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Abstract

The design of automatic solvers to arithmetic math word
problems has attracted considerable attention in recent years
and a large number of datasets and methods have been pub-
lished. Among them, Math23K is the largest data corpus that
is very helpful to evaluate the generality and robustness of
a proposed solution. The best performer in Math23K is a
seq2seq model based on LSTM to generate the math expres-
sion. However, the model suffers from performance degra-
dation in large space of target expressions. In this paper, we
propose a template-based solution based on recursive neural
network for math expression construction. More specifically,
we first apply a seq2seq model to predict a tree-structure tem-
plate, with inferred numbers as leaf nodes and unknown op-
erators as inner nodes. Then, we design a recursive neural
network to encode the quantity with Bi-LSTM and self atten-
tion, and infer the unknown operator nodes in a bottom-up
manner. The experimental results clearly establish the supe-
riority of our new framework as we improve the accuracy by
a wide margin in two of the largest datasets, i.e., from 58.1%
to 66.9% in Math23K and from 62.8% to 66.8% in MAWPS.

Introduction
Developing computer systems to automatically solve math
word problems (MWPs) has been studied by NLP re-
searchers since the 1960s (Feigenbaum and Feldman 1963;
Bobrow 1964). It requires mapping the human-readable
words into machine-understandable logic forms, followed
by an inference procedure to derive the numeric answer. An
example of math word problem is illustrated in Figure 1.
The unknown variable x refers to the weight of an apple and
the math expression involves basic arithmetic operators such
as − and /. To solve the problem, we need to identify the
relevant quantities from the text and determine the correct
operators and computation order among these numbers.

Previous research efforts have been mainly based on
statistical machine learning (Kushman et al. 2014; Am-
nueypornsakul and Bhat 2014; Zhou, Dai, and Chen 2015;
Mitra and Baral 2016; Roy and Roth 2018) and seman-
tic parsing (Shi et al. 2015; Koncel-Kedziorski et al. 2015;
Roy and Roth 2015; Huang et al. 2017). These methods
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Figure 1: An example of math word problem.

can achieve satisfactory results on small-scale datasets, yet
they require considerable manual efforts for feature ex-
traction and template annotation. Furthermore, as evaluated
by (Huang et al. 2016), these methods exhibit low generality
and robustness. They suffer from sharp performance degra-
dation when handling large and diversified datasets.

To reduce human intervention and enable the automatic
extraction of discriminative features, applying deep learning
(DL) models in MWPs has become a promising research di-
rection. (Wang, Liu, and Shi 2017) proposed an end-to-end
framework that converts the input of question text into the
output of math expression. It is then a natural idea to apply a
seq2seq model to encode the text input and decode the hid-
den features into a math expression. The drawback is that
the seq2seq model is a black-box that lacks interpretability
and it cannot guarantee the output is in valid math format
and normally requires a post-processing step. (Wang et al.
2018b) modeled the math expression as a tree structure and
made the first attempt to apply deep reinforcement learning
for iterative tree construction. However, it still requires man-
ual feature extraction to design the state representation.

In this paper, we propose a new math problem solver
that combines the merits of (Wang, Liu, and Shi 2017) and
(Wang et al. 2018b), i.e., we apply deep neural networks
for discriminative feature extraction and leverage the con-
cept of expression tree for answer generation. In this way,
we can avoid human intervention and leverage expression
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tree for better interpretability as the tree construction process
corresponds to the step-by-step solution procedure. In our
implementation, we first apply a seq2seq model to predict
a tree-structure template, with quantities as leaf nodes and
unknown operators as inner nodes. As shown in Figure 1,
(n1 〈op〉 n3) 〈op〉 n2 is a template in which the quantities
n1, n2 and n3 can be directly determined from the ques-
tion text. The operators are encapsulated as 〈op〉 to reduce
template space. Each equation template can be represented
by an expression tree that can be further serialized in the
form of suffix expression. We also propose equation normal-
ization to further reduce the number of possible templates.
Consequently, our task of template prediction can be con-
sidered to be less challenging than the direct generation of
math expression as in (Wang, Liu, and Shi 2017). With the
derived template, the remaining job is to fill the unknown
operators. We design an effective quantity embedding net-
work with Bi-LSTM and self attention to vectorize the tree
leaf nodes. Then, we propose a Recursive Neural Network
(abbreviated as Recursive NN) to infer the inner nodes in a
recursive manner. When all the operator nodes are predicted,
we obtain a complete expression to generate the answer.

We conduct experiments on two of the largest datasets
for arithmetic word problems, in which Math23K contains
23, 164 math problems and MAWPS contains 2, 373 prob-
lems. The experimental results clearly establish the superior-
ity of our new framework when compared to other seq2seq
models. The accuracy is boosted from 58.1% to 66.9% in
Math23K and from 62.8% to 66.8% in MAWPS.

To sum up, we have made the following contributions:

1. We use structural template, which can be serialized into
suffix expression, to annotate the math problems.

2. We propose equation normalization and operator encap-
sulation to significantly reduce the template space.

3. We made the first attempt to apply Recursive NN in an-
swer module for MWP solving.

4. Experimental results show that our proposed framework
is remarkably better than the state-of-the-art models.

5. We release the source code of our model in Github1.

Related Work
In this section, we review literature upon MWP solver and
present the applications of Recursive NN in natural language
processing.

Algebra Word Problem Solver
ARIS (Hosseini et al. 2014) and Formula (Mitra and Baral
2016) are two systems that only support the operators of ad-
dition and subtraction. The former used verb categorization
and the latter utilized formulas defined in advance. To im-
prove the generality, tag-based approach (Liang et al. 2016)
was proposed with map rules to convert identified variables
and values into logic forms, which were further transformed
into logic statements for inference.

1https://github.com/uestc-db/T-RNN

Another major category of solutions is tree-based. (Roy
and Roth 2015) built an expression tree and two classifiers
were trained for quantity relevance prediction and opera-
tor classification, respectively. A scoring function was pro-
posed to rank the candidate trees and champion the one with
the highest score as the answer. (Koncel-Kedziorski et al.
2015) enumerated all the possible trees with integer linear
programming to find the best solution. UnitDep (Roy and
Roth 2017) further took into account the consistence of rate
unit associated with the quantities and treated it as a scoring
factor. (Wang et al. 2018b) modeled the math expression as
a tree structure and made the first attempt to apply deep re-
inforcement learning for iterative tree construction. (Wang,
Liu, and Shi 2017) was the first to propose a seq2seq model
to convert the input of question text into the output of math
expression. (Robaidek, Koncel-Kedziorski, and Hajishirzi
2018) applied Bidirectional LSTM w or w/o self attention to
encode the problem text and used a softmax function as the
classifier for equation template. The model can be superior
to seq2seq models in small datasets with fewer number of
templates.

The equation set problems are more challenging as they
involve multiple unknown variables to resolve. In (Kush-
man et al. 2014), a template-based solution was proposed.
Given a corpus of predefined equation sets with unknown
slots for variables and numbers, it finds a matching tem-
plate and infers the unknown slots from text information.
In (Zhou, Dai, and Chen 2015), an improved method was
proposed to reduce the hypothesis space by only enumerat-
ing the permutation of number slots. Without any inference
capability, these template-based methods are rather rigid
and not extensible for complex scenarios. Upadhyay et al.
proposed a structured-output learning framework to learn
both explicit and implicit signals jointly (Upadhyay et al.
2016). Overall, these methods are tuned for small datasets
to achieve promising results. According to an experimen-
tal study in (Huang et al. 2016), their accuracies degrade
sharply in a larger and more diverse dataset. The findings
imply that this line of research still has great room for im-
provement and calls for more general and robust solutions.
For more comprehensive review on MWP solvers, readers
can refer to a recent survey paper (Zhang et al. 2018).

NLP Applications for Recursive Neural Networks

Recursive NNs (Goller and Kuchler 1996) have been widely
applied in syntactic parsing which is based on tree struc-
ture. They can naturally process the tree nodes in a recur-
sive order. (Socher, Manning, and Ng 2010) introduced a
context-aware Recursive NN to learn vector space represen-
tations for variable-sized inputs and predict the phrase struc-
ture. (Socher et al. 2012) introduced a Recursive NN model
to learn compositional vector representations for phrases and
sentences. They assigned a vector and a matrix to every node
in a parse tree with the purpose of capturing the semantic
compositionality. (Socher et al. 2013) proposed a recur-
sive neural tensor network for understanding composition-
ality sentiment detection.
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Figure 2: Framework of MWP solver with Recursive NN.

MWP Solver with Recursive Neural Network
In this section, we present the new MWP solver based on
Recursive NN. The whole framework, as illustrated in Fig-
ure 2, consists of two primary components. The first com-
ponent, namely structure prediction, converts the input text
into a tree-structural template that is serialized by suffix ex-
pression. The leaf nodes are quantities whose values can be
directly inferred from the problem text. The inner nodes con-
tain unknown operators that are to be predicted by the an-
swer generation module illustrated in the right side of Fig-
ure 2. It contains a quantity embedding network to vectorize
the quantities more effectively. The network is constructed
by Bidirectional LSTM followed by a self attention layer.
After that, we design a recursive neural network to predict
the operators by taking advantage of the derived quantity
features and structural template. When all the operators have
been successfully determined, we obtain a complete math
expression which is able to return the final answer. In the fol-
lowing, we introduce the structural template representation
and explicitly explain each function module in Figure 2.

Equation Template
An arithmetic word problem is often solved by an equation
with one unknown variable, a number of quantities and basic
operators {+,−,×,÷}. Brackets can also be used to change
the operation priority. In the template-based solutions, the
problems are annotated with equation templates and models
are designed to learn the mapping. In (Kushman et al. 2014)

and (Zhou, Dai, and Chen 2015), templates with multiple
unknown slots, such as

u1 + u2 + n1 = 0

n2 × u1 + n3 × u2 − n4 = 0

are pre-defined to solve equation set word problems. In their
solutions, they first identify a candidate template and then
fill the number slots and unknown slots with the information
extracted from the text.

Our structural template has three main differences with
their definition. First, since we are handling arithmetic word
problems which involve only one unknown variable, there
is no need to preserve the unknown slot in the template.
Given an equation template x = n1 − n2 − n3, we sim-
plify it as n1 − n2 − n3. As to constants in the equation
templates (e.g., 1 and π), we use additional vectors to rep-
resent them, with the same dimension as other quantity vec-
tors ni. These vectors will be trained by Recursive NN to
derive the final representation. Second, our ni strictly refers
to the i-th detected quantity from the question text. This is
because our template is directly generated by the seq2seq
model and we need to be able to automatically ignore the
irrelevant numbers in the text. Given an equation template
n1 − n3, we know that the second quantity n2 in the text
is irrelevant and the solution is the difference between the
first and third quantities. Hence, there is a straightforward
quantity alignment between the template and question text.
Our strategy runs much faster than (Kushman et al. 2014;
Zhou, Dai, and Chen 2015) as they need to examine all the
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possibilities of quantity filling in a given template. Third,
we encapsulate the detailed operators in the template with
an abstract representation of 〈op〉. For example, n1 + n2,
n1−n2, n1×n2, and n1÷n2 are mapped to the same tem-
plate n1〈op〉n2. The operator encapsulation can further re-
duce the number of equation templates to facilitate template
prediction. It motivates us to break the math problem solv-
ing into two stages with better interpretability, i.e., we can
first predict an equation template and then fill the unknown
operators.

Equation Normalization
It is possible that a math problem can be solved by multiple
choices of equations. For example, the equations x = 10 −
5−2 and x = 10−(5+2) are essentially identical and lead to
the same answer, but they correspond to different equation
templates. To reduce the variety of equation templates, we
propose a normalization approach. A side product is that the
template prediction model can benefit from the reduction of
equation space.

There are two types of common equation duplication that
we attempt to resolve in this paper: 1) order duplication such
as n1 + n3 + n2 and n1 + n2 + n3, and 2) bracket duplica-
tion such as n1+n3−n2 and n1+(n3−n2). To normalize
the order-duplicated templates, we require that the number
tokens ni in the template should follow their occurrence or-
der in problem text as much as possible. For example, the
equation templates {n1+n3+n2, n2+n1+n3, n2+n3+
n1, n3 + n1 + n2, n3 + n2 + n1} should be normalized to
n1 +n2 +n3. To solve the bracket duplication problem, we
simply convert it into an expression tree. The inner nodes are
operators and the leaf nodes are quantities. The tree structure
determines the calculation priority and there are no brackets
involved in the tree nodes. Up to here, we can use expres-
sion tree to uniformly represent equation templates w or w/o
brackets. Finally, each tree-based template can be serialized
to its suffix expression which is stored as a string sequence.
It is worth noting that the proposed equation normalization
cannot guarantee the uniqueness of the equation template.
For example, n1 − n2 − n3 and n1 − (n2 + n3) are still
represented by different expression trees.

Figure 3 depicts an example of equation normalization.
Given an equation x = n3 − (n2 + n1), it is simplified as
n3 − (n2 + n1) and then re-ordered as n3 − (n1 + n2) to
eliminate order duplication. Then, an expression tree is built
to remove the brackets. The final template is represented by
the suffix expression “n3n1n2 +−”, which can be naturally
processed with stack operation. The first three quantities are
first pushed into the stack. When the operator “+” is met,
the top two quantities are popped and the value of n1+n2 is
pushed back to the stack. Finally, when “−” arrives, the top
two quantities are popped and n3 − (n1 + n2) is calculated.

Template Prediction
We propose a seq2seq model based on popular recur-
rent neural networks (abbreviated as Recurrent NN, with
instances like LSTM, GRU and Bi-LSTM) to transform
the problem text into a suffix expression which corre-
sponds to a tree structure. The goal of the seq2seq model

Figure 3: An example of equation normalization.

is to estimate the conditional probability P (Y |X), where
X = {x1, x2, · · · , xn} is an input sequence and Y =
{y1, y2, · · · , ym} is its corresponding output sequence.

To yield this conditional probability, we first obtain the
fixed-dimensional representation vector of the input prob-
lem description {x1, x2, · · · , xn} given by the last hidden
state vector he of RNN, and then compute the probability of
{y1, y2, · · · , ym} as below :

p(y1, y2, · · · , ym|x1, x2, · · · , xn) =

m∏
t=1

p(yt|he, y1, · · · , yt−1)

where p(yt|he, y1, · · · , yt−1) distribution is represented by
a softmax function over all the vocabulary candidates.

In practice, there is no clear preference for the selection
of Recurrent NNs. We have witnessed the wide application
of LSTM, GRU and Bi-LSTM in various seq2seq models.
For example, (Wang, Liu, and Shi 2017) used LSTM as the
encoder and GRU as the decoder for math problem solving.
Alternatively, (Robaidek, Koncel-Kedziorski, and Hajishirzi
2018) evaluated the adoption of LSTM as the encoder and
decoder at the same time. A proper selection may often
require significant engineering efforts and hyper-parameter
tuning. In our implementation, we use Bi-LSTM as the en-
coder and LSTM as the decoder because Bi-LSTM can cap-
ture the term dependency in both directions.

The output of the seq2seq model is passed to a sequence-
to-sequence attention layer to better capture the relationship
between the question words and the equation template.

βij = hdi−1 � hej

αij =
exp(βij)

n∑
k=1

exp(βik)

ci =

n∑
j=1

αijh
e
j

hdi = f(hdi−1, ci, yi−1)

where βij is the attention weight of every encoder vector. We
compute a new context vector at each decoding step. First,
with a dot product operation hdi−1� hej , we compute a score
for each hidden state vector hej of the encoder. Then, we nor-
malize the sequence of αi using a softmax and compute ci as
the weighted average of the hej . Subsequently, we combine
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ci with the previous hidden state vector hdi−1 and output yi−1
by a non-linear function to obtain the hidden vector hdi .

It is noticeable that similar to the issue raised in (Wang,
Liu, and Shi 2017; Wang et al. 2018a), the output of our
seq2seq model may not be a valid equation template, i.e.,
it cannot be converted into a tree in which the inner nodes
are operators and the leaf nodes are quantities. If the tem-
plate prediction fails and an invalid template is generated,
we terminate the math problem solver and consider that the
problem cannot be solved by our model. From the experi-
mental results, we will see that our seq2seq model can gen-
erate valid templates most of the time. The failure rate in
Math23K is only 0.7%.

Answer Generation with Recursive NN
The answer generation module consists of two function
components. First, we use Bi-LSTM with self attention
mechanism to derive effective quantity embedding. Second,
given the new quantity features, a recursive neural network
is proposed to infer the unknown operators in the template.
In the following, we explain how each component works.

The input to the quantity embedding layer is the raw ques-
tion words. We have a vocabulary V . The given input se-
quence X = {x1, x2, · · · , xn} is transformed into a se-
quence of vectors {w1, w2, · · · , wn} through a word em-
bedding matrix E for linear projection, i.e., wt = Ext. The
word vectors wt act as the input of Bi-LSTM to generate
hidden features H = {h1, h2, · · · , hn}. Note that the word
embedding and Bi-LSTM encoder in the answer generation
module are similar to those in the template prediction mod-
ule. The difference lies in how to further process H . In the
template prediction, H is decoded by LSTM and an atten-
tion layer to generate the suffix expression. Here, the ob-
jective is to generate effective embeddings for the quanti-
ties. Given the output H from Bi-LSTM, each hi actually
corresponds to the i-th term wi in the question text. From
the equation template, we are aware of the positions where
the quantities are located. In other words, we can extract
Hq = {hq1, h

q
2, · · · , h

q
l } from H based on the position in-

formation of ni in the equation template. With H and Hq ,
we conduct self attention (Lin et al. 2017) that is able to cap-
ture the the long distance dependencies.

A = softmax(HqHT )

C = AH

Q
′

= tanh([C,Hq]W1 + b)

where HT is the transpose of H . Matrix A is the attention
weight matrix computed by the multiplication of Hq and
HT . Then, the context vector C is the weighted sum of H .
These two vectors C and Hq are concatenated to generate
the temporary quantity representationQ

′
through non-linear

projection. Finally, the new quantity representation is com-
puted by

Q =Wq ⊕Q
′

where Wq are the quantity embeddings extracted from text
embeddings W .

With the new quantity vectors Q = {q1, q2, · · · , ql} with
l quantities and the suffix expression generated from tem-
plate prediction, we are ready to introduce how recursive
NN is applied to infer the unknown operators. Note that the
suffix expression in fact determines the access order of leaf
nodes which is in a bottom-up manner. Given the expres-
sion (n1 〈op〉 n3) 〈op〉 n2, n1 and n3 will be first accessed
by the recursive NN to determine the operator and gener-
ate a new quantity n1c as their parent node. Then, n1c and n2
are accessed to determine their operator. When the two un-
known operators are determined, we obtain a complete math
expression that allows us to calculate the answer.

In our recursive NN, the representation of parent node is
calculated by

qc = tanh(W2([ql, qr] + b)

where ql and qr are the quantity representation for the child
nodes. With qc, we can estimate the probability of an opera-
tor for the parent node via a softmax function:

P (oc|ql, qr) = softmax(W3qc)

This process is performed recursively until all the operators
of inner nodes have been predicted.

In the training of the answer generation module, the pa-
rameters in the answer generation module, including Bi-
LSTM, self attention and recursive NN, are trained jointly
by minimizing the loss function

J(θ) = −1

k

k∑
i=1

logP (oc(i)|ql(i), qr(i))

where k denotes the number of inner nodes in the tree.

Experimental Study
In this section, we conduct experiments on two of the largest
datasets for arithmetic word problems. All the experiments
were conducted on the same server, with 4 CPU cores (Intel
Xeon CPU E5-2650 with 2.30GHz) and 32GB memory.

Datasets
1. MAWPS (Koncel-Kedziorski et al. 2016) is another

testbed for arithmetic word problems with one unknown
variable in the question. Its objective is to compile a
dataset of varying complexity from different websites.
Operationally, it combines the published word problem
datasets used in (Hosseini et al. 2014; Kushman et al.
2014; Koncel-Kedziorski et al. 2015; Roy and Roth
2015). There are 2, 373 questions in the harvested dataset.

2. Math23K (Wang, Liu, and Shi 2017). The dataset con-
tains Chinese math word problems for elementary school
students and is crawled from multiple online education
websites. Initially, 60, 000 problems with only one un-
known variable are collected. The equation templates are
extracted in a rule-based manner. To ensure high pre-
cision, a large number of problems that do not fit the
rules are discarded. Finally, 23, 162 math problems are
remained.
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The statistics of the two datasets are shown in Table 1.
We report the number of templates w or w/o equation nor-
malization (abbreviated as EN). We can see that when EN
is applied, the number of templates in Math23K is reduced
from 3, 527 to 2, 302, by around 35%.

Table 1: Statistics of datasets.
MAWPS Math23K

# questions 2,373 23,162
# templates w/o EN 344 3,527
# templates w/ EN 311 2,302

# sentences 6.3K 70.1K

Parameter Setting
In the template prediction module, we use a pre-trained word
embedding with 128 units, a two-layer Bi-LSTM with 256
hidden units as encoder, a two-layer LSTM with 512 hidden
units as decoder. As to the optimizer, we use Adam with
learning rate set to 1e−3, β1 = 0.9 and β2 = 0.99. In the
answer generation module, we use a embedding layer with
100 units, a two-layer Bi-LSTM with 160 hidden units. SGD
with learning rate 0.01 and momentum factor 0.9 is used to
optimize this module. In both components, the number of
epochs, mini-batch size and dropout rate are set 100, 32 and
0.5 respectively. Since Math23K has split the problems into
training and test datasets when it was published, we simply
follow its original setup. For MAWPS, we use 5-fold cross
validation.

Accuracy of MWP Solving
We compare our structural template based Recursive NN
with recent deep learning models proposed for the large-
scale datasets. These methods can be classified into two cat-
egories based on either generation model or classification
model. The former relies on a seq2seq model to directly
generate the math expression. The latter first classifies the
problem text into one of the pre-defined templates with ex-
plicit operators and then fills the unknown numeric vari-
ables. DNS (Wang, Liu, and Shi 2017) was the first seq2seq
generation model proposed for arithmetic word problem
solving in Math23K. In (Robaidek, Koncel-Kedziorski, and
Hajishirzi 2018), both generation and classification models
are evaluated in MAWPS and Math23K. The authors im-
plemented two types of their own generation models as the
baselines, using LSTM and CNN, respectively. Their classi-
fication models are implemented using Bi-LSTM w or w/o
self attention. The experimental results are reported in Ta-
ble 2. As pointed out in (Robaidek, Koncel-Kedziorski, and
Hajishirzi 2018), not all the test equation templates appear in
the training dataset and the model accuracy is upper bounded
by an oracle accuracy.

Among the seq2seq generation models, DNS performs
much better than simple LSTM or CNN. One of the rea-
sons is that LSTM and CNN are used as baseline models
in (Robaidek, Koncel-Kedziorski, and Hajishirzi 2018) and
may not be well optimized. In our offline experiment, we im-
plemented our own version of LSTM-based seq2seq model

Table 2: Math problem solving accuracy.
MAWPS Math23K

Oracle 84.8 87.0

Seq2seq
LSTM 25.6 51.9
CNN 44.0 42.3
DNS 59.9 58.1

Deep RL MathDQN 60.25 -

Classification Bi-LSTM 62.8 57.9
Self-Att 60.4 56.8

Our Approach

T-RNN 66.8 66.9
- EN 63.9 61.1
- Bi-LSTM 31.1 34.1
- Self-Att 66.3 65.1

Retrieval Jaccard 45.6 47.2
Cosine 38.8 23.8

Hybrid DNS+Retrieval 59.9 64.7
T-RNN+Retrieval 67.0 68.7

and can achieve an accuracy of 50.1% in MAWPS without
much tuning effort. MathDQN (Wang et al. 2018b) achieves
slightly higher accuracy than seq2seq models in MAWPS.
Similar to T-RNN, it also relies on the concept of expression
tree for answer generation, which has been shown to be ro-
bust and widely adopted by previous solvers. The difference
is that MathDQN applies DQN to guide tree construction.
Its performance in the Chinese dataset Math23K is not re-
ported because it uses hand-crafted feature extraction strat-
egy as proposed by (Roy and Roth 2015), which works only
for English dataset.

The classification models can achieve higher accuracy
in the small dataset, i.e., in MAWPS. However, when the
dataset size increases with more templates as in Math23K,
they become inferior to the generation model DNS. It im-
plies the classification models are more sensitive to the in-
crease of template space.

We denote our approach by T-RNN and we can see from
Table 2 that it performs significantly better than the exist-
ing generation and classification models, boosting the accu-
racy from 62.8 to 66.8 in MAWPS and from 58.1 to 66.9
in Math23K. This is owning to the effectiveness of template
prediction, quantity embedding and recursive NN for oper-
ator inference. We also examine the effect of equation nor-
malization, Bi-LSTM and self attention in the answer gen-
eration module. We can see that EN plays a more significant
role in the dataset with more templates. When it is applied,
the accuracy in Math23K can improve from 61.1 to 66.9.
The Bi-LSTM network is also crucial to obtain effective
quantity embedding. If we directly apply the self attention
layer on top of the question word embeddings, the accuracy
drops sharply. The self attention itself also has minor effect
on accuracy enhancement.

The similarity-based retrieval approach was proposed
in (Huang et al. 2016). Given a query math problem, its idea
is to find the most similar question in the training dataset and
use its annotated equation template to solve the problem. We
can see that the simple retrieval model works poorly in both
datasets. However, it can be combined with generation or
classification models to improve the accuracy. In the hybrid
model, a similarity threshold is pre-defined. In (Wang, Liu,
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and Shi 2017), the retrieval model is used if the similarity
between a candidate and the query problem is larger than
the threshold; otherwise, DNS is used. We also conduct an
experiment to evaluate the performance of our model when
combined with retrieval approach. Results show that there is
noticeable improvement in the Math23K dataset.

Break-down Analysis
We report the accuracy of template prediction by the seq2seq
model in Table 3. If the predicted template exactly matches
the annotated template, we consider it a positive hit. It is in-
teresting to observe that the accuracy of template prediction
is even lower than the final accuracy of problem solving in
MAWPS, i.e., 65.8 < 66.8. The reason is that a problem
can be correctly solved by multiple different templates, but
only one of them is annotated. For example, 10 − 5 − 2 is
equal to 10 − (5 + 2) but they correspond to different suf-
fix expressions. The finding implies that the seq2seq model
is flexible in learning the tree structures even when not all
the correct annotations are provided. We also report the per-
centage of illegal templates in the two datasets. We can see
that Math23K has many more training samples and very low
percentage of illegal templates are generated in this dataset.

Table 3: Accuracy of template prediction module.
MAWPS Math23K

Accuracy w/o EN 62.2 59.6
Accuracy w EN 65.8 69.1
Percentage of illegal templates 9.0 0.7

Given the set of problems Pt whose templates are cor-
rectly predicted, we derive a subset of Pt, denoted by Ps

which contains the problems correctly solved. We use |Pt|
|Ps| to

represent the accuracy of the answer generation module. As
shown in Table 4, the accuracy in Math23K reaches as high
as 94.4. This verifies the effectiveness of Bi-LSTM, self-
attention and recursive NN in the answer generation module.

Table 4: Accuracy of the answer generation module.
MAWPS Math23K

Accuracy of Recursive NN 84.9 94.4

In Table 5, we examine the performance of our MWP
solver with the increasing length of templates, which is de-
fined as the number of operators in a template. We investi-
gate the cases where the length increases from 1 to 10 and
report the percentage of templates with the particular length
in the whole test dataset. We can see that around 90 percent
of the problems in Math23K are associated with a template
with no greater than 3 operators. Around half the problems
require two operators to generate the answer. There is an
obvious accuracy descending pattern, from 80.9 downward
to 37.9, when the length of templates increases from 1 to 4.
When the length further increases from 4 and 6, the accuracy
is located in the range [33, 40]. When the problems become
more complex, with length ≥ 7, they cannot be correctly
solved by our approach.

Table 5: Accuracy for increasing length of templates.
Math23K

# Operators Proportion (%) Acc (%)
1 19.9 80.9
2 49.6 73.6
3 19.9 53.3
4 5.8 37.9
5 3.3 39.4
6 0.9 33.3
7 0.2 0
8 0 0
9 0.1 0
10 0.2 0

Similar to the work in (Huang et al. 2017), we show the
top-10 most frequent templates in Table 6 and report the ac-
curacy of our method when solving each type of template
without operator encapsulation. We observe that the tem-
plate n11n2 + / can be perfectly solved by our model. The
“1” in the template means it does not explicitly appear in the
problem text. An example question matching the template
is like “112 is greater than a number by 12%. What’s the
number?”. These questions basically follow the similar text
pattern and thus are relatively easy to solve. However, our
model does not perform well for the template n1n2 ∗ n3∗,
with accuracy 58.8. The reason is that the problems related
to this template are rather diversified in terms of problem
description. Without sufficient amount of training data, the
seq2seq model is not able to well capture the relationship
between the quantities.

Table 6: Accuracy of per template.
Math23K

Template Proportion (%) Acc (%)
n1n2∗ 2.4 91.2
n1n2/ 2.02 85.4
n2n1/ 1.31 74.2
n1n2 ∗ n3∗ 0.72 58.8
n1n2 ∗ nc/ 0.72 88.2
n11n2 + / 0.67 100
n1n2 + n3∗ 0.67 81.3
n11n2 − ∗ 0.63 80
n21n1 − ∗ 0.59 85.7
n11n2 − / 0.55 92.3

Error Analysis
Finnaly, we conduct error analysis and explain the bad cases
that cannot be well solved by our model. First, the seq2seq
model is not good at predicting long templates , mainly due
to the lack of training data. As shown in Table 5, there are
only a small portion of problems with complex templates in
the dataset. This type of error occupies the major propor-
tion (142/331 in Math23K, 184/788 in MAWPS). Second,
the problems that require external knowledge have been very
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challenging for existing MWP solvers and our model is not
exceptional. Third, the semantic understanding of the prob-
lem text is not perfect and still has much room for improve-
ment. Hence, the relation between the quantities may not be
well captured, leading to wrong template prediction and op-
erator inference.

Conclusion
In this paper, we proposed to use tree structure template rep-
resented by suffix expression for math word problem anno-
tation. To reduce the number of templates and improve the
accuracy of template prediction, we proposed equation nor-
malization and operator encapsulation. The unknown oper-
ators in the template are inferred by a recursive neural net-
work. We conducted extensive experiments on two of the
largest datasets and the results showed that our proposed
model outperformed the existing deep learning approaches
by a wide margin.
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