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Abstract
Common grounding is the process of creating, repairing and
updating mutual understandings, which is a critical aspect
of sophisticated human communication. However, traditional
dialogue systems have limited capability of establishing com-
mon ground, and we also lack task formulations which intro-
duce natural difficulty in terms of common grounding while
enabling easy evaluation and analysis of complex models. In
this paper, we propose a minimal dialogue task which re-
quires advanced skills of common grounding under contin-
uous and partially-observable context. Based on this task for-
mulation, we collected a largescale dataset of 6,760 dialogues
which fulfills essential requirements of natural language cor-
pora. Our analysis of the dataset revealed important phenom-
ena related to common grounding that need to be considered.
Finally, we evaluate and analyze baseline neural models on a
simple subtask that requires recognition of the created com-
mon ground. We show that simple baseline models perform
decently but leave room for further improvement. Overall, we
show that our proposed task will be a fundamental testbed
where we can train, evaluate, and analyze dialogue system’s
ability for sophisticated common grounding.

1 Introduction
One major goal of natural language processing is to de-
velop agents with human-level competency in dialogue. In
the field of human communication and development, the
ability to construct and maintain common ground has been
pointed out to be essential for natural language communi-
cation (Clark 1996) and acquisition (Tomasello 2009). Fur-
thermore, in the field of human-computer interaction, it is
important that humans and computers have certain ways of
creating mutual understandings in order to collaboratively
solve problems. Although natural language communication
is not the only option, it is one of the most natural and effec-
tive solutions to this problem.

However, existing study of common grounding in dia-
logue system research is limited in three major ways.

First, existing dialogue tasks are limited in terms of com-
mon grounding due to the restricted types of information
that need to be dealt with. Specifically, previous tasks are
focused on either fully-observable or categorical context,
which makes common grounding a relatively trivial task:
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A’s view B’s view

A: I see three in a line going up and to the right. The middle one
is the largest and darkest
B: I don’t see that. I have one large, medium gray dot that’s under
a small, darker gray dot
A: Is the larger dot slightly to the left
B: yes, slightly, let’s choose the larger one.
A: SELECT red
B: SELECT blue

Figure 1: Example dialogue and context of our task. Two
agents have 7 entities in each view, but their views are cen-
tered slightly differently and only some entities are in com-
mon. Under this setting, agents must find a common entity
through natural language communication.

• In a fully-observable context (De Vries et al. 2017), it is
usually given that every information about the context is
shared among the agents. This makes common ground-
ing easier because information about the context is al-
ready in their common ground, and there could be little
chance of misunderstandings. In contrast, under partially-
observable context agents typically need to create com-
mon ground from minimal shared information, and there
could be a lot more misunderstandings between agents
that need to be resolved.

• In a categorical context (Bordes and Weston 2016; He
et al. 2017; Lewis et al. 2017), information can be ex-
pressed by symbolic natural language without ambiguity.
For example, there could be little ambiguity in describ-
ing categorical properties, such as discrete color (red, blue
and yellow). However, in a continuous context natural lan-
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guage usage can be ambiguous and more pragmatic (such
as darker gray and almost black), and this introduces nat-
ural difficulty in terms of common grounding.

Another problem is the difficulty of evaluation and analy-
sis. As the models acquire more flexibility, automatic evalu-
ation becomes problematic (Liu et al. 2016; Novikova et al.
2017) and interpretation of model behavior becomes more
challenging. Since advanced common grounding requires
high flexibility, it is expected that we will need reliable eval-
uation metrics and analysis methods in the process of com-
paring and improving different methods.

Finally, there are limitations of model capabilities. Al-
though traditional dialogue systems rely on rule-based engi-
neering and predetermined slot-filling (Traum 1994; Young
et al. 2013; Williams, Raux, and Henderson 2016), these
models lack flexibility in terms of representing dialogue
states and generating natural utterances. Since common
ground can be very complex which may include high am-
biguity, uncertainty, partial understandings and misunder-
standings, we need systems that can better capture such
complexity and resolve them through flexible dialogues.

In this paper, we make a first step towards addressing
these problems in the following way:

First, we formulate a novel dialogue task which requires
advanced skills of common grounding under continuous and
partially-observable context. Our task is based on a more
general collaborative referring task, where the goal of the
agents is to coordinate attention on the same entity in a given
context. This setting enables clear evaluation based on task
success rate and various error analysis of complex models
since the contexts are simple and completely controllable.

Second of all, to enable training of recent end-to-end di-
alogue systems with high flexibility (Bordes and Weston
2016; Lewis et al. 2017), we collected a largescale dataset
of 6,760 human dialogues with over 32K utterances through
crowdsourcing on Amazon Mechanical Turk. During the
dataset collection, we managed to fulfill three essential re-
quirements of natural language corpora: interpretability, lin-
guistic/strategic variety and reliability.

Next, we conduct a comparative analysis with the pre-
vious dataset to illustrate how continuous and partially-
observable context introduces difficulty in terms of common
grounding. In addition, further analyses of our dataset re-
vealed various common grounding phenomena at different
levels, including nonlinguistic bias towards joint saliency.

Finally, we evaluate and analyze simple neural network
models on our dataset based on an important subtask of
collaborative referring. Due to the complexity of common
grounding, there is still room for further improvement.

We show an example of the collected dialogue and con-
text in Figure 1. Although human players successfully coor-
dinated the selection with relatively short turns, we can find
difficult common grounding strategies such as pragmatic de-
scriptions (“three in a line going up”), clarification based on
hypothesis testing (“Is the larger dot slightly to the left”) and
nuanced acknowledgement (“yes, slightly”).

Overall, we expect our task to be a fundamental testbed
for developing dialogue systems with advanced common

grounding skills. Our dataset and scripts will be available
at https://github.com/Alab-NII/onecommon.

2 Related Work

In dialogue system research, classical approach models
common grounding based on finite states, where information
in a dialogue transitions through fixed grounding acts (such
as Initiate, Continue, Repair, Request Repair, Acknowledge)
(Traum 1994), and the whole system relies on careful rule-
based engineering and predetermined slot-filling (Young et
al. 2013). Although they perform reliably in restricted do-
mains such as restaurant information retrieval (Williams,
Raux, and Henderson 2016), they lack flexibility to deal with
realistic complexity of common ground.

Recently, a new line of data-driven dialogue systems,
which we refer to as end-to-end dialogue systems, has been
gaining attention in both task-oriented (Bordes and We-
ston 2016; Lewis et al. 2017) and non-task-oriented do-
mains (Vinyals and Le 2015; Serban et al. 2016). In this ap-
proach, dialogue state and utterance generation are learned
directly from large raw corpora with little prior constraints,
so they are more suitable for complex common ground-
ing where flexibility is a requirement. However, few ex-
isting tasks focus on the difficulty of common grounding
and most are based on either fully-observable or categori-
cal context (De Vries et al. 2017; Bordes and Weston 2016;
Lewis et al. 2017) where difficult common grounding is
not required. A dataset closest to our setting is the Mutu-
alFriends dataset (He et al. 2017), which is based on the task
of finding a mutual friend from private lists of friends. Al-
though this can be considered as a collaborative referring
task under partially-observable context (due to the privacy
of knowledge), they only include categorical information
and the difficulty of common grounding is limited. We give
a precise comparative analysis in Section 4.

Referring expression generation and dialogues based on
realistic visual context have also been studied extensively
(Kazemzadeh et al. 2014; Das et al. 2017a; 2017b). Al-
though these tasks are based on continuous (and sometimes
partially-observable) context, realistic images could be too
complex and costly to deal with modern dialogue systems.
In contrast, we show that abstract and simple context is suf-
ficient for making common grounding difficult and prefer-
able for a testbed of common grounding where models can
be easily developed, compared and analyzed. Nevertheless,
we expect experiments on abstract and realistic contexts to
have complementary strengths.

Finally, previous work addressed the difficulty of com-
mon grounding due to the perceptual difference between hu-
mans and machines (Liu, Fang, and Chai 2012; Fang, Doer-
ing, and Chai 2015). However, such problems are specific
to human-machine dialogues, and instead we focus on a
more general difficulty of common grounding due to com-
plex ambiguity and uncertainty introduced by continuous
and partially-observable context.
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3 Task Description
Collaborative referring is the task of creating a mutual un-
derstanding about the entity currently under discussion. We
can interpret this as the initial step of common grounding
where agents coordinate attention on specific entity (or enti-
ties) in the world, since it is only after collaborative referring
succeeds that agents can exchange useful information about
entities and develop common ground related to the world.

3.1 Task Definition
Formally, the task is formulated as a multi-agent coopera-
tive game with two sets of entities E = {e1, e2, ..., em} and
agents A = {a1, a2, ..., an}. Each agent ai ∈ A has an ob-
servation of E, and at each timestep they can send natural
language messages to coordinate their selections from E.
The game is considered completed when all the agents have
made at least one selection action, and it is successful if and
only if all the agents selected the same entity.

We propose our task based on a minimal formulation
of the collaborative referring task under continuous and
partially-observable context. Specifically, we consider two
agents located slightly differently in a 2-dimensional grid.
Entities are also located in the same grid with two additional
properties: size and color. However, agents can only observe
entities within a fixed radius r from their location, which
makes this setting partially-observable. Furthermore, each
observation is continuous, since all the properties of the en-
tities (location, size and color) are continuous.

For the sake of simplicity, the number of entities observ-
able by each agent is fixed at 7. This ultimately reduces our
task to a simple classification problem, which can be evalu-
ated based on simple metrics, such as accuracy.

3.2 Dataset Collection
We basically followed the dataset collection procedure of the
MutualFriends dataset (He et al. 2017). We used Amazon
Mechanical Turk to pair up two human workers and gave
each worker 20 seconds to read an example, followed by a
maximum of 6 minutes session to complete the task. Our
chat interface is shown in Figure 2.

During the dataset collection, we were concerned on three
essential requirements of natural language corpora: inter-
pretability, linguistic/strategic variety and reliability. In this
section, we show why these properties need consideration
and how we managed to fulfill these requirements.

Interpretability We define the interpretability of the
dataset to be the ease of interpreting its language and strat-
egy, which is critical for additional annotations and error
analysis. However, lack of discipline and complexity of the
vocabulary can make a corpora difficult for interpretation.

In free-formed dialogues, lack of discipline can cause un-
necessary difficulty in terms of interpretation. For instance,
cross-talk (conversation which does not progress sequen-
tially) can occur frequently (He et al. 2017) and compli-
cate important structures of dialogues, such as discourse
segments, adjacency pairs and contributions in common
grounding (Clark 1996). Thus, we tried to minimize them

Figure 2: Screenshot of our chat interface. Workers are given
a maximum of 6 minutes session to communicate through
the chatbox and select the entity they found in common.

by forcing workers to take turns. Also, chit-chat could oc-
cur occasionally, which adds undesirable noise for analyzing
strategies. Therefore, we explicitly instructed the workers to
avoid talking about things that are irrelevant to this task.

Keeping the vocabulary simple is also important for inter-
pretability, especially for people unfamiliar with the domain.
For instance, the MutualFriends dataset (He et al. 2017) in-
cludes up to 7 attributes with approximately 3K complex
named entities and technical terms. In contrast, we kept the
attributes minimal with only 4 intuitive scalar attributes (x-
value, y-value, size and color). As a result, this greatly re-
duced the complexity of the vocabulary as we describe in
detail in Section 4.

Linguistic and Strategic Variety Linguistic and strategic
variety of the dataset is fundamental for developing dialogue
systems with broad coverage. To elicit this property, we sam-
pled all attributes of the entities uniformly at random, with
the only restriction that the entities cannot be too close to
each other. As the previous work with similar idea confirmed
(Suhr et al. 2017), we found rich varieties of linguistic phe-
nomena, including cardinalities (“three gray dots”), existen-
tials (“There is another small dark ..”), universals (“all of the
other dots are larger”), coordinations and negations (“further
to the right and not as far down”).

During the dataset collection, we assigned 6,759 unique
contexts to 6,760 dialogues we collected. We collected two
dialogues based on the exact same context and confirmed
that they solved the task in different ways: thus there could
be various effective solutions and agents must adapt flexibly
to their partners’ strategies.

In addition, we gave variation according to the degree of
partial observability. Specifically, only 4, 5 or 6 out of the 7
entities in view are shared among the agents. As a result, we
found further variation of common grounding strategies, as
we discuss in detail in Section 4.

Reliability Finally, we regard the reliability of the dataset
to be crucial, especially when crowdsourcing data through
untrained, possibly low-motivated workers. Specifically, in
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our preliminary experiment we found many cases where
workers did not follow the instruction carefully or solve the
task effectively, especially on difficult cases.

As a solution, we manually reviewed all work and rejected
ones which clearly did not follow the instruction. Our in-
struction is kept brief and explicit so that it is easier to fol-
low, and we also gave manual feedback about general solu-
tions to improve their work. To discourage premature guess-
ing, we prohibited workers from selecting within the first
minute and instructed them to make it very sure they found
one entity in common. We also incentivized task success
with $0.05 bonus for all successful dialogues, in addition
to the base reward of $0.30.

As a result, we found significant improvement in terms
of task success rate, which is an important evidence of the
reliability of our dataset.

Based on the above procedure, we collected 6,839 com-
pleted dialogues and accepted 6,760 dialogues in total. Over-
all, we received positive feedback about our task and the
workers seemed to enjoy it.

4 Dataset Analysis
In this section, we verify the difficulty of common grounding
introduced in our task and conduct further analyses of our
dataset.

4.1 Difficulty of Common Grounding
Our hypothesis is that continuous and partially-observable
context makes common grounding difficult compared to cat-
egorical or fully-observable context. Since our task can be
solved trivially with full-observability (e.g., by always utter-
ing “select the darkest dot”), we focus on testing how contin-
uous context adds difficulty in terms of common grounding.

As a comparison, we use the MutualFriends dataset which
is based on a similar collaborative referring task under
partially-observable but categorical context (He et al. 2017).
However, several differences make a direct comparison dif-
ficult: for instance, we only gave one chance for final se-
lection, while the MutualFriends dataset allowed multiple
chances in the given time. Therefore, we focused on the fol-
lowing factors which are less affected by the differences.

Utterance Length We compare the average utterance
length because this indicates the syntactical/semantic com-
plexity of utterances required for common grounding. As
shown in Table 1, utterances in our dataset are at least
twice as long as those in the MutualFriends dataset. There-
fore, more complex utterances are required under continu-
ous context compared to categorical context. Interestingly,
utterance lengths also slightly increase when the number of
shared entities are smaller: thus, greater degrees of partial-
observability also add complexity at the utterance level.

Pragmatic Expressions In our dataset, we found many
pragmatic expressions whose meaning depend on the con-
text and should not be taken literally. A typical example is
the usage of word black to indicate the darkest dot in the con-
text, even if its color is not completely black. Another com-
mon expression triangle is also pragmatic, since in literal

sense there could be numerous triangles in one’s view, and
the speaker actually indicates a group of three dots which is
close to prototypical types of triangles, such as an equilateral
triangle. Examples are shown in Figure 3.

large black dot a close triangle

Figure 3: Examples of typical pragmatic expressions in our
dataset, marked by bold.

As the previous work pointed out, such pragmatic expres-
sions are characteristic in continuous context (Monroe et al.
2017) and add complex ambiguity that need to be resolved
through common grounding.

Nuanced Expressions Finally, frequent usage of nuanced
expressions is an important characteristic of our dataset.
Since the context is continuous and partially-observable, we
hypothesize that speakers need to rely on such expressions
to express subtle differences in terms of degree, ambiguity
and uncertainty.

To estimate the frequency of nuanced expressions, we
manually reviewed 100 dialogues from each dataset to
create keyword-based dictionaries of nuanced expressions,
which are further expanded with synonyms/morphologies.
We excluded words which are likely to be used with
different meanings (such as like, about and around). For
simplicity, we do not consider nuances expressed morpho-
logically (such as ish as in smallish) although they are also
common in our dataset. Results in Table 2 show that our
dataset includes significantly more nuanced expressions of
various types. The dictionaries will be publicly available for
reproducibility.

To summarize the points, utterances are much longer in
our dataset, which indicates the complexity of common
grounding at the utterance level. Secondly, our dataset in-
cludes more ambiguity and uncertainty represented by fre-
quent occurrence of pragmatic expressions and nuanced ex-
pressions. Thus the process of common grounding is com-
plicated, but regardless of such difficulties, human workers
could solve the task reasonably well with little evidence of
confusion. Therefore, we conclude that introducing continu-
ity and partially-observability to the context is a critical solu-
tion to add natural difficulty in terms of common grounding.
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MutualFriends Ours
(# Shared = 4) (# Shared = 5) (# Shared = 6)

# dialogues 10,661 2,189 2,279 2,292
Average tokens per utterance 5.38 12.87 12.37 11.86
Average turns per dialogue 8.97∗ 4.97 4.77 4.56

Success rate 0.85∗ 0.66 0.77 0.87

Unique tokens 13,478 3,761
Occupancy of top 10% frequent tokens 91.6% 97.0%

Table 1: Basic statistics of our dataset and the MutualFriends dataset (He et al. 2017). To count tokens and vocabulary size, we
preprocessed the text with the same NLTK word tokenizer (Loper and Bird 2002) and converted each token to its lowercased
form. Statistics with asterisk are not suitable for direct comparison due to the task difference (e.g. the number of chances).

Nuance Type MutualFriends Ours Example Keywords Example Usage

Approximation (10) 0.10 3.98 almost, nearly, approximately almost in the middle
Exactness/Confidence (33) 0.14 2.71 exactly, completely, definitely exactly horizontal
Subtlety (12) 0.01 9.37 slightly, bit, somewhat slightly to the right
Extremity (27) 0.21 9.35 very, really, extraordinary very light dot
Uncertainty (20) 0.57 5.79 maybe, might, guess Maybe it’s different

Table 2: Average occurence of nuanced expressions per 100 utterances (dictionary size shown in parenthesis).

4.2 Further Analysis
Next, we conduct further analyses of the collected dataset,
which revealed important phenomena at different levels that
need to be considered.

Basic Statistics From Table 1, we also found that dia-
logues get longer in terms of average turn length with fewer
shared entities. This shows that under greater degrees of
partial-observability, it is more likely that the presented in-
formation is not groundable and players need more try-and-
error to create common ground. Success rate also drops nat-
urally, so in general common grounding becomes more chal-
lenging when less information is shared.

In terms of lexical variety, we found 3,761 unique tokens
in total, in contrast to 13,478 in the MutualFriends dataset.
In addition, large portion of the corpora constitutes of com-
mon words, and top 10% of the most frequent tokens occupy
97.0% of the whole tokenized corpora, in contrast to 91.6%
in the MutualFriends dataset. Therefore the vocabulary of
our dataset is extremely simple, which is an important ev-
idence of interpretability discussed in Section 3. This may
also be helpful for training dialogue systems because rare
words are less problematic.

Nonlinguistic Phenomena Language is a coordination
device we use to coordinate our joint actions (Lewis 1969),
but we also use joint saliency to coordinate actions at the
nonlinguistic level (Schelling 1980). In our dataset, we
found that human players have a tendency to focus attention
on perceptually salient entities more often.

We plot the final selection probabilities based on entity’s
color and size in Figure 4. We can clearly see that the selec-
tion is biased, and entities with extreme properties (around
the edge) are more likely to be selected. We also found that

darker entities are more likely to be selected (62.7%) com-
pared to lighter entities (37.3%), and larger entities (54.3%)
slightly more likely than smaller entities (45.7%).

There could be other types of joint saliency such as geo-
metric relations between entities, but the point is that such
bias exists and needs consideration: for example, just by
taking advantage of such bias, we can predict human selec-
tions significantly better than random (Section 5). However,
due to partial-observability joint saliency is not sufficient to
solve our task and communication is critical.

Figure 4: Comparison of the final selection probabilities
based on color and size. The total range of size is 7 and color
is split into 30 equal-sized bins based on RGB scale (smaller
is darker).
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Function Type Example Utterances

Information Providing

Inform (Init.) I have very dark small dot in the center
Inform (Cont.) It also has a small light grey one further down from the group

Agreement Yes I have one like that. / same here.
Agreement (Strong) Exactly! / perfect. mine too.

Agreement (Partial) not sure its the one / more of a line.
Yes, but the small is medium dark, not completely black

Disagreement I don’t have that one. / mine are not in those locations.

Information Seeking

Question (Prop.) the middle one is the darkest of the 3?
Question (Set) where is it in relation to the large med grey?

Question (Choice) Which should we choose? / the black or the grey?
Question (Check) It’s the darkest dot in the circle, right?

Commissives Offer lets click the upper left one that’s bigger and darker gray

Directives Request tell me about your tiniest dot? / pick one at the bottom
Suggestion Please describe it in relation to other dots in the circle

Table 3: Illustrative utterances in the dataset, grouped by the task dimension of communicative functions (Bunt et al. 2017)

Utterance Level Phenomena Understanding speaker’s
meaning at the utterance level is critical in dialogue (Grice
1957): especially the idea of speech acts (Austin 1962;
Searle 1969) has been applied widely in dialogue system
research for improving utterance understanding and gener-
ation.

In our setting, we allowed free-formed chat with few re-
strictions, as long as they are relevant for the accomplish-
ment of the task: as a result, we found a wide variety of
speech acts in various forms related to common grounding.
We show illustrative examples of the collected utterances in
Table 3. Utterances are grouped by the task dimension of
communicative functions (Bunt et al. 2017), including infor-
mation transfer functions (Information Providing/Seeking)
and action discussion functions (Commissives/Directives).
With additional annotations, our dataset can be extended for
other dialogue tasks, such as dialogue act recognition.

Discourse Level Phenomena Naturally, we found many
coreference and anaphoric expressions in our dataset. Coref-
erence resolution is the task of mapping mentions of entities
to their referents. In our dataset, we found two characteris-
tics that complicate this task. First, due to continuous and
partially-observable context, mentions are usually ambigu-
ous and referents may be missing. Thus players must keep
track of various possibilities and investigate them through
interaction. Secondly, players often use groupings (such as
three in a line, a cluster of 4 dots) where mentions refer
to sets of entities. This strategy could be effective but adds
complexity to coreference resolution.

On the other hand, anaphoric relation is the relation be-
tween a mention and following mentions which refer to the
previous mention. This can occur both within utterances (“a
medium size black one, with a very light slightly smaller
one to it’s left”) and across utterances (“Does the lighter dot
appear to be slightly larger?”). Similar to coreference reso-
lution, this is a challenging subtask of common grounding at
the discourse level which can be studied on our dataset.

5 Experiments
5.1 Experiment Overview
In this experiment, we formulate a natural language under-
standing task based on target selection: specifically, we try
to predict which target a player selected, given the player’s
observation and the corresponding dialogue. This is an es-
sential subtask of collaborative referring, where players
choose their final selection based on the created common
ground. Since the number of entities in view is fixed at 7, we
can formulate this as a simple classification problem. Our
baseline models are kept as simple as possible, with mini-
mal preprocessing and hyperparameter tuning.

5.2 Methods
Two main components of the models are as follows:

Context Embedding The structured form of the context
is represented as a 28 dimensional real-valued vector, where
each of the 7 observable entities is represented as a 4 dimen-
sional vector (x-value, y-value, size, color). Each dimension
is further normalized in the range of (-1,1).

The simplest way to embed context is to directly apply
a multi-layered perceptron (MLP) over the context vector.
However, without feature engineering this simple approach
may have difficultly in capturing relevant information, such
as relations between entities. Therefore, in the second ap-
proach we use the Relation Network module (Santoro et al.
2017) to create additional features about relations between
entities. Specifically, we embed each combination of the en-
tities (total of 21 pairs) with a shared MLP and append the
sum of these vectors as additional input.

Dialogue Embedding Utterances are all tokenized and
lowercased, and tokens which occur less than 10 times are
treated as a unique unknown token. We insert tokens which
represent speaker id to each utterance at the beginning,
and another token to indicate the end of the dialogue.
Then, we embed these tokens with a shared MLP and run
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Full Uncorrelated Success Only

Random 14.28 14.28 14.28

Context Only (MLP) 27.90 ± 0.6 28.74 29.59
Context Only (RN) 31.94 ± 0.9 30.22 32.40

Context + Dialogue (MLP) 40.27 ± 1.3 40.89 43.82
Context + Dialogue (RN) 43.09 ± 0.8 44.00 49.44

Humans - 82.50 90.79

Table 4: Results of the target selection experiment. Models are trained 10 times initialized with different seeds for the Full
testset, and the models with best validation loss are used for the additional testset results (Uncorrelated and Success Only).

a bidirectional GRU (Cho et al. 2014) over the embedded
tokens. Finally, we take the last output of the bi-GRU as the
final representation of the dialogue.

For prediction, we simply concatenate the context and
dialogue embeddings and run another MLP. However, as
we’ve seen in Section 4, there are nonlinguistic selection
bias in our dataset, so it is possible to make predictions with-
out dialogue embeddings. Therefore, we also train models to
predict only from the context embeddings using MLP.

Following common practice, we split the dataset into
training, validation and test set with a proportion of 8:1:1,
and all models are tuned on the validation set. The loss func-
tion is calculated using cross entropy. All components of
the neural networks consist of single layer with 128 hidden
units, and dropout rate of 0.5 is applied at each layer to avoid
overfitting. All parameters are initialized uniformly within
the range of (-0.01, 0.01). Models are trained with the Adam
optimizer (Kingma and Ba 2014) with initial learning rate of
0.001, and we clip gradients whose L2 norm is greater than
0.1. The experiment is run 10 times initialized with different
seeds, and we report the mean and standard deviation of the
selection accuracies on the full testset.

For further analyses, models with the best validation loss
in the previous experiment are also tested on two variants
of the testset. First, we create an uncorrelated testset by ran-
domly removing one from each correlated pair in the cur-
rent testset (same dialogue but different context). Secondly,
we further removed dialogues where players failed to co-
ordinate on the same entity from the uncorrelated testset,
since this may affect target selection performance. The sta-
tistical significance of the results for each pair of methods
are tested on the uncorrelated testset using paired student’s
t-test. Finally, we take 100 random samples from the un-
correlated testset (including 76 successful) to report human
performance based on average accuracy of two annotators.

5.3 Results
We show the results of our experiment in Table 4. As we
can see, models trained only with the context embeddings
perform significantly better than random (p-value < 10−7).
This verifies that we can indeed take advantage of selection
bias to make better predictions.

In addition, we found that embedding context with Re-
lation Network consistently outperforms MLP, but not at a

statistically significant level (p-value > 0.1). Therefore, the
simplest strategy of using MLP works decently, but a better
architecture may improve the overall performance.

Finally, models trained with both context and dialogue
embeddings significantly outperform models trained only
with the context embeddings (p-value < 10−9). This indi-
cates that even our simplest models can learn to ground lin-
guistic meanings based on the context to make better predic-
tions. When the testset only includes successful cases, mod-
els perform better but human performance improves even
more achieving over 90% accuracy. Overall, our target se-
lection task is challenging due to the complexity of common
grounding, and we still have a huge room for improvement.

6 Conclusion and Future Work
The main contributions can be summarized as follows:

• We proposed a simple and general idea of incorporating
continuous and partially-observable context to the dia-
logue tasks, which makes common grounding difficult in
a natural way.

• Following this idea, we formulated a novel dialogue task
based on collaborative referring which enables clear eval-
uation and analysis of complex models.

• We collected a largescale dataset of 6,760 dialogues,
which fulfills essential requirements of natural language
corpora and will be publicly available online.

• Our analysis of the dataset verified the difficulty of com-
mon grounding and revealed various phenomena that need
to be considered.

• We evaluated and analyzed simple baseline models on an
important subtask of collaborative referring and showed
that there is still room for further improvement.

In future work, we will evaluate and analyze dialogue
models based on our task, especially to identify the cur-
rent limitations of end-to-end approaches in terms of com-
mon grounding. Models can be trained in a variety of
ways, including supervised learning, reinforcement learning
with humans, and reinforcement learning based on self-play
(Lewis et al. 2017). Overall, we expect our task to be a fun-
damental testbed for developing dialogue systems with so-
phisticated common grounding abilities.
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