
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Logic Attention Based Neighborhood
Aggregation for Inductive Knowledge Graph Embedding

Peifeng Wang,1∗ Jialong Han,2 Chenliang Li,3 Rong Pan1∗
1Sun Yat-sen University, China, 2Tencent AI Lab, China, 3Wuhan University, China

1{wangpf3@mail2., panr@}sysu.edu.cn, 2jialonghan@gmail.com, 3cllee@whu.edu.cn

Abstract

Knowledge graph embedding aims at modeling entities and
relations with low-dimensional vectors. Most previous meth-
ods require that all entities should be seen during training,
which is unpractical for real-world knowledge graphs with
new entities emerging on a daily basis. Recent efforts on
this issue suggest training a neighborhood aggregator in con-
junction with the conventional entity and relation embed-
dings, which may help embed new entities inductively via
their existing neighbors. However, their neighborhood aggre-
gators neglect the unordered and unequal natures of an en-
tity’s neighbors. To this end, we summarize the desired prop-
erties that may lead to effective neighborhood aggregators.
We also introduce a novel aggregator, namely, Logic Atten-
tion Network (LAN), which addresses the properties by ag-
gregating neighbors with both rules- and network-based at-
tention weights. By comparing with conventional aggregators
on two knowledge graph completion tasks, we experimentally
validate LAN’s superiority in terms of the desired properties.

Introduction
Knowledge graphs (KGs) such as Freebase (Bollacker et al.
2008), DBpedia (Auer et al. 2007), and YAGO (Mahdis-
oltani, Biega, and Suchanek 2014) play a critical role in
various NLP tasks, including question answering (Hao et
al. 2017), information retrieval (Xiong and Callan 2015),
and personalized recommendation (Zhang et al. 2016). A
typical KG consists of numerous facts about a prede-
fined set of entities. Each fact is in the form of a triplet
(subject, relation, object) (or (s, r, o) for short), where s
and o are two entities and r is a relation the fact describes.
Due to the discrete and incomplete natures of KGs, various
KG embedding models are proposed to facilitate KG com-
pletion tasks, e.g., link prediction and triplet classification.
After vectorizing entities and relations in a low-dimensional
space, those models predict missing facts by manipulating
the involved entity and relation embeddings.

Although proving successful in previous studies, tradi-
tional KG embedding models simply ignore the evolving
nature of KGs. They require all entities to be present when
∗This work was done during Peifeng Wang’s internship at Ten-

cent AI Lab. The corresponding author is Rong Pan.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work_as
play_for

live_in

nationality

Emerging Entity

Basketball_Player
Chicago_Bulls

American

News
Article

KG

?

Figure 1: A motivating example of emerging KG entities.
Dotted circles and arrows represent the existing KG while
solid ones are brought by the emerging entity.

training the embeddings. However, Shi and Weninger (2018)
suggest that, on DBpedia, 200 new entities emerge on a daily
basis between late 2015 and early 2016. Given the infeasi-
bility of retraining embeddings from scratch whenever new
entities come, missing facts about emerging entities are, un-
fortunately, not guaranteed to be inferred in time.

By transforming realistic networks, e.g., citation graphs,
social networks, and protein interaction graphs, to simple
graphs with single-typed and undirected edges, recent ex-
plorations (Hamilton, Ying, and Leskovec 2017b) shed light
on the evolution issue for homogeneous graphs. While learn-
ing embeddings for existing nodes, they inductively learn a
neighborhood aggregator that represents a node by aggre-
gating its neighbors’ embeddings. The embeddings of un-
seen nodes can then be obtained by applying the aggregator
on their existing neighbors.

It is well received that KGs differ from homogeneous
graphs by their multi-relational structure (Shi et al. 2017).
Despite the difference, it seems promising to generalize the
neighborhood aggregating scheme to embed emerging KG
entities in an inductive manner. For example, in Figure 1, a
news article may describe an emerging entity (marked gray)
as well as some facts involving existing entities. By general-
izing structural information in the underlying KG, e.g., other
entities residing in a similar neighborhood or involving sim-
ilar relations, to the current entity’s neighborhood, we can
infer that it may probably live in Chicago.

7152

Inspired by the above example, the inductive KG embed-
ding problem boils down to designing a KG-specific neigh-
borhood aggregator to capture essential neighborhood infor-
mation. Intuitively, an ideal aggregator should have the fol-
lowing desired properties:

• Permutation Invariant - Unlike words in text or pixels in
an image, neighbors of an entity are naturally unordered.
When having neighbors like Chicago Bulls and American
as input, the aggregator should be irrelevant to potential
permutations of the neighbors.

• Redundancy Aware - Facts in KGs tend to depend on
each other. E.g., the fact that one plays for Chicago Bulls
always implies that she/he is a Basketball Player. It is ben-
eficial to exploit such redundancy in an entity’s neighbor-
hood to make the aggregation informative.

• Query Relation Aware - For common KG completion
tasks, the query relation in concern, e.g., “live in”, is given
beforehand. An aggregator may exploit such information
to concentrate on relevant facts in the neighborhood, e.g.,
“play for” Chicago Bulls.

This paper concentrates on KG-specific neighborhood ag-
gregators, which is of practical importance but only received
limited focus (Hamaguchi et al. 2017). To the best of our
knowledge, neither conventional aggregators for homoge-
neous graphs nor those for KGs satisfy all the above three
properties. In this regard, we employ the attention mech-
anism (Bahdanau, Cho, and Bengio 2015) and propose an
aggregator called Logic Attention Network (LAN). Aggre-
gating neighbors by a weighted combination of their trans-
formed embeddings, LAN is inherently permutation invari-
ant. To estimate the attention weights in LAN, we adopt two
mechanisms to model relation- and neighbor-level informa-
tion in a coarse-to-fine manner, At both levels, LAN is made
aware of both neighborhood redundancy and query relation.

To summarize, our contributions are: (1) We propose three
desired properties that decent neighborhood aggregators for
KGs should possess. (2) We propose a novel aggregator, i.e.,
Logic Attention Network, to facilitate inductive KG embed-
ding. (3) We conduct extensive comparisons with conven-
tional aggregators on two KG completions tasks. The results
validate the superiority of LAN w.r.t. the three properties.

Related Works
Transductive Embedding Models
In recent years, representation learning problems on KGs
have received much attention due to the wide applications
of the resultant entity and relation embeddings. Typical KG
embedding models include TransE (Bordes et al. 2013),
Distmult (Yang et al. 2014), Complex (Trouillon et al. 2016),
Analogy (Liu, Wu, and Yang 2017), to name a few. For more
explorations, we refer readers to an extensive survey (Wang
et al. 2017). However, conventional approaches on KG em-
bedding work in a transductive manner. They require that all
entities should be seen during training. Such limitation hin-
ders them from efficiently generalizing to emerging entities.

Inductive Embedding Models
To relieve the issue of emerging entities, several induc-
tive KG embedding models are proposed, including Xie et
al. (2016b), Shi and Weninger (2018) and Xie et al. (2016a)
which use description text or images as inputs. Although the
resultant embeddings may be utilized for KG completion,
it is not clear whether the embeddings are powerful enough
to infer implicit or new facts beyond those expressed in the
text/image. Moreover, when domain experts are recruited to
introduce new entities via partial facts rather than text or im-
ages, those approaches may not help much.

In light of the above scenario, existing neighbors of an
emerging entity are considered as another type of input for
inductive models. In Hamaguchi et al. (2017), the authors
propose applying Graph Neural Network (GNN) on the KG,
which generates the embedding of a new entity by aggre-
gating all its known neighbors. However, their model aggre-
gates the neighbors via simple pooling functions, which ne-
glects the difference among the neighbors. Other works like
Fu, Lee, and Lei (2017) and Tang, Qu, and Mei (2015) aim
at embedding nodes for node classification given the entire
graph and thus are inapplicable for inductive KG-specific
tasks. Schlichtkrull et al. (2017) and Xiong et al. (2018) also
rely on neighborhood structures to embed entities, but they
either work transductively or focus on emerging relations.

Finally, we note another related line of studies on node
representation learning for homogeneous graphs. Similar to
text- or image-based inductive models for KGs, Duran and
Niepert (2017), Yang, Cohen, and Salakhutdinov (2016),
Veličković et al. (2018) and Rossi, Zhou, and Ahmed (2018)
exploit additional node attributes to embed unseen nodes.
Another work more related to ours is Hamilton, Ying, and
Leskovec (2017a). They tackle inductive node embedding
by the neighborhood aggregation scheme. Their aggrega-
tors either trivially treat neighbors equally or unnecessarily
require them to be ordered. Moreover, like all embedding
models for homogeneous graphs, their model cannot be di-
rectly applied to KGs with multi-relational edges.

Preliminaries
Notations
Let E and R be two sets of entities and relations of size n
and m, respectively. A knowledge graph is composed of a
set of triplet facts, namely

K = {(s, r, o)|s ∈ E , r ∈ R, o ∈ E}. (1)

For each (s, r, o) ∈ K, we denote the reverse of r by r−1,
and add an additional triplet (o, r−1, s) to K.

For an entity e, we denote by NK(e) its neighborhood in
K, i.e., all related entities with the involved relations. For-
mally,

NK(e) = {(r, e′)|(e, r, e′) ∈ K}. (2)
We denote the projection of NK(e) on E and R by NE(e)
and NR(e), respectively. Here NE(e) are neighbors and
NR(e) are neighboring relations. When the context is clear,
we simplify the i-th entity ei by its subscript i. We denote
vectors by bold lower letters, and matrices or sets of vectors
by bold upper letters.

7153

Basketball_Player

Michael_Jordan Chicago

live_in

Chicago_Bulls America Illinois Rahm_EmanuelEnglish

play_for nationality work_as language contains－1 mayor

Scoring
Function

Input
Embeddings

Transformed
Embeddings

Output
Embeddings

Transform
by relation

Weighted
Aggregation

Decoder

Encoder

Figure 2: The encoder-decoder framework.

Given a knowledge graph K, we would like to learn a
neighborhood aggregator A that acts as follows:

• For an entity ei on K, A depends on ei’s neighborhood
NK(i) to embed ei as a low-dimensional vector ei;

• For an unknown triplet (s, r, o), the embeddings of s and
o output by A suggest the plausibility of the triplet.

When a new entity emerges with some triplets involving E
and R, we could apply such an aggregator A on its newly
established neighborhood, and use the output embedding to
infer new facts about it.

Framework
To obtain such a neighborhood aggregator A, we adopt an
encoder-decoder framework as illustrated by Figure 2. Given
a training triplet, the encoder (s, r, o) encodes s and o into
two embeddings with A. The decoder measures the plausi-
bility of the triplet, and provides feedbacks to the encoder to
adjust the parameters of A. In the remainder of this section,
we describe general configurations of the two components.

Encoder As specified in Figure 2, for an entity ei on focus,
the encoder works on a collection of input neighbor embed-
dings, and output ei’s embedding. To differentiate between
input and output embeddings, we use superscripts I and O
on the respective vectors. Let eIj ∈ Rd, which is obtained
from an embedding matrix We ∈ Rn×d, be the embedding
of a neighbor ej , where (r, ej) ∈ NK(i). To reflect the im-
pact of relation r on ej , we apply a relation-specific trans-
forming function Tr(.) on eIj as follows,

Tr(eIj) = eIj −w>r e
I
jwr, (3)

where wr is the transforming vector for relation r and is
restricted as a unit vector. We adopt this transformation
from Wang et al. (2014) since it does not involve matrix
product operations and is of low computation complexity.

After neighbor embeddings are transformed, these trans-
formed embeddings are fed to the aggregator A to output an
embedding eOi for the target entity ei, i.e.,

eOi = A({Tr(eIj)|(r, ej) ∈ NK(i)}). (4)

By definition, an aggregator A essentially takes as input a
collection of vectors X = {xj} (xj ∈ Rd) and maps them
to a single vector. With this observation, the following two
types of functions seem to be natural choices for neighbor-
hood aggregators, and have been adopted previously:

• Pooling Functions. A typical pooling function is mean-
pooling, which is defined byA(X) = 1

|X|
∑

j xj . Besides
mean-pooling, other previously adopted choices include
sum- and max-pooling (Hamaguchi et al. 2017). Due to
their simple forms, pooling functions are permutation-
invariant, but consider the neighbors equally. It is aware
of neither potential redundancy in the neighborhood nor
the query relations.

• Recurrent Neural Networks (RNNs). In various natu-
ral language processing tasks, RNNs prove effective in
modeling sequential dependencies. In (Hamilton, Ying,
and Leskovec 2017a), the authors adopt an RNN variant
LSTM (Hochreiter and Schmidhuber 1997) as neighbor-
hood aggregator, i.e., A(X) = LSTM(x1, . . . ,x|X|). To
train and apply the LSTM-based aggregator, they have to
randomly permute the neighbors, which violates the per-
mutation variance property.

Decoder Given the subject and object embeddings sO and
oO output by the encoder, the decoder is required to mea-
sure the plausibility of the training triplet. To avoid poten-
tial mixture with relations r in the neighborhood, we refer
to the relation in the training triplet by query relation, and
denote it by q instead. After looking up q’s representation
q from an embedding matrix Wr ∈ Rm×d, the decoder
scores the training triplet (s, q, o) with a scoring function
φO(s, q, o) : Rd × Rd × Rd → R. Following Hamaguchi
et al. (2017), we mainly investigate a scoring function based
on TransE (Bordes et al. 2013) defined by

φO(s, q, o) = −|sO + q− oO|L1, (5)

where |.|L1 denotes the L1 norm. To test whether the studied
aggregators generalize among different scoring function, we
will also consider several alternatives in experiments.

Logic Attention Network
As discussed above, traditional neighborhood aggregators
do not preserve all desired properties. In this section, we
describe a novel aggregator, namely Logic Attention Net-
work (LAN), which addresses all three properties. We also
provide details in training the LAN aggregator.

Incorporating Neighborhood Attention
Traditional neighborhood aggregators only depend on col-
lections of transformed embeddings. They neglect other use-
ful information in the neighborhoodNK(i) and the query re-
lation q, which may facilitate more effective aggregation of
the transformed embeddings. To this end, we propose gen-
eralizing the aggregators from A(X) to A(X;NK(i), q).

Specifically, for an entity ei, its neighbors ej should con-
tribute differently to eOi according to its importance in rep-
resenting ei. To consider the different contribution while

7154

preserving the permutation invariance property, we em-
ploy a weighted or attention-based aggregating approach on
the transformed embeddings. The additional information in
NK(i) and q is then exploited when estimating the attention
weights. Formally, we obtain eOi by

eOi =
∑

(r,ej)∈NK(i)

αj|i,qTr(eIj). (6)

Here αj|i,q is the attention weight specified for each neigh-
bor ej given ei and the query relation q.

To assign larger weights αj|i,q to more important neigh-
bors, from the perspective of ei, we ask ourselves two ques-
tions at progressive levels: 1) What types of neighboring re-
lations may lead us to potentially important neighbors? 2)
Following those relations, which specific neighbor (in trans-
formed embedding) may contain important information? In-
spired by the two questions, we adopt the following two
mechanisms to estimate αj|i,q .

Logic Rule Mechanism Relations in a KG are simply not
independent of each other. For an entity e, one neighboring
relation r1 may imply the existence of another neighboring
relation r2, though they may not necessarily connect e to the
same neighbor. For example, a neighboring relation play for
may suggest the home city, i.e., live in, of the current athlete
entity. Following notations in logics, we denote potential de-
pendency between r1 and r2 by a “logic rule” r1 ⇒ r2. To
measure the extent of such dependency, we define the confi-
dence of a logic rule r1 ⇒ r2 as follows:

P(r1 ⇒ r2) =

∑
e∈E 1(r1 ∈ NR(e) ∧ r2 ∈ NR(e))∑

e∈E 1(r1 ∈ NR(e))
. (7)

Here the function 1(x) equals 1 when x is true and 0 other-
wise. As an empirical statistic over the entire KG, P(r1 ⇒
r2) is larger if more entities with neighboring relation r1 also
have r2 as a neighboring relation.

With the confidence scores P(r1 ⇒ r2) between all rela-
tion pairs at hand, we are ready to characterize neighboring
relations r that lead to important neighbors. On one hand,
such a relation r should have a large P(r ⇒ q), i.e., it
is statistically relevant to q. Following the above example,
play for should be consulted to if the query relation is live in.
On the other hand, r should not be implied by other rela-
tions in the neighborhood. For example, no matter whether
the query relation is live in or not, the neighboring relation
work as should not be assigned too much weight, because
sufficient information is already provided by play for.

Following the above intuitions, we implement the logic
rule mechanism of measuring neighboring relations’ useful-
ness as follow:

αLogic
j|i,q =

P(r ⇒ q)

max({P(r′ ⇒ r)|r′ ∈ NR(ei) ∧ r′ 6= r})
. (8)

We note that αLogic
j|i,q promotes relations r strongly implying

q (the numerator) and demotes those implied by some other
relation in the same neighborhood (the denominator). In this
manner, our logic rule mechanism addresses both query re-
lation awareness and neighborhood redundancy awareness.

Neural Network Mechanism With global statistics about
relations, the logic rule mechanism guides the attention
weight to be distributed at a coarse granularity of relations.
However, it may be insufficient not to consult finer-grained
information hidden in the transformed neighbor embeddings
to determine which neighbor is important indeed. To take the
transformed embeddings into consideration, we adopt an at-
tention network (Bahdanau, Cho, and Bengio 2015).

Specifically, given a query relation q ∈ R, the importance
of an entity ei’s neighbor ej is measured by

αNN
j|i,q = softmax(α

′

j|i,q) =
exp(α

′

j|i,q)∑
j′∈NE(i) exp(α

′

j′ |i,q)
. (9)

Here the unnormalized attention weight α
′

j|i,q is given by an
attention neural network as

α
′

j|i,q = u>a · tanh(Wa · [zq;Tr(eIj)]). (10)

In this equation, ua and Wa ∈ Rd×2d are global attention
parameters, while zq is a relation-specific attention parame-
ter for the query relation q. All those attention parameters are
regarded as parameters of the encoder, and learned directly
from the data.

Note that, unlike the logic rule mechanism at relation
level, the computation of αNN

j|i,q concentrates more on the
neighbor ej itself. This is useful when the neighbor en-
tity ej is also helpful to explain the current training triplet.
For example, in Figure 2, the neighbor Chicago Bulls could
help to imply the object of live in since there are other ath-
letes playing for Chicago Bulls while living in Chicago. Al-
though working at the neighbor level, the dependency on
transformed neighbor embeddings Tr(eIj) and the relation-
specific parameter zq make αNN

j|i,q aware of both neighbor-
hood redundancy and the query relation.

Finally, to incorporate these two weighting mechanisms
together in measuring the importance of neighbors, we em-
ploy a double-view attention and reformulate Eq. (6) as

eOi =
∑

(r,ej)∈NK(i)

(αLogic
j|i,q + αNN

j|i,q)Tr(eIj). (11)

Training Objective
To train the entire model in Figure 2, we need both positive
triplets and negative ones. All tripletsK from the knowledge
graph naturally serve as positive triplets, which we denote by
∆. To make up for the absence of negative triplets, for each
(s, q, o) ∈ ∆, we randomly corrupt the object or subject (but
not both) by another entity in E , and denote the correspond-
ing negative triplets by ∆

′

(s,q,o). Formally,

∆
′

(s,q,o) = {(s
′
, q, o)|s

′
∈ E} ∪ {(s, q, o

′
)|o

′
∈ E}. (12)

To encourage the decoder to give high scores for positive
triplets and low scores for negative ones, we apply a margin-
based ranking loss on each triplet (s, q, o), i.e.,

lO(s, q, o) = [γ − φO(s, q, o) + φO(s
′
, q, o

′
)]+. (13)

7155

Table 1: Statistics of the processed FB15K dataset.

Dataset |R| |E| |U| |NE(i)|
min max avg

Subject-5 1,250 12,187 1,460 1 7,850 41.5
Object-5 1,182 12,269 1,330 1 6,969 39.4

Subject-10 1,170 10,336 2,082 1 5,639 31.6
Object-10 1,126 10,603 1,934 1 5,718 30.9

Subject-15 1,073 8,877 2,342 1 5,284 25.5
Object-15 1,057 9,246 2,207 1 4,889 25.4

Subject-20 994 7,765 2,544 1 4,485 21.1
Object-20 984 8,219 2,351 1 4,105 21.3

Subject-25 990 6,884 2,666 1 3,200 17.7
Object-25 912 7,177 2,415 1 3,580 17.9

Here [x]+ = max{0, x} denotes the positive part of x, and
γ is a hyper-parameter for the margin. Finally, the training
objective is defined by

min
∑

(s,q,o)∈∆

∑
(s′ ,q,o′)∈∆

′
(s,q,o)

lO(s, q, o). (14)

Subtask on Input Embeddings The above training ob-
jective only optimizes the output of the aggregator, i.e., the
output entity embeddings eO. The input entity embeddings
eI , however, are not directly aware of the structure of the
entire KG. To make the input embeddings and thus the ag-
gregation more meaningful, we set up a subtask for LAN.

First, we define a second scoring function, which is simi-
lar to Eq. (5) except that input embeddings eI from We are
used to represent the subject and object, i.e.,

φI(s, q, o) = −|sI + q− oI |L1. (15)

The embedding of query relation q ∈ R is obtained from
the same embedding matrix Wr as in the first scoring func-
tion. Then a similar margin-based ranking loss lI(s, q, o) as
Eq. (13) is defined for the subtask. Finally, we combine the
subtask with the main task, and reformulate the overall train-
ing objective of LAN as

min
∑

(s,q,o)∈∆

∑
(s′ ,q,o′)∈∆

′
(s,q,o)

[lO(s, q, o)+lI(s, q, o)]. (16)

Experimental Configurations
We evaluate the effectiveness of our LAN model on two typ-
ical knowledge graph completion tasks, i.e., link prediction
and triplet classification. We compare our LAN with two
baseline aggregators, MEAN and LSTM, as described in the
Encoder section. MEAN is used on behalf of pooling func-
tions since it leads to the best performance in Hamaguchi et
al. (2017). LSTM is used due to its large expressive capabil-
ity (Hamilton, Ying, and Leskovec 2017a).

Data Construction
In both tasks, we need datasets whose test sets contain new
entities unseen during training. For the task of triplet classi-
fication, we directly use the datasets released by Hamaguchi

Table 2: Evaluation accuracy on triplet classification (%).
Subject Object Both

Model 1000 3000 5000 1000 3000 5000 1000 3000 5000

MEAN 87.3 84.3 83.3 84.0 75.2 69.2 83.0 73.3 68.2
LSTM 87.0 83.5 81.8 82.9 71.4 63.1 78.5 71.6 65.8

LAN 88.8 85.2 84.2 84.7 78.8 74.3 83.3 76.9 70.6

et al. (2017) which are based on WordNet11 (Socher et al.
2013). Since they do not conduct experiments on the link
prediction task, we construct the required datasets based on
FB15K (Bordes et al. 2013) following a similar protocol
used in Hamaguchi et al. (2017) as follows.

1. Sampling unseen entities. Firstly, we randomly sample
R = {5%, 10%, 15%, 20%, 25%} of the original test-
ing triplets to form a new test set T for our induc-
tive scenario (Hamaguchi et al. (2017) samples N =
{1000, 3000, 5000} testing triplets). Then two different
strategies1 are used to construct the candidate unseen en-
tities U ′

. One is called Subject, where only entities ap-
pearing as the subjects in T are added to U ′

. Another
is called Object, where only objects in T are added to
U ′

. For an entity e ∈ U ′
, if it does not have any neigh-

bor in the original training set, such an entity is filtered
out, yielding the final unseen entity set U . For a triplet
(s, r, o) ∈ T , if s ∈ U ∧ o ∈ U or s ∈ E ∧ o ∈ E , it is
removed from T .

2. Filtering and splitting data sets. The second step is to en-
sure that unseen entities would not appear in final training
set or validation set. We split the original training set into
two data sets, the new training set and auxiliary set. For
a triplet (s, r, o) in original training set, if s, o ∈ E , it
is added to the new training set. If s ∈ U ∧ o ∈ E or
s ∈ E ∧ o ∈ U , it is added to the auxiliary set, which
serves as existing neighbors for unseen entities in T .
Finally, for a triplet (s, r, o) in the original validation set,
if s ∈ U or o ∈ U , it is removed from the validation set.

The statistics for the resulting 2 × 5 = 10 datasets using
Subject and Object strategies are in Table 1.

Experiments on Triplet Classification
Triplet classification aims at classifying a fact triplet (s, r, o)
as true or false. In the dataset of Hamaguchi et al. (2017),
triplets in the validation and testing sets are labeled as true
or false, while triplets in the training set are all true ones.

To tackle this task, we preset a threshold δr for each re-
lation r. If φO(s, r, o) ≥ δr, the triplet is classified as pos-
itive, otherwise it is negative. We determine the optimal δr
by maximizing classification accuracy on the validation set.

1Note that we do not employ a third Both strategy as in
the (Hamaguchi et al. 2017), which adds to U

′
the entities appear-

ing as both subject and object in T . This is because when doing
link prediction, we only predict the unseen entities’ missing rela-
tions with the existing entities in E .

7156

Table 3: Evaluation results for link prediction.
Subject-10 Object-10

Model MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

MEAN 293 0.310 48.0 34.8 22.2 353 0.251 41.0 28.0 17.1
LSTM 353 0.254 42.9 29.6 16.2 504 0.219 37.3 24.6 14.3

LAN 263 0.394 56.6 44.6 30.2 461 0.314 48.2 35.7 22.7

Table 4: Effectiveness of logic rules on Subject-10.
Model MRR Hits@10 Hit@3 Hits@1

MEAN 0.310 48.0 34.8 22.2

Global-Attention 0.331 49.7 37.7 24.0
Query-Attention 0.355 51.9 39.5 27.0

Logic Rules Only 0.375 54.7 42.7 28.0
LAN 0.394 56.6 44.6 30.2

Experimental Setup
Since this task is also conducted in Hamaguchi et al. (2017),
we use the same configurations with learning rate α =
0.001, embedding dimension d = 100, and margin γ =
300.0 for all datasets. We randomly sample 64 neighbors
for each entity. Zero padding is used when the number of
neighbors is less than 64. L2-regularization is applied on the
parameters of LAN. The regularization rate is 0.001.

Evaluation Results
The results are reported in Table 2. Since we did not achieve
the same results for MEAN as reported in Hamaguchi et
al. (2017) with either our implementation or their released
source code, the best results from their original paper are re-
ported. From the table, we observe that, on one hand, LSTM
results in poorer performance compared with MEAN, which
involves fewer parameters though. This demonstrates the ne-
cessity of the permutation invariance for designing neigh-
borhood aggregators for KGs. On the other hand, our LAN
model consistently achieves the best results on all datasets,
demonstrating the effectiveness of LAN on this KBC task.

Experiments on Link Prediction
Link prediction in the inductive setting aims at reasoning the
missing part “?” in a triplet when given (s, r, ?) or (?, r, o)
with emerging entities s or o respectively. To tackle the task,
we firstly hide the object (subject) of each testing triplet in
Subject-R (Object-R) to produce a missing part. Then we re-
place the missing part with all entities in the entity set E to
construct candidate triplets. We compute the scoring func-
tion φO(s, r, o) defined in Eq. (5) for all candidate triplets,
and rank them in descending order. Finally, we evaluate
whether the ground-truth entities are ranked ahead of other
entities. We use traditional evaluation metrics as in the KG
completion literature, i.e., Mean Rank (MR), Mean Recipro-
cal Rank (MRR), and the proportion of ground truth entities
ranked top-k (Hits@k, k ∈ {1, 3, 10}). Since certain candi-
date triplets might also be true, we follow previous works

Table 5: Different scoring functions on Subject-10.
Encoder Decoder MRR Hits@10 Hit@3 Hits@1

MEAN Distmult 0.297 45.8 33.5 21.2
MEAN Complex 0.286 44.7 32.2 20.4
MEAN Analogy 0.242 38.3 26.5 17.1
MEAN TransE 0.310 48.0 34.8 22.2

LAN Distmult 0.378 53.4 43.2 29.3
LAN Complex 0.371 53.1 42.2 28.7
LAN Analogy 0.375 53.2 42.6 29.2
LAN TransE 0.394 56.6 44.6 30.2

and filter out these fake negatives before ranking.

Experimental Setup
We search the best hyper-parameters of all models accord-
ing to the performance on validation set. In detail, we search
learning rate α in {0.001, 0.005, 0.01, 0.1}, embedding di-
mension for neighbors d in {20, 50, 100, 200}, and mar-
gin γ in {0.5, 1.0, 2.0, 4.0}. The optimal configurations are
α = 0.001, d = 100, γ = 1.0 for all the datasets.

Experimental Results
The results on Subject-10 and Object-10 are reported in Ta-
ble 3. The results on other datasets are similar and we sum-
marize them later in Figure 3. From Table 3, we still observe
consistent results for all the models as in the triplet classifi-
cation task. Firstly, LSTM results in the poorest performance
on all datasets. Secondly, our LAN model outperforms all
the other baselines significantly, especially on the Hit@k
metrics. The improvement on the MR metric of LAN might
not be considerable. This is due to the flaw of the MR metric
since it is more sensitive to lower positions of the ranking,
which is actually of less importance. The MRR metric is pro-
posed for this reason, where we could observe consistent im-
provements brought by LAN. The effectiveness of LAN on
link prediction validates LAN’s superiority to other aggrega-
tors and the necessities to treat the neighbors differently in
a permutation invariant way. To analyze whether LAN out-
performs the others for expected reasons and generalizes to
other configurations, we conduct the following studies.

Necessity of Query Relation Awareness In this experi-
ment, we would like to confirm that it’s necessary for the
aggregator to be aware of the query relation. Specifically,
we investigate the attention neural network and design two
degenerated baselines. One is referred to as Query-Attention
and is simply an attention network as in LAN except that the

7157

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

(%
)

5 10 15 20 25
Dataset: Subject-R (%)

40

45

50

55

60

65
H

its
@

10
 (

%
)

MEAN
LSTM
LAN
Unseen Entities

0

5

10

15

20

25

30
P

er
ce

nt
ag

e
(%

)

5 10 15 20 25
Dataset: Object-R (%)

30

35

40

45

50

55

60

H
its

@
10

 (
%

)

MEAN
LSTM
LAN
Unseen Entities

Figure 3: Results on Subject-
R and Object-R.

Subject and Query Neighbors ranked by LAN Predicted Object from LAN and MEAN

Jared_Drake_Bell
query: origin

place_lived -> Orange_County
breed_origin -> Santa_Ana
website_owner -> Universal_Records
perform_film -> High_Fidelity
friend -> Corbin_Bleu_Reivers
gender -> Male

LAN: Orange_County, Santa_Ana, Laguna_Beach,
City_Orange, Fullerton, Huntington_Beach, Costa_Mesa,

Greenwich_Village, Newport_Beach, Anaheim

MEAN: Costa_Mesa, Santa_Ana, Southern_California,
 Berkeley, Oslo, Stuttgart, Newport_Beach,

 Miami, Surrey, San_Jose

Georg_Hegel
query: profession

influenced_by -> Aristotle
interest -> Metaphysics
interest -> Aesthetics
interset -> Logic
interest -> Epistenmology
employment-1 -> Humboldt_University
ethnicity -> Germans
gender -> Male

LAN: Philosopher, Economist, Librarian,
Psychiatrist, Psychologist, Priest,

 Scientist, Historian, Pediatrics, Designer

MEAN: Physicist, Aristotle, Karl_Marx,
Gottfried_Leibniz, John_FRS, Immanuel_Kant,

Philosopher, Economist, Architect, Plato

Stephen_Joseph_Harper
query: place_lived

institution -> University_of_Calgary
politician -> Conservative_Party_of_Canda
appointed_by -> Senate_of_Canada
position -> Prime_Minister_of_Canda
religion -> Evangelicalism
profession -> Economist
gender -> Male

LAN: Nunavut, Yukon, Saskatchewan, Alberta,
Connecticut, British_Coulumbia, Nova_Scotia,

Calgary, Oklahoma, Edmonton

MEAN: Yukon, Nunavut, Alberta, Prince_Edward_Island,
Senate_Of_Canda, Nova_Scotia, British_Columbia,

 Montana, Quebec, Alaska

Table 6: The sample cases. The left column contains the emerging entity and the query relation.
The middle column contains the neighbors ranked in a descending order according to the
weights specified by LAN. The right column contains the ranked prediction from LAN and
MEAN. The correct predictions are marked in bold.

logic rule mechanism is removed. The other is referred to as
Global-Attention, which is also an attention network except
that the query relation embedding zq in Eq. (10) is masked
by a zero vector. The results are reported in Table 4. We ob-
serve that although superior to MEAN, Global-Attention is
outperformed by Query-Attention, demonstrating the neces-
sity of query relation awareness. The superiority of Global-
Attention over MEAN could be attributed to the fact that the
attention mechanism is effective to identify the neighbors
which are globally important regardless of the query.

Effectiveness of Logic Rule Mechanism We find that the
logic rules greatly help to improve the attention network
in LAN. We confirm this point by conducting further ex-
periments where the logic rule mechanism is isolated as
a single model (referred to as Logic Rules Only). The re-
sults are also demonstrated in Table 4, from which we find
that Query-Attention outperforms MEAN by a limited mar-
gin. Meanwhile, Logic Rules Only outperforms both MEAN
and Query-Attention by significant margins. These results
demonstrate the effectiveness of logic rules in assigning
meaningful weights to the neighbors. Specifically, in order
to generate representations for unseen entities, it is crucial to
incorporate the logic rules to train the aggregator, instead of
depending solely on neural networks to learn from the data.
By combining the logic rules and neural networks, LAN
takes a step further in outperforming all the other models.

Generalization to Other Scoring Functions To find out
whether the superiority of LAN to the baselines can general-
ize to other scoring functions, we replace the scoring func-
tion in Eq. (5) and Eq. (15) by three typical scoring func-
tions mentioned in Related Works. We omit the results of
LSTM, for it is still inferior to MEAN. The results are listed
in Table 5, from which we observe that with different scor-

ing functions, LAN outperforms MEAN consistently by a
large margin on all the evaluation metrics. Note that TransE
leads to the best results on MEAN and LAN.

Influence of the Proportion of Unseen Entities It’s rea-
sonable to suppose that when the ratio of the unseen en-
tities over the training entities increases (namely the ob-
served knowledge graph becomes sparser), all models’ per-
formance would deteriorate. To figure out whether our LAN
could suffer less on sparse knowledge graphs, we conduct
link prediction on datasets with different sample rates R as
described in Step 1 of the Data Construction section. The re-
sults are displayed in Figure 3. We observe that the increas-
ing proportion of unseen entities certainly has a negative im-
pact on all models. However, the performance of LAN does
not decrease as drastically as that of MEAN and LSTM, in-
dicating that LAN is more robust on sparse KGs.

Case Studies on Neighbors’ Weights
In order to visualize how LAN specifies weights to neigh-
bors, we sample some cases from the Subject-10 testing set.
From Table 6, we have the following observations. First,
with the query relation, LAN could attribute higher weights
to neighbors with more relevant relations. In the first case,
when the query is origin, the top two neighbors are involved
by place lived and breed origin, which are helpful to imply
origin. In addition, in all three cases, neighbors with rela-
tion gender gain the lowest weights since they imply noth-
ing about the query relation. Second, LAN could attribute
higher weights to neighbor entities that are more informa-
tive. When the query relation is profession, the neighbors
Aristotle, Metaphysics and Aesthetics are all relevant to the
answer Philosopher. In the third case, we also observe sim-
ilar situations. Here, the neighbor with the highest weight
is (institution, University of Calgary) since the query rela-

7158

tion place lived helps the aggregator to focus on the neigh-
boring relation institution, then the neighbor entity Univer-
sity of Calgary assists in locating the answer Calgary.

Conclusion
In this paper, we address inductive KG embedding, which
helps embed emerging entities efficiently. We formulate
three characteristics required for effective neighborhood ag-
gregators. To meet the three characteristics, we propose
LAN, which attributes different weights to an entity’s neigh-
bors in a permutation invariant manner, considering both the
redundancy of neighbors and the query relation. The weights
are estimated from data with logic rules at a coarse relation
level, and neural attention network at a fine neighbor level.
Experiments show that LAN outperforms baseline models
significantly on two typical KG completion tasks.

Acknowledgements
We thank the three anonymous authors for their construc-
tive comments. This work is supported by the National Nat-
ural Science Foundation of China (61472453, U1401256,
U1501252, U1611264, U1711261, U1711262).

References
Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak,
R.; and Ives, Z. 2007. Dbpedia: A nucleus for a web of open
data. The semantic web 722–735.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
ICLR.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD, 1247–1250.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In NIPS, 2787–2795.
Duran, A. G., and Niepert, M. 2017. Learning graph rep-
resentations with embedding propagation. In NIPS, 5119–
5130.
Fu, T.-y.; Lee, W.-C.; and Lei, Z. 2017. Hin2vec: Explore
meta-paths in heterogeneous information networks for rep-
resentation learning. In CIKM, 1797–1806. ACM.
Hamaguchi, T.; Oiwa, H.; Shimbo, M.; and Matsumoto, Y.
2017. Knowledge transfer for out-of-knowledge-base en-
tities: A graph neural network approach. In IJCAI, 1802–
1808.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017a. Induc-
tive representation learning on large graphs. In NIPS, 1024–
1034.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017b. Rep-
resentation learning on graphs: Methods and applications.
IEEE Data Eng. Bull. 40:52–74.
Hao, Y.; Zhang, Y.; Liu, K.; He, S.; Liu, Z.; Wu, H.; and
Zhao, J. 2017. An end-to-end model for question answering
over knowledge base with cross-attention combining global
knowledge. In ACL, volume 1, 221–231.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Liu, H.; Wu, Y.; and Yang, Y. 2017. Analogical inference
for multi-relational embeddings. In ICML, 2168–2178.
Mahdisoltani, F.; Biega, J.; and Suchanek, F. 2014. Yago3:
A knowledge base from multilingual wikipedias. In CIDR.
Rossi, R. A.; Zhou, R.; and Ahmed, N. K. 2018. Deep
inductive network representation learning. In WWW, 953–
960.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Berg, R. v. d.;
Titov, I.; and Welling, M. 2017. Modeling relational data
with graph convolutional networks. The Semantic Web.
Shi, B., and Weninger, T. 2018. Open-world knowledge
graph completion. In AAAI, 1957–1964.
Shi, C.; Li, Y.; Zhang, J.; Sun, Y.; and Philip, S. Y. 2017.
A survey of heterogeneous information network analysis. In
TKDE, volume 29, 17–37. IEEE.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In NIPS, 926–934.
Tang, J.; Qu, M.; and Mei, Q. 2015. Pte: Predictive text em-
bedding through large-scale heterogeneous text networks. In
SIGKDD, 1165–1174. ACM.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In ICML, 2071–2080.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph attention networks. In ICLR.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
AAAI, 1112–1119.
Wang, Q.; Mao, Z.; Wang, B.; and Guo, L. 2017. Knowledge
graph embedding: A survey of approaches and applications.
In TKDE, volume 29, 2724–2743. IEEE.
Xie, R.; Liu, Z.; Chua, T.-s.; Luan, H.; and Sun, M. 2016a.
Image-embodied knowledge representation learning. In IJ-
CAI, 3140–3146.
Xie, R.; Liu, Z.; Jia, J.; Luan, H.; and Sun, M. 2016b. Repre-
sentation learning of knowledge graphs with entity descrip-
tions. In AAAI, 2659–2665.
Xiong, C., and Callan, J. 2015. Esdrank: Connecting query
and documents through external semi-structured data. In
CIKM, 951–960. ACM.
Xiong, W.; Yu, M.; Chang, S.; Guo, X.; and Wang, W. Y.
2018. One-shot relational learning for knowledge graphs. In
EMNLP.
Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2014.
Embedding entities and relations for learning and inference
in knowledge bases. In ICLR.
Yang, Z.; Cohen, W. W.; and Salakhutdinov, R. 2016. Re-
visiting semi-supervised learning with graph embeddings. In
ICML, 40–48.
Zhang, F.; Yuan, N. J.; Lian, D.; Xie, X.; and Ma, W.-Y.
2016. Collaborative knowledge base embedding for recom-
mender systems. In SIGKDD, 353–362. ACM.

7159

