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Abstract

Hypernymy is a basic semantic relation in computational lin-
guistics that expresses the “is-a” relation between a generic
concept and its specific instances, serving as the backbone
in taxonomies and ontologies. Although several NLP tasks
related to hypernymy prediction have been extensively ad-
dressed, few methods have fully exploited the large number
of hypernymy relations in Web-scale taxonomies.
In this paper, we introduce the Taxonomy Enhanced Adver-
sarial Learning (TEAL) for hypernymy prediction. We first
propose an unsupervised measure U-TEAL to distinguish hy-
pernymy with other semantic relations. It is implemented
based on a word embedding projection network distantly
trained over a taxonomy. To address supervised hypernymy
detection tasks, the supervised model S-TEAL and its im-
proved version, the adversarial supervised model AS-TEAL,
are further presented. Specifically, AS-TEAL employs a cou-
pled adversarial training algorithm to transfer hierarchical
knowledge in taxonomies to hypernymy prediction models.
We conduct extensive experiments to confirm the effective-
ness of TEAL over three standard NLP tasks: unsupervised
hypernymy classification, supervised hypernymy detection
and graded lexical entailment. We also show that TEAL can
be applied to non-English languages and can detect missing
hypernymy relations in taxonomies.

Introduction
Hypernymy (“is-a”) is a basic semantic relation in compu-
tational linguistics, expressing the “is-a” relation between a
generic concept (hypernym) and its specific instances (hy-
ponyms), such as state-Hawaii, country-United States, etc.
The accurate prediction of hypernymy is vital for vari-
ous downstream NLP applications, such as taxonomy con-
struction (Wu et al. 2012), textual entailment (Vulic et al.
2017), knowledge base construction (Mahdisoltani, Biega,
and Suchanek 2015), etc.

In the literature, pattern based methods and distributional
approaches are two major paradigms to harvest hypernymy
relations from texts (Wang, He, and Zhou 2017). Unlike
pattern based methods which rely more on lexical pattern
matching (such as Hearst patterns (Roller, Kiela, and Nickel
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2018)), distributional approaches leverage the distributional
representations of terms to predict hypernymy. For example,
several unsupervised hypernymy measures predict whether
there exists a hypernymy relation between two terms (San-
tus et al. 2014; Kiela et al. 2015). Other works employ su-
pervised algorithms to predict hypernymy (Roller, Erk, and
Boleda 2014; Weeds et al. 2014). In these methods, each
pair of terms is represented as an embedding vector related
to the two terms, which is further fed into an SVM or lo-
gistic regression classifier to make the prediction. Addition-
ally, Shwartz et al. (2016) combine pattern based and dis-
tributional methods to improve the performance by using
an integrated network. Because hypernymy relations are re-
garded to be asymmetric and transitive in most studies, sev-
eral recent approaches aim at learning hypernymy embed-
dings of terms to capture such properties (Yu et al. 2015;
Luu et al. 2016; Nguyen et al. 2017). These term embed-
dings are more task-oriented for predicting hypernymy.

We observe that these methods may have three potential
limitations: (i) few methods have fully exploited knowledge
in both Web-scale taxonomies and text corpora. For exam-
ple, Luu et al. (2016) and Nguyen et al. (2017) use the lim-
ited number of hypernymy relations in WordNet concept
hierachy. Yu et al. (2015) leverage hypernymy relations in
Probase (Wu et al. 2012) but do not exploit word embed-
dings learned from text corpora, which contain rich contex-
tual knowledge of words. (ii) Hypernymy and other seman-
tic relations (e.g., meronymy, co-hyponymy) are usually dif-
ficult to distinguish for distributional methods (Weeds et al.
2014). The process of how a term is mapped to its hyper-
nyms or non-hypernyms in the embedding space is not di-
rectly modeled. Hence, distributional methods are likely to
suffer from the lexical memorization problem (Levy et al.
2015). (iii) Tasks related to hypernymy prediction can be ei-
ther supervised or unsupervised. It is unclear how large the
taxonomies can benefit these tasks in a unified framework.

In this paper, we propose a Taxonomy Enhanced Adver-
sarial Learning (TEAL) framework for hypernymy predic-
tion. The basic idea is to employ large taxonomies to learn
how a term projects to its hypernyms and non-hypernyms in
the embedding space. We first propose an unsupervised mea-
sure U-TEAL to distinguish hypernymy with other seman-
tic relations based on a word embedding projection network
distantly trained over the taxonomy. To address supervised
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hypernymy detection tasks, the supervised model S-TEAL is
presented, which leverages word embeddings trained from
Web corpus and human-labeled hypernymy training sets.
Because adversarial training is beneficial for feature imita-
tion by imposing implicit regularization, we further propose
a coupled adversarial training algorithm AS-TEAL to trans-
fer hierarchical knowledge in taxonomies to hypernymy pre-
diction models. It employs two adversarial classifiers to en-
able an imitation scheme through competition between the
S-TEAL model and a knowledge-rich taxonomy enhanced
projection network, further increasing the performance.

In experiments, we take Microsoft Concept Graph as
the taxonomy and evaluate TEAL over three standard NLP
tasks: unsupervised hypernymy classification (Kiela et al.
2015), supervised hypernymy detection (Luu et al. 2016)
and graded lexical entailment (Vulic et al. 2017). Because
large taxonomies may not be available for lower-resourced
languages, we also show how TEAL can be applied to non-
English languages with no large taxonomies available. Ad-
ditionally, we develop an application to detect missing hy-
pernymy relations in the Microsoft Concept Graph.

Related Work
In this section, we summarize the related work in two major
aspects: hypernymy prediction and how adversarial learning
can benefit related tasks.

Hypernymy prediction. To discriminate hypernymy re-
lations from other semantic relations (e.g., co-hyponymy,
meronymy, synonymy), both unsupervised and supervised
hypernymy detection tasks have been proposed by the NLP
community. Methods to address the tasks can be divided into
two categories: unsupervised and supervised.

Unsupervised approaches are based on hypernymy mea-
sures, which model the degree of the existence of hyper-
nymy within a term pair. In the literature, typical measures
are designed based on the distributional inclusion hypothe-
sis (Zhitomirsky-Geffet and Dagan 2009; Lenci and Benotto
2012). Recently, this hypothesis has been refined by the dis-
tributional informativeness hypothesis (Santus et al. 2014)
and the selective distributional inclusion hypothesis (Roller,
Erk, and Boleda 2014). Santus et al. (2017) present an com-
prehensive overview of a large number of unsupervised mea-
sures to rank hypernymy relations. It shows that no unsuper-
vised measure consistently performs better than others when
discriminating hypernymy from other semantic relations.

Supervised approaches are mostly based on relation clas-
sification paradigms. In these methods, each term pair is rep-
resented as an embedding vector w.r.t. the two terms. The
representation methods of terms include vector concatena-
tion (Baroni et al. 2012), vector offset (Weeds et al. 2014),
the asymmetric model (Roller, Erk, and Boleda 2014), etc.
Additionally, Shwartz et al. (2016) combine pattern based
and distributional models to improve the performance by
neural networks. A criticism of these methods comes from
Levy et al. (2015). Their experiments show that supervised
methods tend to learn the existence of prototypical hyper-
nyms rather than the actual relations between the two terms.
Readers can also refer to a recent survey for detailed discus-
sion (Wang, He, and Zhou 2017).

To overcome the prototypical hypernym problem (Levy et
al. 2015), projection based approaches are proposed to learn
how the representation of a term is mapped to that of its hy-
pernym in the embedding space. The piecewise linear pro-
jection model (Fu et al. 2014) is a pioneer work in this field.
This model is improved by Wang et al. (2016) by leverag-
ing an iterative learning strategy and pattern-based valida-
tion techniques. The representations of hypernymy and non-
hypernymy can be learned jointly by transductive learning,
as shown in (Wang et al. 2017). By learning the represen-
tations of both hypernymy and non-hypernymy relations,
it is easier to train a binary classification model to decide
whether a term pair is hypernymy or non-hypernymy.

Another research direction is hypernymy embedding
learning. Yu et al. (2015) introduce a supervised model to
learn term embeddings for hypernymy identification. Luu
et al. (2016) propose a dynamic weighting neural network
based on Wikipedia data. OrderEmb (Vendrov et al. 2015)
models the partial ordering of terms in the hierarchy of hy-
pernymy in WordNet. More recently, HyperVec (Nguyen et
al. 2017) is proposed, which is suitable for discriminating
hypernymy from other relations and distinguishing hyper-
nyms and hyponyms in a hypernymy pair.

Adversarial training. Adversarial learning is frequently
applied in image generation (Goodfellow et al. 2014), se-
quence modeling (Yan et al. 2018; Xiao et al. 2018), etc.
In NLP, adversarial learning makes less progress. Recently,
several researchers aim at generating texts by neural net-
works, e.g., SeqGAN (Yu et al. 2017). However, these ap-
proaches can not be applied to our task because the goal is
to predict relations between words, instead of sequence gen-
eration. Some other works employ adversarial training in a
multitask learning framework to improve the performance of
NLP tasks, such as text classification (Liu, Qiu, and Huang
2017), bilingual lexicon induction (Zhang et al. 2017), etc.
In our work, we employ adversarial learning in a multitask
learning objective using both training sets and existing tax-
onomies. The knowledge in both sources can be automati-
cally fused, without defining explicit fusion functions.

The TEAL Framework
In this section, we present three models of the TEAL frame-
work (i.e., U-TEAL, S-TEAL and AS-TEAL) in detail. The
high-level neural architectures are illustrated in Figure 1.

U-TEAL: Unsupervised Hypernymy Measure
To handle the unsupervised hypernymy classification task,
we present an unsupervised measure based on a large taxon-
omy. We briefly introduce some basic notations as follows:

Let (x, y) be a pair of two terms. ~x and ~y are corre-
sponding word embeddings trained using any neural lan-
guage models such as Word2Vec (Mikolov et al. 2013),
Glove (Pennington, Socher, and Manning 2014), etc. U-
TEAL explicitly models the process of how a term is
mapped to its hypernyms and non-hypernyms in the embed-
ding space. The input of U-TEAL is two automatically con-
structed training sets. Let T (+) be the collection of direct

7129



Base Neural Network

Taxonomy Enhanced Neural Network

Positive Adversarial 
Classifier

Negative Adversarial 
Classifier

Hidden

Projection

Embedding

Input

Entity

Hypernym Non-hypernym
Taxonomy Taxonomy

Embedding

Input
Entity

Hypernyms Non-hypernyms

Hidden

Projection

Embedding

Input

Entity

Hypernym Non-hypernym

Embedding

Input

Hidden

Projection

Embedding

Input

Taxonomy Taxonomy

Embedding

Input
Entity

Hypernyms Non-hypernyms

Single non-linear vector 
operation

Embedding look-up 

Single multiple non-linear vector operation(s) 
(i.e., one/many hidden layers)

Loss calculation based on vector offsets

Figure 1: High-level neural architectures of three models of
the TEAL framework.

hypernymy relations derived from a taxonomy1. For non-
hyerpnymy relations T (−), the generation process can be di-
vided into two cases:
1. Use reverse hyeprnymy pairs for predicting the direction-

ality of hyermymy, i.e., T (−) = {(y, x)|(x, y) ∈ T (+)};
2. Use a mixture of reverse hyeprnymy pairs, randomly

matched term pairs and co-hyponymy pairs for distin-
guishing hypernymy with other semantic relations.

Denote θ(+)
T and θ(−)T as two sets of projection parame-

ters. J(~x; θ(+)
T ) and J(~x; θ(−)T ) are the estimated embedding

vectors of x’s hypernym and non-hypernym, predicted by
non-linear neural projection models. The input is the term
embedding ~x. The loss function LT is defined as follows:2

LT = E
(x,y)∼T (+)‖J(~x; θ

(+)
T )− ~y‖2 + E

(x,y)∼T (−)‖J(~x; θ
(−)
T )− ~y‖2

1We regard (x, y) ∈ T (+) if there is a direct link between x
and y in the taxonomy. Relations generated based the transitive
property of hypernymy are not considered because such property
does not necessarily hold for Web-scale lexical taxonomies (Liang
et al. 2017b). Strictly speaking, this method should be referred as
“weakly supervised model” because taxonomic data are used to
train neural networks. However, we do not use any data to learn
hypernymy measures. According to Nguyen et al. (2017), this kind
of method can be referred as “unsupervised”. In this work, we use
the two expressions interchangeably.

2For simplicity, we omit all parameter regularization terms in
loss functions derived in this paper.

Recently, parameter sharing techniques have been proved
effective for multitask learning in distributional seman-
tic (Pham, Lazaridou, and Baroni 2015). Hence, for a term x,
we first learn a shared representation and project it to the em-
beddings of its hypernyms and non-hypernyms separately.
We thereby replace LT with Eq. (1):

LT = E(x,y)∼T (+)‖H(~x; θ
(+)
T , θ

(S)
T )− ~y‖2

+E(x,y)∼T (−)‖H(~x; θ
(−)
T , θ

(S)
T )− ~y‖2

(1)

where θ
(S)
T is the set of sharing projection parame-

ters. H(~x; θ
(+)
T , θ

(S)
T ) and H(~x; θ

(−)
T , θ

(S)
T ) are projection

results with parameter sharing, similar to J(~x; θ
(+)
T ) and

J(~x; θ
(−)
T ). The neural network architecture is shown in Fig-

ure 1(a). A term x is mapped to its word embeddings first
and passes through an arbitrary number of hidden layers
with parameters as θ(S)T . After that, the network is separated
into two parts: the hypernym and non-hypernym projection
networks, with parameters θ(+)

T and θ(−)T , respectively. Fi-
nally, U-TEAL generates the embeddings of x’s hypernym
H(~x; θ

(+)
T , θ

(S)
T ) and non-hypernym H(~x; θ

(−)
T , θ

(S)
T )3.

After the model is trained, inspired by Wang et al. (2017),
we employ an unsupervised hypernymy measure s(x, y) ∈
(−1, 1) to calculate the degree of hypernymy for a previ-
ously unseen term pair (x, y):

s(x, y) = tanh(‖H(~x; θ
(−)
T , θ

(S)
T )− ~y‖ − ‖H(~x; θ

(+)
T , θ

(S)
T )− ~y‖)

(2)
where a larger value of s(x, y) indicates a higher proba-

bility of hypernymy. The nature of tanh in Eq. (2) makes U-
TEAL suitable for solving not only the hypernymy classifi-
cation task but also the graded lexical entailment task (Vulic
et al. 2017). This issue will be further discussed in the ex-
periments. Additionally, this method does not require a pre-
cise projection of hypernymy relations. It compares whether
a term pair is more similar to known hypernymy or non-
hypernymy relations. Hence, it is more error-tolerant than
existing projection-based approaches.

S-TEAL: Supervised Hypernymy Model
Given positive and negative collections of term pairs D(+)

and D(−) as training sets, U-TEAL can be slightly adapted
to accommodate the supervised hypernymy detection task.
The model is denoted as S-TEAL, with the neural architec-
ture shown in Figure 1.

The loss function of S-TEAL is very similar to that of U-
TEAL, only with datasets changed. It is defined as follows:

LD = E(x,y)∼D(+)‖H(~x; θ
(+)
D , θ

(S)
D )− ~y‖2

+E(x,y)∼D(−)‖H(~x; θ
(−)
D , θ

(S)
D )− ~y‖2

(3)

3Because a term x may have multiple hypernyms and non-
hypernyms, H(~x; θ

(+)
T , θ

(S)
T ) and H(~x; θ

(−)
T , θ

(S)
T ) can be re-

garded as the “centroids” of x’s hypernyms and non-hypernyms.
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After minimizing Eq. (3), a binary classifier is trained
over D(+) and D(−). In S-TEAL, we fully utilize the neu-
ral projection results H(~x; θ

(+)
D , θ

(S)
D ) and H(~x; θ

(−)
D , θ

(S)
D )

as partial representations for a term pair (x, y). The features
used for classification include ~x − ~y, H(~x; θ

(+)
D , θ

(S)
D ) − ~y,

H(~x; θ
(−)
D , θ

(S)
D )− ~y and the vector norms (l1 and l2 norms)

of all three vectors. An SVM classifier is trained over D(+)

and D(−) to predict hypernymy on test data.
In this work, we address the problem in Levy et al. (2015)

by modeling projections explicitly. It should be noted that
we only use binary classification models for S-TEAL. How-
ever, by replacing classifiers with regression models (e.g.,
linear regression, support vector regression), S-TEAL can be
employed for tasks with real number outputs such as graded
lexical entailment (Vulic et al. 2017).

AS-TEAL: Adversarial Supervised Model
The adversarial supervised model AS-TEAL leverages both
training sets and large taxonomies to improve supervised hy-
pernymy detection. The model is illustrated in Figure 1(c). It
is the combination of U-TEAL and S-TEAL neural networks
with two additional adversarial classifiers.

The input of the positive adversarial loss classifier are two
types of datasets D(+) and T (+). The goal of this classifier
is to distinguish the sources of hypernymy pairs (i.e., the
training set or the taxonomy). It minimizes the log probabil-
ity of incorrectly distinguishing the two types of hypernymy
relations, defined as follows:

LP = E(x,y)∼D(+) log(1− δ(H(~x; θ
(+)
D , θ

(S)
D ), ~x))

+ E(x,y)∼T (+) log δ(H(~x; θ
(+)
T , θ

(S)
T , ~x))

(4)

where δ(~y, ~x) = 1
1+e−~x⊕~y is a logistic regression classi-

fier that uses the concatenation of term embeddings ~x and
~y as features. This model is also a variant of conditional
generative adversarial networks (Denton, Gross, and Fergus
2016). It predicts hypernymy embeddings conditioned on in-
put term embeddings. Similarly, the loss function of the neg-
ative adversarial classifier is as follows:

LN = E(x,y)∼D(−) log(1− δ(H(~x; θ
(−)
D , θ

(S)
D ), ~x))

+ E(x,y)∼T (−) log δ(H(~x; θ
(−)
T , θ

(S)
T ), ~x)

(5)

In AS-TEAL, the loss function of the taxonomy enhanced
neural network (refer to Figure 1(c)) is the same as that
of U-SEAL, shown in Eq. (1). The base neural network
minimizes projection errors using the same techniques of
S-TEAL trained over training sets D(+) and D(−). Mean-
while, it mimics the behavior of the taxonomy enhanced
neural network by “fooling” the two adversarial classifiers.
Take the positive adversarial classifier as an example. We
require that the base neural network gradually learns from
the hypernymy relations in T (+) that are sufficiently similar
to hypernymy relations in D(+) only. This is because hy-
pernymy relations in different domains may have different

semantics (Fu et al. 2014; Wang and He 2016). Learning too
much from domain-irrelevant hypernymy in the taxonomy
may lower the performance of the base neural network.

In this paper, we employ a semantic filtering technique to
select a subset of hypernymy relations from T (+) (denoted
as T̃ (+)) for adversarial training of the base neural network.
The algorithm is summarized in Algorithm 1.

Algorithm 1 Semantic Filtering Algorithm for AS-TEAL

1: Initialize T̃ (+) = ∅;
2: Apply K-means clustering to {~x|(x, y) ∈ D(+)};
3: for each (x, y) ∈ T (+) do
4: for each cluster centroid ~c do
5: if cos(~x,~c) > γ then
6: Add (x, y) to T̃ (+);
7: Break;
8: end if
9: end for

10: end for

A similar technique is applied to T (−) to generate the
domain-relevant non-hypernymy relations T̃ (−). The loss
function of the base neural network for AS-TEAL is derived
below, with λ1 and λ2 as balancing parameters:

L∗T = LT + λ1E(x,y)∼T̃ (+) log(1− δ(H(~x; θ
(+)
T , θ

(S)
T ), ~x))

+λ2E(x,y)∼T̃ (−) log(1− δ(H(~x; θ
(−)
T , θ

(S)
T ), ~x))

(6)

Algorithm 2 Adversarial Model for Hypernymy Prediction

1: Initialize θ(+)
T , θ(−)T and θ(S)T by minimizing Eq. (1);

2: Initialize θ(+)
D , θ(−)D and θ(S)D by minimizing Eq. (3);

3: while not converge do
4: Train positive adversarial classifier by minimizing

Eq. (4);
5: Train negative adversarial classifier by minimizing

Eq. (5);
6: Train taxonomy enhanced network by minimizing

Eq. (3);
7: Train basic network by minimizing Eq. (6);
8: end while

The training algorithm of the AS-TEAL model is pre-
sented in Algorithm 2. It iteratively minimizes the loss func-
tions of the four models. After AS-TEAL is trained, we em-
ploy the SVM classifier (with the same features as those of
S-TEAL) based on the base neural network to make the pre-
diction for hypernymy relations.

Experiments
We conduct experiments to evaluate TEAL over five tasks or
applications and compare it with state-of-the-art methods.
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Knowledge Sources
The taxonomy we use is Microsoft Concept Graph4, a large
public dataset generated from Probase (Wu et al. 2012). It
contains 33,377,320 hypermymy relations, in the form of
<hypernym, hyponym, count> triples where count is the
number of extractions of the <hypernym, hyponym> rela-
tion from the Web corpus of Wu et al. (2012). Because the
extracted relations are probabilistic and contain errors, we
filter out relations appearing fewer than five times to guar-
antee high accuracy. Finally, we create a dataset consisting
of 2,844,951 relations as the underlying taxonomy.

To show TEAL does not require the training of task-
specific word embeddings, we employ the Glovec model
trained over the Wikipedia and Gigaword corpus (Penning-
ton, Socher, and Manning 2014). The dimensionality of
word embeddings is set to 100 in all the experiments.

Task 1: Unsupervised Hypernymy Classification
We first evaluate U-TEAL for unsupervised hypernymy
classification. We follow the same evaluation protocol in
Nguyen et al. (2017) based on subsets of BLESS (Baroni and
Lenci 2012), This evaluation method is also applied in other
recent works (e.g., Weeds et al. (2014), Kiela et al. (2015)).

The distant supervision dataset is constructed using a sub-
set of the taxonomy related to 200 most frequent nouns in
WordNet (see Weeds et al. (2014)) as the positive relation
set, and the same size of the negative relation set. To avoid
model overfitting, we delete pairs from distant supervision
dataset that appear in the testing set. After that, we make the
prediction over test sets using U-TEAL. For simplicity, we
employ only one fully-connected 100 dimensional layer as
the hidden layer, with hyperbolic tangent (tanh) as the acti-
vation function. The model parameters are learned using the
Adam optimization algorithm (Kingma and Ba 2014) in 500
epochs. The batch size is set to 64.5

Hypernymy v.s. hyponymy. Following the experiments
in Nguyen et al. (2017), we evaluate our unsupervised mea-
sure by predicting the directionality of the hypernymy rela-
tions over 1,337 hyponym-hypernym pairs of BLESS (Ba-
roni and Lenci 2012). It is a binary classification task where
a noun pair is supposed to be predicted as hypernymy or
hyponymy6. For a pair (x, y), we predict hypernymy if
s(x, y) ≥ 0 and hyponymy otherwise. Hence, no validation
set is needed and all the data can be used for testing.

The accuracy scores of prediction results of our method
and previous state-of-the-art approaches are shown in Ta-
ble 1. Our method is comparable to the strongest competi-
tor (Roller, Kiela, and Nickel 2018) in terms of accuracy.
We also plot the distributions of prediction scores for both
hypernymy and hyponymy relations in Figure 2. Most pre-
diction scores of hypernymy and hyponymy relations are in
the range of (-0.9,-0.55) and (0.8,0.97), respectively. Hence,

4https://concept.research.microsoft.com/
5Unless otherwise stated, we use the same architecture and the

optimization algorithm in other experiments.
6For a pair (x, y), if x is a y, this relation is hypernymy. If y is

a x, this relation is hyponymy.

Method BLESS WBLESS
Santus et al. (2014) 0.87 -
Weeds et al. (2014) - 0.75
Kiela et al. (2015) 0.88 0.75
Nguyen et al. (2017) 0.92 0.87
Roller et al. (2018) 0.96 0.87
U-TEAL 0.96 0.88

Table 1: Accuracy of U-TEAL and state-of-the art methods
for unsupervised hypernymy classification.
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Figure 2: The box-whisker plot of model prediction scores
of hypernymy and hyponymy relation over BLESS dataset.

there is a very clear distinction of prediction scores between
hypernymy and hyponymy.

Hypernymy v.s. other relations. We increase the diffi-
culty of the evaluation tasks by distinguishing hypernymy
with other semantic relations. The dataset we use is WB-
LESS, which is a subset of the full BLESS dataset and con-
structed by Nguyen et al. (2017). It consists of two types
of relations: hypermymy and others (including reversed hy-
pernymy pairs, holonym-meronym pairs, co-hyponyms and
randomly matched nouns)7. It consists of 1,168 BLESS
word pairs. We learn a threshold τ ∈ (−1, 1) over s(x, y)
to distinguish the two type of relations using the same ex-
perimental settings as in the previous study (Nguyen et al.
2017) where there is a 98%:2% split between validation and
test sets. Table 1 compares the accuracy of ours and pre-
vious approaches. As seen, the hypernymy relations can be
separated from other relations by our method. We slightly
improve Nguyen et al. (2017)’s and Roller et al. (2018)’s
methods by 1% and outperform others by over 13%.

Study on neural network architectures. We further an-
alyze how the change of neural network architectures can
affect the performance. Take the dataset BLESS as an ex-
ample. Figure 3 illustrates the prediction accuracy when the
number of hidden layers and hidden units varies. To reduce
the randomness of model training, we train each model five
times and report the average performance. As shown, our
method has a relatively high and stable performance when
the neural network is not overly deep (with the number of
hidden layers< 4) and has the number of hidden units equal
to or slightly larger than word embedding dimensionality.

7We do not evaluate our method over a third dataset introduced
by Nguyen et al. (2017) (i.e., BIBLESS) because it is for multiway
classification evaluation but our method projects word embeddings
in two directions. We will extend our work to classify multiple se-
mantic relations in the future.
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Figure 3: Change of performance in term of accuracy when
the neural network architecture varies over BLESS dataset.

Task 2: Supervised Hypernymy Detection
In this task, we evaluate S-TEAL and investigate whether
AS-TEAL can improve hypernymy detection performance.

General domain. For the task of supervised hypernymy
detection, we utilize two public general-domain datasets:
the full BLESS dataset (Baroni and Lenci 2012) and EN-
TAILMENT (Baroni et al. 2012). For evaluation, we fol-
low the same “leave-one-out” procedure as (Yu et al. 2015;
Luu et al. 2016; Nguyen et al. 2017). For BLESS, we ran-
domly select one noun for testing, and train projection and
classification models on others. We also use the Microsoft
Concept Graph knowledge in adversarial training. For EN-
TAILMENT, we randomly select one hypernymy relation
for testing and train on others. The average accuracy is re-
ported as the evaluation metrics. The experimental results
are listed in Table 2. The performance of S-TEAL is gener-
ally comparable to state-of-the-art (Nguyen et al. 2017). The
accuracy over BLESS is higher than that of ENTAILMENT
due to the relatively large dataset size. For AS-TEAL, we
set λ1 = λ2 = 0.01, K = 10 and τ = 0.8. The accuracy
is further boosted by 1% and 4%, respectively. Hence, the
general-domain taxonomic knowledge in Microsoft Concept
Graph can be encoded.

Specific domains. We further evaluate our method using
three domain-specific taxonomies: ANIMAL, PLANT and
VEHICLE (Velardi, Faralli, and Navigli 2013). The respec-
tive three evaluation datasets are constructed by extracting
all possible taxonomic relations from taxonomies as possi-
ble samples and randomly pairing two terms as negative ex-
amples. Refer to the details of the dataset construction pro-
cess and evaluation protocols in Tuan et al. (2016).

From the experimental results in Table 3, it can be con-
cluded that the proposed approach has good performance
for hypernymy detection in specific domains. Specifically,
S-TEAL outperforms state-of-the-art over two datasets
(PLANT and VEHICLE) and has the same performance
over the other one (ANIMAL). Another interesting obser-
vation is that methods that use general corpora to training
word embeddings (i.e., Mikolov et al. (2013) and Tuan et
al. (2016)) have relatively high performance than methods
that only consider the taxonomy data (i.e., Yu et al. (2015)).
This is because concepts in specific domains usually have
low converge in the taxonomy used in Yu et al. (2015), lead-
ing to low prediction performance. AS-TEAL can leverage
both word embeddings derived from a large corpus and ex-
isting taxonomies, beneficial for domain specific prediction.

Method BLESS ENTAILMENT
Mikolov et al. (2013) 0.84 0.83
Yu et al. (2015) 0.90 0.87
Tuan et al. (2016) 0.93 0.91
Nguyen et al. (2017) 0.94 0.91
S-TEAL 0.95 0.87
AS-TEAL 0.96 0.91

Table 2: Accuracy of supervised hypernymy detection over
two general-domain datasets.

Method ANIMAL PLANT VEHICLE
Yu et al. (2015) 0.67 0.65 0.70
Mikolov et al. (2013) 0.80 0.81 0.82
Tuan et al. (2016) 0.89 0.92 0.89
S-TEAL 0.89 0.93 0.91
AS-TEAL 0.92 0.94 0.93

Table 3: Accuracy of supervised hypernymy detection over
three domain-specific datasets.

Task 3: Graded Lexical Entailment
While previous tasks treat hypernymy as binary relations,
Vulic et al. (2017) have established the Graded Lexical En-
tailment (GLE) task, which regards the degree of hypernymy
as a real number. For example, the HyperLex score between
chemistry and science is 10.0, indicating a clear hypernymy
relation. In contrast, the score between ear and head is 0.0.

U-TEAL is naturally suitable for addressing this task.
In this experiment, we employ all hypernymy and reverse-
hypernymy pairs in the taxonomy to train the projection
model, excluding those in the test set. Because we mostly
focus on noun-based hypernymy in this work, we com-
pute the scores over all 2,163 HyperLex noun pairs (Vulic
et al. 2017) in an unsupervised manner. Spearman’s rank
correlation coefficient (ρ) between prediction scores S̃ and
ground truth S is reported as the evaluation metric, com-
puted as: ρ =

cov(rgS̃ ,rgS)

σrg
S̃
σrgS

where rgS is the rank variable of S.

cov(rgS̃ , rgS) and σrgS are the covariance and standard de-
viation of the rank variables. In Table 4, we present results
of our method and top-performing methods in the bench-
mark (Vulic et al. 2017). It shows that U-TEAL outperforms
all other baselines.

Language Extensibility: Study on Chinese Datasets
As illustrated previously, the performance of hypernymy
prediction can be improved by integrating taxonomies.
However, it should be noted that large taxonomies may be
unavailable, especially for lower-resourced languages.

In this part, we conduct extensive experiments for Chi-
nese hypernymy prediction without using any taxonomies.
As studied in previous works (Fu et al. 2014; Wang et al.
2017), it is very challenging to capture the semantic relations
between Chinese words by lexical patterns and distributional
semantics. Here, we evaluate our model as binary classifica-
tion: classifying a Chinese word pair as hypermymy or other
relation. Two recent labeled datasets are employed for eval-
uation: FD (Fu et al. 2014) and BK (Wang et al. 2017).
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Model ρ
FR (Vulic et al. 2017) 0.283
PARAGRAM (Mrksic et al. 2016) 0.267
SLQS (Santus et al. 2014) 0.228
VIS (Kiela et al. 2015) 0.253
U-TEAL 0.463

Table 4: Results in the GLE task over all HyperLex noun
pairs in terms of Spearman’s rank correlation coefficient (ρ).

Dataset FD (Fu et al. 2014) BK (Wang et al. 2017)
Method Pre Rec F1 Pre Rec F1
Fu et al. (2014) 0.66 0.59 0.62 0.72 0.67 0.70
Mirza et al. (2016) 0.67 0.75 0.69 0.80 0.75 0.78
Wang and He (2016) 0.69 0.64 0.66 0.73 0.69 0.71
Wang et al. (2017) 0.72 0.70 0.71 0.83 0.80 0.82
U-TEAL 0.68 0.62 0.65 0.83 0.82 0.83
S-TEAL 0.69 0.68 0.69 0.78 0.86 0.83

Table 5: Performance in terms of precision, recall and F1 on
two datasets for Chinese hypernymy prediction.

For each dataset, we test two learning configurations: i)
U-TEAL, which uses the training set to train the projection
neural network and performs evaluation over the test spilt;
and ii) S-TEAL, which uses the training set to train the pro-
jection neural network and the relation classifier and per-
forms evaluation over the test spilt by the classifier. For fair
comparison, we utilize the same training/testing splits and
pre-trained word embeddings as in Wang et al. (2017).

Table 5 summarizes the results for Chinese hypernymy
prediction. Performance of several state-of-the-art methods
are also reported. The performance over BK is generally bet-
ter than FD because the concept space of FD is larger, mak-
ing FD a more challenging dataset. U-TEAL and S-TEAL
perform slightly worse than the strongest baseline (Wang
et al. 2017) over FD and perform better over BK. It shows
that even without using taxonomies, our method is gener-
ally comparable to state-of-the-art. Therefore, TEAL can be
extended to other languages without difficulty.

Application: Enriching Microsoft Concept Graph
We present a preliminary study on inferring new hypernymy
relations for automatic taxonomy enrichment.

The implementation procedure is briefly introduced as
follows. Denote D as the word pairs in Microsoft Concept
Graph. Given each hypernymy pair (x, y) ∈ D, we re-
trieve all the semantically similar neighbors of x as N(x) =

{x′ | cos(~x′ , ~x) > α1} where α1 > 0 is a similarity thresh-
old. We use all pairs in D to train the projection model, and
predict there is a hypernymy relation between x

′
and y iff

s(x
′
, y) > α2 where α2 ∈ (0, 1). To ensure high accuracy

of the newly detected hypernymy relations, we empirically
fix α1 = α2 = 0.8.

In Table 6, we report the precision of new hypernymy re-
lations w.r.t. ten concepts in Microsoft Concept Graph. For
each concept, all its generated hyponyms are given to hu-
man annotators to label whether the corresponding hyper-
nymy relation is correct or not. Our method is generally ef-
fective for predicting new hypernymy relations for existing

Concept #Corr/#Tot Pre Concept #Corr#Tot Pre
material 78/102 0.76 goods 20/20 1.00
person 17/19 0.89 sector 18/20 0.90
group 37/43 0.86 component 76/80 0.95
technology 12/14 0.86 individual 24/24 1.00
provision 12/15 1.00 location 8/9 0.89
Total 302/346 0.87

Table 6: Precision test of new hypernymy relations w.r.t. ten
concepts in Microsoft Concept Graph. “#Corr” and “#Tot”
refer to the numbers of extracted correct and all relations.

Hypo. Hyper. Score Hypo. Hyper. Score
petrol provision 0.908 wildfires threat 0.845
handicrafts business 0.872 steroids alternative 0.813
pantsuit product 0.870 psychiatrist profession 0.808
bacteria measure 0.864 tarragon food 0.808

Table 7: Examples of newly detected hypernymy relations,
together with their scores. Errors are printed in bold.

taxonomies, with an average precision at 87%. Additionally,
we present eight new hypernymy relations in Table 7 with
the prediction scores. From the results, it can be observed
that two types of errors occur. The first type stems from
model prediction error. For example, the word “bacteria” is
by no means a “measure”. The second type is the incomplete
extraction error, where the predicted hypernym is not seman-
tically incomplete. For instance, “steroids” can be regarded
as an “alternative” for treating severe pneumonia. But the re-
lation between “steroids” and “alternative” alone should not
be characterized as hypernymy.

In the literature, embedding-based (Ma et al. 2017) and
data driven (Liang et al. 2017a) methods have been applied
to inferring missing links. In the future, we aim at combin-
ing projection based models with traditional approaches to
improve the coverage of existing taxonomies.

Conclusion
In this paper, we present the TEAL framework to address a
series of hypernymy prediction tasks, in both supervised (S-
TEAL) and unsupervised (U-TEAL) learning settings. An
adversarial learning approach (AS-TEAL) is proposed to en-
hance the performance of projection learning by leveraging
the knowledge in existing taxonomies. Experiments confirm
the effectiveness of our method through three tasks. We also
show that our method is capable of predicting hypernymy for
other languages and predicting missing links in taxonomies.
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