tasks and phenomena, includ-
ing factoid QA (Rajpurkar et al. 2016), entailment (Bow-
man et al. 2015), sentiment (Maas et al. 2011), and ellip-
sis and coreference (Long, Pasupat, and Liang 2016). Our
contribution here is the first dataset specifically targeted at
qualitative relationships, an important category of language
that has been less explored. While questions requiring rea-
soning about qualitative relations sometimes appear in other
datasets, e.g., (Clark et al. 2018), our dataset specifically fo-
cuses on them so their challenges can be studied.

For answering such questions, we treat the problem as
mapping language to a structured formalism (semantic pars-
ing) where simple qualitative reasoning can occur. Seman-
tic parsing has a long history (Zelle and Mooney 1996;
Zettlemoyer and Collins 2005; Berant et al. 2013; Krish-
namurthy, Dasigi, and Gardner 2017), using datasets about
geography (Zelle and Mooney 1996), travel booking (Dahl
et al. 1994), factoid QA over knowledge bases (Berant
et al. 2013), Wikipedia tables (Pasupat and Liang 2015),
and many more. Our contributions to this line of research
are: a dataset that features phenomena under-represented in
prior datasets, namely (1) highly diverse language describ-
ing open-domain qualitative problems, and (2) the need to
reason over entities that have no explicit formal representa-
tion; and methods for adapting existing semantic parsers to
address these phenomena.

For the target formalism itself, we draw on the exten-
sive body of work on qualitative reasoning (Forbus 1984;
Weld and De Kleer 2013; Kuipers 1994) to create a logi-
cal form language that can express the required qualitative
knowledge, yet is sufficiently constrained that parsing into it
is feasible, described in more detail in Section 3.

There has been some work connecting language with
qualitative reasoning, although mainly focused on extracting
qualitative models themselves from text rather than question
interpretation, e.g., (McFate, Forbus, and Hinrichs 2014;
McFate and Forbus 2016). Recent work by Crouse, McFate,
and Forbus (2018) also includes interpreting questions that
require identifying qualitative processes in text, in constrast
to our setting of interpreting NL story questions that involve
qualitative comparisons.

Answering story problems has received attention in the
domain of arithmetic, where simple algebra story ques-
tions (e.g., “Sue had 5 cookies, then gave 2 to Joe...”) are
mapped to a system of equations, e.g., (Ling et al. 2017;
Kushman et al. 2014; Wang, Liu, and Shi 2017; Shi et al.
2015). This task is loosely analogous to ours (we instead
map to qualitative relations) except that in arithmetic the en-
tities to relate are often identifiable (namely, the numbers).
Our qualitative story questions lack this structure, adding an
extra challenge.

The QUAREL dataset shares some structure with the
Winograd Schema Challenge (Levesque, Davis, and Mor-
genstern 2011), being 2-way multiple choice questions in-
voking both commonsense and coreference. However, they
test different aspects of commonsense: Winograd uses coref-
erence resolution to test commonsense understanding of sce-
narios, while QUAREL tests reasoning about qualitative re-
lationships requiring tracking of coreferent “worlds.”

Finally, crowdsourcing datasets has become a driving
force in AI, producing significant progress, e.g., (Rajpurkar
et al. 2016; Joshi et al. 2017; Wang, Berant, and Liang 2015).
However, for semantic parsing tasks, one obstacle has been
the difficulty in crowdsourcing target logical forms for ques-
tions. Here, we show how those logical forms can be ob-
tained indirectly from workers without training the workers
in the formalism, loosely similar to (Yih et al. 2016).

3 Knowledge Representation
We first describe our framework for representing questions
and the knowledge to answer them. Our dataset, described
later, includes logical forms expressed in this language.

3.1 Qualitative Background Knowledge
We use a simple representation of qualitative relation-
ships, leveraging prior work in qualitative reasoning (Forbus
1984). Let P = {pi} be the set of properties relevant to the
question set’s domain (e.g., smoothness, friction, speed). Let
Vi = {vij} be a set of qualitative values for property pi (e.g.,
fast, slow). For the background knowledge about the domain
itself (a qualitative model), following Forbus (1984), we use
the following predicates:

q+(property1, property2)
q-(property1, property2)

q+ denotes that property1 and property2 are qualitatively
proportional, e.g., if property1 goes up, property2 will too,
while q- denotes inverse proportionality, e.g.,

# If friction goes up, speed goes down.
q-(friction, speed).

We also introduce the predicate:

higher-than(valij , valik, propertyi)
where valij ∈ Vi, allowing an ordering of property values
to be specified, e.g., higher-than(fast, slow, speed). For our
purposes here, we simplify to use just two property values,
low and high, for all properties. (The parser learns mappings
from words to these values, described later).
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Figure 2: A simple qualitative theory about friction,
shown graphically (left) and formally (right). For exam-
ple, q-(smoothness,friction) indicates that if smoothness in-
creases, friction decreases.

Given these primitives, compact theories can be authored
for a particular domain by choosing relevant properties P ,
and specifying qualitative relationships (q+,q-) and ordinal
values (higher-than) for them. For example, a simple theory
about friction is sketched graphically in Figure 2. Our obser-
vation is that these theories are relatively small, simple, and
easy to author. Rather, the primary challenge is in mapping
the complex and varied language of questions into a form
that interfaces with this representation.

This language can be extended to include additional prim-
itives from qualitative modeling, e.g., i+(x,y) (“the rate of
change of x is qualitatively proportional to y”). That is, the
techniques we present are not specific to our particular qual-
itative modeling subset. The only requirement is that, given
a set of absolute values or qualitative relationships from a
question, the theory can compute an answer.

3.2 Representing Questions
Predicates. A key feature of our representation is the con-
ceptualization of questions as describing events happening
in two worlds, world1 and world2, that are being compared.
That comparison may be between two different entities, or
the same entity at different time points. E.g., in Figure 1 the
two worlds being compared are the car on wood, and the
car on carpet. The tags world1 and world2 denote these dif-
ferent situations, and semantic parsing (Section 5) requires
learning to correctly associate these tags with parts of the
question describing those situations. This abstracts away ir-
relevant details of the worlds, while still keeping track of
which world is which.

We define the following two predicates to express quali-
tative information in questions:

qrel(property, direction, world)
qval(property, value, world)

where property (pi) ∈ P, value ∈ Vi, direction ∈ {higher,
lower}, and world ∈ {world1, world2}. qrel() denotes the
relative assertion that property is higher/lower in world com-
pared with the other world, which is left implicit,1 e.g., from
Figure 1:

# The car rolls further on wood.

1We consider just two worlds being compared here, but the for-
malism generalizes to N-way comparisons by adding a fourth ar-
gument: qrel(prop, dir, world, other-world).

qrel(distance, higher, world1)
where world1 is a tag for the “car on wood” situation (hence
world2 becomes a tag for the opposite “car on carpet” situ-
ation). qval() denotes that property has an absolute value in
world, e.g.,

# The car’s speed is slow on carpet.
qval(speed, low, world2)

3.3 Logical Forms for Questions
Despite the wide variation in language, the space of logical
forms (LFs) for the questions that we consider is relatively
compact. In each question, the question body establishes a
scenario and each answer option then probes an implication.
We thus express a question’s LF as a tuple:

(setup, answer-A, answer-B)
where setup is the predicate(s) describing the scenario, and
answer-* are the predicate(s) being queried for. If answer-
A follows from setup, as inferred by the reasoner, then the
answer is (A); similarly for (B). For readability we will write
this as

setup→ answer-A ; answer-B
We consider two styles of LF, covering a large range of ques-
tions. The first is:

(1) qrel(p, d, w)→
qrel(p′, d′, w′) ; qrel(p′, d′′, w′′)

which deals with relative values of properties between
worlds, and applies when the question setup includes a com-
parative. An example of this is in Figure 1. The second is:

(2) qval(p, v, w), qval(p, v′, w′′′)→
qrel(p′, d′, w′) ; qrel(p′, d′′, w′′)

which deals with absolute values of properties, and applies
when the setup uses absolute terms instead of comparatives.
An example is the first question in Figure 3, shown simpli-
fied below, whose LF looks as follows (styling showing ap-
proximate correspondences):

# Does a bar stool slide faster along the bar surface
with decorative raised bumps or the smooth wooden
floor? (A) bar (B) floor
qval(smoothness, low, world1),
qval(smoothness, high, world2)→

qrel(speed, higher, world1) ;
qrel(speed, higher, world2)

3.4 Inference
A small set of rules for qualitative reasoning connects these
predicates together. For example, (in logic) if the value of P
is higher in world1 than the value of P in world2 and q+(P,Q)
then the value of Q will be higher in world1 than the value
of Q in world2. Given a question’s logical form, a qualita-
tive model, and these rules, a Prolog-style inference engine
determines which answer option follows from the premise.2

2E.g., in Figure 1, the qualitative model includes q-(friction,
distance), and the general qualitative reasoning rules include oppo-
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(1) Heather wants to see if a bar stool will slide faster along the bar surface which has decorative raised bumps on it or on the
smooth wooden floor. On which surface will the chair slide faster? (A) bar (B) floor
LF: qval(smoothness, low, world1), qval(smoothness, high, world2)→ qrel(speed, higher, world1) ; qrel(speed, higher, world2)

(2) Andy was running across the tile floor and sliding across it. There was less friction here, but he thought he could do the
same outside on the cement. When Andy tries to slide across the cement, his socks will make than when he slides across
the tile floor. (A) more heat (B) less heat
LF: qrel(friction, lower, world1)→ qrel(heat, higher, world2 ; qrel(heat, lower, world2)

(3) Mary noticed that erasing her mistakes on her drawing paper seemed to take more effort than the marker paper. This caused
more heat to develop on (A) the drawing paper or (B) the marker paper
LF: qrel(friction, higher, world1)→ qrel(heat, higher, world1) ; qrel(heat, higher, world2)

(4) Henry is playing with his younger brother. Henry is bigger and stronger and he can throw the ball (A) farther (B) not as far.
LF: qrel(strength, higher, world1)→ qrel(distance, higher, world1) ; qrel(distance, lower, world1)

(5) It’s turkey hunting season and Jim is on his front porch. He hears a gun shot off the the west. Then he hears another one off
to the north. The one to the north was easier to hear than the one to the west. Which hunter is closer to Jim’s house? (A) the
one to the west (B) the one to the north
LF: qrel(loudness, higher, world1)→ qrel(distance, lower, world2) ; qrel(distance, lower, world1)

Figure 3: Examples of questions and logical forms in the QUAREL dataset (the first 3 are also in the friction subset, QUARELF )

4 The QUAREL Dataset
QUAREL is a crowdsourced dataset of 2771 multiple-choice
story questions, including their logical forms. The size of
the dataset is similar to several other datasets with anno-
tated logical forms used for semantic parsing (Zelle and
Mooney 1996; Hemphill, Godfrey, and Doddington 1990;
Yih et al. 2016). As the space of LFs is constrained, the
dataset is sufficient for a rich exploration of this space.

We crowdsourced multiple-choice questions in two parts,
encouraging workers to be imaginative and varied in their
use of language. First, workers were given a seed qualita-
tive relation q+/-(p1, p2) in the domain, expressed in English
(e.g., “If a surface has more friction, then an object will
travel slower”), and asked to enter two objects, people, or
situations to compare. They then created a question, guided
by a large number of examples, and were encouraged to be
imaginative and use their own words. The results are a re-
markable variety of situations and phrasings (Figure 3).

Second, the LFs were elicited using a novel technique of
reverse-engineering them from a set of follow-up questions,
without exposing workers to the underlying formalism. This
is possible because of the constrained space of LFs. Refer-
ring to LF templates (1) and (2) earlier (Section 3.3), these
questions are as follows:

1. What is the correct answer (A or B)?

2. Which property are the answer options asking about?
(p′ ∈ {p1, p2})

3. In the correct answer, is this property higher or lower than
in the incorrect answer? (d′)

4. Do the answer options:
• ask the same question about different ob-

jects/situations? (d′ = d′′, w′ 6= w′′)

site(world1, world2) and qrel(P, D, W) ∧ q-(P, P’) ∧ opposite(W,
W’)→ qrel(P’, D, W’), so the answer can be inferred.

• ask opposite questions about the same object/situation?
(d′ 6= d′′, w′ = w′′)

5. Which direction of comparison is used in the body of the
question?
• higher/lower? (d, LF template is (1))
• OR were two values given? If so, enter the values, stan-

dardized as high/low in the LF (v,v′, LF template is (2))
From this information, we can deduce the target LF (p is the
complement of p′ ∈ {p1, p2}, w′′′ 6= w, we arbitrarily set
w=world1, hence all other variables can be inferred). Three
independent workers answer these follow-up questions to
ensure reliable results.

We also had a human answer the questions in the dev par-
tition (in principle, they should all be answerable). The hu-
man scored 96.4%, the few failures caused by occasional
annotation errors or ambiguities in the question set itself,
suggesting high fidelity of the content.

About half of the dataset are questions about friction,
relating five different properties (friction, heat, distance,
speed, smoothness). These questions form a meaningful,
connected subset of the dataset which we denote QUARELF .
The remaining questions involve a wide variety of 14 addi-
tional properties and their relations, such as “exercise inten-
sity vs. sweat” or “distance vs. brightness”.3

Figure 3 shows typical examples of questions in
QUAREL, and Table 1 provides summary statistics. In par-
ticular, the vocabulary is highly varied (5226 unique words),
given the dataset size. Figure 4 shows some examples of the
varied phrases used to describe smoothness.

5 Baseline Systems
We use four systems to evaluate the difficulty of this dataset.
(We subsequently present two new models, extending the
baseline neural semantic parser, in Sections 7.1 and 7.2).

3See supplementary material at http://data.allenai.org/quarel for
a complete list.
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Property Size
# questions 2771
# questions (QUARELF subset) 1395
# type (1), (2) (see Section 3.3) 2048, 723
# questions train/dev/test 1941/278/552
Min/avg/max qn length (words) 11/37/112
Min/avg/max qn length (sent.) 1/2.4/8
Vocab (# uniq words) 5226

Table 1: Summary statistics for the QUAREL dataset.

“smoother” (864), “rougher” (568), “more smooth” (270), “more
rough” (126), “bumpier” (55), “less bumpy” (27), “more rugged”
(24), “easier” (16), “not as rough” (16), “flatter” (10), “slicker”
(10), “isn’t as rough” (8), “stickier” (8), “rugged” (7), “more even”
(6), “more easily” (5), “spikier” (4), “more uniform” (4), “softer”
(4), “more level” (4), “bumpier ride” (4), “glide more easily” (4),
“more jagged” (4), “lumpier” (3), “more fluidly” (3), “rolls eas-
ily” (2), “struggle to move” (2), “ideal surface” (2), “more freely”
(2), “harder” (2), “has more ridges” (2), “more uniform surface”
(2), “more scraping” (2), “more ridges” (2), “sleek” (2), “eas-
ier to pull” (1), “barely a touch” (1), “flatter surface” (1), “much
better” (1), “full of bumps” (1), “rocky” (1), “calmer” (1), “less
slick” (1), “bumpiness” (1), “less obstacles” (1), “more silky glide”
(1), “sanded” (1), “slick” (1), “lots of bumps” (1), “not nearly as
smooth” (1), “easier to wipe” (1), “snagging” (1), “easier on my
feet” (1), “rolls more easily” (1)

Figure 4: Examples of the varied way that smoother/rougher
surfaces are described in QUAREL questions.

The first two are an information retrieval system and a
word-association method, following the designs of Clark et
al. (2016). These are naive baselines that do not parse the
question, but nevertheless may find some signal in a large
corpus of text that helps guess the correct answer. The third
is a CCG-style rule-based semantic parser written specifi-
cally for friction questions (the QUARELF subset), but prior
to data being collected. The last is a state-of-the-art neural
semantic parser. We briefly describe each in turn.

Information Retrieval (IR) System To answer multiple-
choice questions, this system searches a large (280GB) text
corpus to see if the question q along with an answer option
is loosely stated in the corpus, and returns the confidence
that such a statement was found. To do this, for each answer
option ai, it sends q + ai as a query to a search engine and
returns the search engine’s score for the top retrieved sen-
tence s where s also has at least one non-stopword overlap
with q, and at least one with ai. The option with the highest
score is selected.

Pointwise Mutual Information (PMI) Word co-
occurrences may also provide some signal for answering
these questions, e.g., the high co-occurrence of “faster” and
“ice” in a corpus may help answer a question ending with
“...faster? (A) ice (B) gravel”. To formalize this, given a
question q and an answer option ai, we use PMI (Church
and Hanks 1989) to measure the strength of the associations
between parts of q and parts of ai. Given a large corpus C,

Figure 5: The QUASP parser decodes to a sequence of LF-
building decisions, incrementally constructing the LF by se-
lecting production rules from the LF grammar. As illus-
trated, first it decides if the LF should be of type 1 or 2
(here, type 1 is chosen), then it selects the the property for
the question body (here, distance), then it selects the direc-
tion of change (here, higher), and so on.

the PMI for two n-grams x and y is defined as

PMI(x, y) = log
p(x, y)

p(x)p(y)

The system selects the answer with the largest average PMI,
calculated over all pairs of question n-grams and answer op-
tion n-grams.

Rule-based Semantic Parser The rule-based semantic
parser uses a simple CCG-like grammar (Steedman and
Baldridge 2011) specifically written for the friction sce-
nario task (QUARELF ) over several days, but prior to the
dataset being constructed. It represents a good-faith attempt
to solve this subset of questions with traditional methods.
First, the question is preprocessed to tag likely references
to the worlds being compared, using hand-written rules that
look for surface names (“road”, “ice”), appropriate adjec-
tives (“rough”, “green”), and by position (“over <X>”).
The first candidate word/phrase is tagged world1 (with type
WORLD), the second world2, and if those phrases occur
later in the question, they are tagged with the correspond-
ing world. The system then parses the question using 142
task-specific, CCG-like rules, such as:

“is greater than” ` (S\PROPERTY)\WORLD:
λp.λw.qrel(p, HIGHER, w)

“velocity” ` PROPERTY:speed
where \WORLD means “look left for something of category
WORLD”. Thus a tagged phrase like

“the velocity on ice[world2] is greater than”
produces qrel(speed, higher, world2). The parser skips over
most words in the story, only paying attention to words that
are tagged or referenced in the grammar.

Type-constrained Neural Semantic Parser (QUASP)
Our final system is AllenNLP’s implementation of a neu-
ral semantic parser (Gardner et al. 2018). This parser uses a
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type-constrained, encoder-decoder architecture, representa-
tive of the current state-of-the-art on many datasets (Krish-
namurthy, Dasigi, and Gardner 2017; Yin and Neubig 2017;
Goldman et al. 2018). The model architecture is similar to
standard seq2seq models, with an LSTM that encodes the
question and an LSTM with attention over the encoded ques-
tion that decodes a logical form. However, unlike standard
seq2seq models that output logical form tokens directly, this
parser outputs production rules from a CFG-like grammar
over the space of all logical forms. These production rules
sequentially build up an abstract syntax tree, which deter-
mines the logical form. In this way, the parser is constrained
to only produce valid LFs, and does not have to spend mod-
eling capacity learning the syntax of the language.

For our domain, we created a simple grammar captur-
ing the logical form language described in Section 3.3. The
parser uses this grammar to find the set of valid choices at
each step of decoding. The model architecture, with exam-
ple inputs and outputs, is illustrated in Figure 5. We refer to
this instantiation of the parser as QUASP. As QUAREL has
annotated logical forms, this model is trained to maximize
the likelihood of the logical form associated with each ques-
tion. At test time, beam search is used to find the highest
scoring parse.

As input to the model we feed the full question plus an-
swer options as a single sequence of tokens, encoding each
token using a concatenation of Glove (Pennington, Socher,
and Manning 2014) and ELMo (Peters et al. 2018) vectors.

As a separate baseline, we also train a similar two-layer
bi-directional LSTM encoder (BILSTM in the results) to
directly predict answer A vs. B, without an intermediate log-
ical form.4

6 Baseline Experiments
We ran the above systems on the QUAREL dataset. QUASP
was trained on the training set, using the model with highest
parse accuracy on the dev set (similarly BILSTM used high-
est answer accuracy on the dev set) . The results are shown
in Table 2. The 95% confidence interval is +/- 4% on the full
test set. The human score is the sanity check on the dev set
(Section 4).

As Table 2 shows, the QUASP model performs better than
other baseline approaches which are only slightly above ran-
dom. QUASP scores 56.1% (61.7% on the friction subset),
indicating the challenges of this dataset.

For the rule-based system, we observe that it is unable
to parse the majority (66%) of questions (hence scoring 0.5
for those questions, reflecting a random guess), due to the
varied and unexpected vocabulary present in the dataset. For
example, Figure 4 shows some of the ways that the notion
of “smoother/rougher” is expressed in questions, many of
which are not covered by the hand-written CCG grammar.
This reflects the typical brittleness of hand-built systems.

For QUASP, we also analyzed the parse accuracies,
shown in Table 3, the score reflecting the percentage of times

4For more implementation details, see supplementary material
at http://data.allenai.org/quarel.

Dataset→ QUAREL QUARELF

Model ↓ Dev Test Dev Test
Random 50.0 50.0 50.0 50.0
Human 96.4 - 95.0 -
IR 50.7 48.6 50.7 48.9
PMI 49.3 50.5 50.7 52.5
Rule-Based - - 55.0 57.7
BILSTM 55.8 53.1 59.3 54.3
QUASP 62.1 56.1 69.2 61.7
QUASP+ 68.9 68.7 79.6 74.5

Table 2: Scores (answer accuracies) of the different models
on the full QUAREL dataset and QUARELF subset about
friction. The baseline models only marginally outperform
a random baseline. In QUASP+, however, identifying and
delexicalizing the worlds significantly improves the perfor-
mance (see Section 7.1).

Dataset→ QUAREL QUARELF

Model ↓ Dev Test Dev Test
QUASP 37.4 32.2 47.9 43.2
QUASP+ 46.8 43.8 64.3 59.0

Table 3: Parse accuracies for the semantic parsers.

it produced exactly the right logical form. The random base-
line for parse accuracy is near zero given the large space
of logical forms, while the model parse accuracies are rela-
tively high, much better than a random baseline.

Further analysis of the predicted LFs indicates that the
neural model does well at predicting the properties (∼25%
of errors on dev set), but struggles to predict the worlds in
the LFs reliably (∼70% of errors on dev set). This helps
explain why non-trivial parse accuracy does not necessar-
ily translate into correspondingly higher answer accuracy: If
only the world assignment is wrong, the answer will flip and
give a score of zero, rather than the average 0.5.

7 New Models
We now present two new models, both extensions of the
neural baseline QUASP. The first, QUASP+, addresses the
leading cause of failure just described, namely the prob-
lem of identifying the two worlds being compared, and sig-
nificantly outperforms all the baseline systems. The sec-
ond, QUASP+ZERO, addresses the scaling problem, namely
the costly requirement of needing many training examples
each time a new qualitative property is introduced. It does
this by instead using only a small amount of lexical infor-
mation about the new property, thus achieving “zero shot”
performance, i.e., handling properties unseen in the training
examples (Palatucci et al. 2009), a capability not present in
the baseline systems. We present the models and results for
each.

7.1 QUASP+: A Model Incorporating World
Tracking

We define the world tracking problem as identifying and
tracking references to different “worlds” being compared in
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text, i.e., correctly mapping phrases to world identifiers, a
critical aspect of the semantic parsing task. There are three
reasons why this is challenging. First, unlike properties, the
worlds being compared in questions are distinct in almost
every question, and thus there is no obvious, learnable map-
ping from phrases to worlds. For example, while a prop-
erty (like speed) has learnable ways to refer to it (“faster”,
“moves rapidly”, “speeds”, “barely moves”), worlds are dif-
ferent in each question (e.g., “on a road”, “countertop”,
“while cutting grass”) and thus learning to identify them
is hard. Second, different phrases may be used to refer to
the same world in the same question (see Figure 6), further
complicating the task. Finally, even if the model could learn
to identify worlds in other ways, e.g., by syntactic position
in the question, there is the problem of selecting world1 or
world2 consistently throughout the parse, so that the equiv-
alent phrasings are assigned the same world.

This problem of mapping phrases to world identifiers is
similar to the task of entity linking (Ling, Singh, and Weld
2015). In prior semantic parsing work, entity linking is rela-
tively straightforward: simple string-matching heuristics are
often sufficient (Jia and Liang 2016; Dong and Lapata 2016),
or an external entity linking system can be used (Yih et al.
2015; Xu et al. 2016). In QUAREL, however, because the
phrases denoting world1 and world2 are different in almost
every question, and the word “world” is never used, such
methods cannot be applied.

To address this, we have developed QUASP+, a new
model that extends QUASP by adding an extra initial step to
identify and delexicalize world references in the question. In
this delexicalization process, potentially new linguistic de-
scriptions of worlds are replaced by canonical tokens, creat-
ing the opportunity for the model to generalize across ques-
tions. For example, the world mentions in the question:

“A ball rolls further on wood than carpet because the
(A) carpet is smoother (B) wood is smoother”

are delexicalized to:

“A ball rolls further on WORLD1 than WORLD2 be-
cause the (A) WORLD2 is smoother (B) WORLD1 is
smoother”

This approach is analogous to Herzig and Berant (2018),
who delexicalized words to POS tags to avoid memoriza-
tion. Similar delexicalized features have also been employed
in Open Information Extraction (Etzioni et al. 2008), so the
Open IE system could learn a general model of how rela-
tions are expressed. In our case, however, delexicalizing to
WORLD1 and WORLD2 is itself a significant challenge, be-
cause identifying phrases referring to worlds is substantially
more complex than (say) identifying parts of speech.

To perform this delexicalization step, we use the world
annotations included as part of the training dataset (Sec-
tion 4) to train a separate tagger to identify “world mentions”
(text spans) in the question using BIO tags5 (BiLSTM en-
coder followed by a CRF). The spans are then sorted into
WORLD1 and WORLD2 using the following algorithm:

5e.g., the world mention “calm water” in the question “...in calm
water, but...” would be tagged “...in/O calm/B water/I, but/O...”

“road” & “paved roadway”
“wooden bar” & “wood counter”

“her counter is stone” & “stone counter”
“grass” & “(mowing his) yard”

“shag carpeting” & “carpet”
“tiled floor” & “tile”

“wet tennis court” & “wet court”
“wastebasket” & “waste basket”
“ice on the pond” & “ice pond”

“wood beam” & “wooden beam”
“outside” & “grass”
“street” & “asphalt”

“carpet” & “carpeted floor”
“hardwood” & “wood”

“beach” & “sand”
“mulch” & “mulched area”

Figure 6: Examples of different linguistic expressions of the
same world in a question.

1. If one span is a substring of another, they are are grouped
together. Remaining spans are singleton groups.

2. The two groups containing the longest spans are labeled
as the two worlds being compared.

3. Any additional spans are assigned to one of these two
groups based on closest edit distance (or ignored if zero
overlap).

4. The group appearing first in the question is labeled
WORLD1, the other WORLD2.

The result is a question in which world mentions are canon-
icalized. The semantic parser QUASP is then trained using
these questions.6 We call the combined system (delexical-
ization plus semantic parser) QUASP+.

The results for QUASP+ are included in Table 2. Most im-
portantly, QUASP+ significantly outperforms the baselines
by over 12% absolute. Similarly, the parse accuracies are
significantly improved from 32.2% to 43.8% (Table 3). This
suggests that this delexicalization technique is an effective
way of making progress on this dataset, and more generally
on problems where multiple situations are being compared,
a common characteristic of qualitative problems.

7.2 QUASP+ZERO: A Model for the Zero-Shot
Task

While our delexicalization procedure demonstrates a way of
addressing the world tracking problem, the approach still re-
lies on annotated data; if we were to add new qualitative
relations, new training data would be needed, which is a sig-
nificant scalability obstacle. To address this, we define the
zero-shot problem as being able to answer questions involv-
ing a new predicate p given training data only about other
predicates P different from p. For example, if we add a new
property (e.g., heat) to the qualitative model (e.g., adding
q+(friction, heat); “more friction implies more heat”), we
want to answer questions involving heat without creating

6During training, using alignment with the annotations, we en-
sure the worlds in the LF are numbered consistently with these tags.
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new annotated training questions, and instead only use min-
imal extra information about the new property. A parser that
achieved good zero-shot performance, i.e., worked well for
new properties unseen at training time, would be a substan-
tial advance, allowing a new qualitative model to link to
questions with minimal effort.

QUAREL provides an environment in which methods for
this zero-shot theory extension can be devised and evaluated.
To do this, we consider the following experimental setting:
All questions mentioning a particular property are removed,
the parser is trained on the remainder, and then tested on
those withheld questions, i.e., questions mentioning a prop-
erty unseen in the training data.

We present and evaluate a model that we have de-
veloped for this, called QUASP+ZERO, that modifies the
QUASP+ parser as follows: During decoding, at points
where the parser is selecting which property to include in
the LF (e.g., Figure 5), it does not just consider the question
tokens, but also the relationship between those tokens and
the properties P used in the qualitative model. For example,
a question token such as “longer” can act as a cue for (the
property) length, even if unseen in the training data, because
“longer” and a lexical form of length (e.g.,“length”) are sim-
ilar. This approach follows the entity-linking approach used
by Krishnamurthy, Dasigi, and Gardner (2017), where the
similarity between question tokens and (words associated
with) entities - called the entity linking score - help decide
which entities to include in the LF during parsing. Here, we
modify their entity linking score s(p, i), linking question to-
kens qi and property “entities” p, to be:

s(p, i) = max
w∈W (p)

vTwKvqi

where K is a diagonal matrix connecting the embedding of
the question token qi and words W (p) associated with the
property p. For W (p), we provide a small list of words for
each property (such as “speed”, “velocity”, and “fast” for the
speed property), a small-cost requirement.

The results with QUASP+ZERO are in Table 4, shown
in detail on the QUARELF subset and (due to space con-
straints) summarized for the full QUAREL. We can mea-
sure overall performance of QUASP+ZERO by averaging
each of the zero-shot test sets (weighted by the number of
questions in each set), resulting in an overall parse accu-
racy of 38.9% and answer accuracy 61.0% on QUARELF ,
and 25.7% (parse) and 59.5% (answer) on QUAREL, both
significantly better than random. These initial results are en-
couraging, suggesting that it may be possible to parse into
modified qualitative models that include new relations, with
minimal annotation effort, significantly opening up qualita-
tive reasoning methods for QA.

8 Summary and Conclusion
Our goal is to answer questions that involve qualitative rela-
tionships, an important genre of task that involves both lan-
guage and knowledge, but also one that presents significant
challenges for semantic parsing. To this end we have devel-
oped a simple and flexible formalism for representing these

Held out Parse (LF) Accuracy Answer Accuracy
property Seen Unseen Seen Unseen
distance 46.7 33.3 67.0 59.8
friction 54.4 29.7 78.6 59.4
heat 33.5 52.6 58.8 64.7
smoothness 47.9 53.2 67.7 62.2
speed 45.0 33.1 64.9 60.2
None 51.8 NA 66.7 NA
Weighted avg. 44.5 38.9 66.2 61.0

Table 4: Baseline scores (bold) using QUASP+ZERO for the
zero-shot task of answering questions involving properties
unseen in the training data, using the QUARELF subset of
QUAREL. For the entire QUAREL dataset, the weighted av-
erage scores for questions with unseen properties are 25.7%
(parse) and 59.5% (answer).

questions; constructed QUAREL, the first dataset of quali-
tative story questions that exemplifies these challenges; and
presented two new models that adapt existing parsing tech-
niques to this task. The first model, QUASP+, illustrates
how delexicalization can help with world tracking (iden-
tifying different “worlds” in questions), resulting in state-
of-the-art performance on QUAREL. The second model,
QUASP+ZERO, illustrates how zero-shot learning can be
achieved (i.e., adding new qualitative relationships without
requiring new training examples) by using an entity-linking
approach applied to properties - a capability not present in
previous models.

There are several directions in which this work can be ex-
panded. First, quantitative property values (e.g., “10 mph”)
are currently not handled well, as their mapping to “low”
or “high” is context-dependent. Second, some questions do
not fit our two question templates (Section 3.3), e.g., where
two property values are a single answer option (e.g., “....(A)
one floor is smooth and the other floor is rough”). Finally,
some questions include an additional level of indirection,
requiring an inference step to map to qualitative relations.
For example, “Which surface would be best for a race? (A)
gravel (B) blacktop” requires the additional commonsense
inference that “best for a race” implies “higher speed”.

Given the ubiquity of qualitative comparisons in nat-
ural text, recognizing and reasoning with qualitative re-
lationships is likely to remain an important task for
AI. This work makes inroads into this task, and con-
tributes a dataset and models to encourage progress by
others. The dataset and models are publicly available at
http://data.allenai.org/quarel.
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