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Abstract

In this paper, we investigate how to improve Chinese named
entity recognition (NER) by jointly modeling NER and con-
stituent parsing, in the framework of neural conditional ran-
dom fields (CRF). We reformulate the parsing task to height-
limited constituent parsing, by which the computational com-
plexity can be significantly reduced, and the majority of
phrase-level grammars are retained. Specifically, an unified
model of neural semi-CRF and neural tree-CRF is proposed,
which simultaneously conducts word segmentation, part-of-
speech (POS) tagging, NER, and parsing. The challenge
comes from how to train and infer the joint model, which
has not been solved previously. We design a dynamic pro-
gramming algorithm for both training and inference, whose
complexity is O(n ·4h), where n is the sentence length and h
is the height limit. In addition, we derive a pruning algorithm
for the joint model, which further prunes 99.9% of the search
space with 2% loss of the ground truth data. Experimental
results on the OntoNotes 4.0 dataset have demonstrated that
the proposed model outperforms the state-of-the-art method
by 2.79 points in the F1-measure.

Introduction
Named entity recognition (NER) is to identify the bound-
aries of a named entity in a natural language sentence, and
its corresponding type, such as persons, locations, and or-
ganizations. It provides a fundamental support for a wide
range of upstream natural language processing (NLP) tasks,
such as relation extraction (Hendrickx et al. 2009; Tang et
al. 2008), semantic role labeling (Carreras 2004), and coref-
erence resolution (Pradhan et al. 2012).

Jointly modeling NER with constituent parsing has been
demonstrated as an effective way in improving the NER per-
formance (Finkel and Manning 2009). Original joint models
aim at solving both tasks. But in applications, if only NER
is needed, the joint model significantly increases the compu-
tational cost from O(n) in linear semi-CRF (Liu et al. 2016;
Sarawagi and Cohen 2004), to O(n3) in tree-CRF (Finkel
and Manning 2009; Finkel, Kleeman, and Manning 2008;
Hall, Durrett, and Dan 2003). This makes the joint model
not applicable in many cases in practice.
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Figure 1: An illustration example of NER with height-
limited constituent parsing (height limit = 2).

Aiming at solving this limitation, we reformulate the
problem, and let the NER be jointly modeled with height-
limited constituent parsing. The ground truth structure of
height-limited constituent parsing is generated by cutting
the nodes, which exceed the height limit, from the original
constituent parsing tree. Figure 1 illustrates an example for
a Chinese sentence, with the height limited to 2. Although
height-limited parsing is not a complete parsing result, many
phrases can indeed be extracted, such as noun phrases and
preposition phrases, which are also informative for upstream
applications. On one hand, for improving the NER accuracy,
our main assumption is if an entity is covered by a subtree
within a certain height from the original parsing tree, the
subtree can also provide supportive information from the as-
pect of parsing. We conduct a statistical analysis on the Chi-
nese corpus of the OntoNotes 4.0 dataset (Weischedel et al.
2011), which contains 15,700 sentences and 13,372 entity
instances. We show how many entities can be covered by
constituent grammars if the height of the parsing tree is lim-
ited, in Fig. 2. It is observed, if the height limit is set to be 3,
near 80% of the entities can be covered by the subtree. This
demonstrates that joint modeling NER and height-limited
constituent parsing subtrees can indeed influence a major-
ity of entities. On the other hand, for improving the compu-
tational cost, with the height of the parsing tree limited to
a constant, the complexity of the joint model is reduced to
O(n) theoretically, which is comparable with previous lin-
ear CRF models for NER.

In this paper, we investigate how to build a joint model,
in order to utilize height-limited constituent parsing struc-
tures to improve Chinese NER. Specifically, we investi-
gate the problem under the graph-based CRF framework,
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Figure 2: Entity Coverage Rate of Different Height Limits.

as it has been demonstrated as the state-of-the-art frame-
work for NER. For the Chinese language, word segmenta-
tion is an important issue, which is tightly correlated with
NER (Zhang and Yang 2018). Consequently, our idea is to
build a joint model, which simultaneously solves the tasks
of word segmentation, part-of-speech (POS) tagging, NER
and height-limited constituent parsing. We propose an uni-
fied model of the semi-CRF (Kong, Dyer, and Smith 2016;
Liu et al. 2016) and the tree-CRF (Durrett and Klein 2015),
for this task. The semi-CRF is for segmentation structure
learning, and the tree-CRF is for parsing structure learning.
Both have been demonstrated successful in previous work.
POS tags, name entities, and constituent grammars serve as
labels in the combined structure.

The main challenge is how to learn and infer the unified
CRF framework. It has not been thoroughly solved in pre-
vious joint models. Some work (Finkel and Manning 2009)
builds a tree-CRF model for NER and parsing. As the task
is for English only, the tree-CRF cannot well deal with the
Chinese word segmentation issue. Some other work (Qian
and Liu 2012) builds a joint model of semi-CRF and tree-
CRF for word segmentation, POS tagging, and parsing. But
1-order semi-CRF has been simplified to 0-order semi-CRF
in this work. This means the joint model loses the relational
dependency of adjacent segments, which is important for
segmentation.

In this paper, we solve the above challenge from two
aspects. First, the dynamic programming algorithm is de-
signed for the unified model of the semi-CRF and the tree-
CRF, where 1-order semi-CRF is retained. By using the al-
gorithm, for both training and inference, the computational
complexity is O(n · 4h), where n is the character number
in a sentence, and h is the height limit (h=3 in our setting).
Second, a pruning algorithm is derived, under the framework
of structured prediction cascades (Weiss, Sapp, and Taskar
2012). From empirical statistics, when the search space is re-
duced to 0.001 of the original space, only 2% of the ground
truth data are missed. This further reduces the time complex-
ity, to make it comparable with semi-CRF. Finally, an uni-
fied model of the semi-CRF and the tree-CRF is constructed,
based on neural features generated from word embeddings,

which simultaneously solves the word segmentation, POS
tagging, NER, and height-limited constituent parsing. Our
work has three primary contributions.

• A Novel Joint Formulation for Pipeline Tasks. Height-
limited constituent parsing is introduced, which signifi-
cantly reduces the search space of jointly modeling word
segmentation, POS tagging, NER, and parsing.

• Joint CRF Framework of Segmentation and Parsing. To
learn and infer the unified CRF model, both dynamic pro-
gramming algorithm and pruning algorithm are designed,
and neural features are explored.

• Experimental Evaluation. By conducting experiments on
the OntoNotes 4.0 dataset, we demonstrate that the pro-
posed approach outperforms previous algorithms by 2.79
points in the F1-measure.

Related Work
Named Entity Recognition
NER is typically formulated as a sequential labeling prob-
lem, and conditional random fields have been demonstrated
as the state-of-the-art architecture (Lafferty, Mccallum, and
Pereira 2001; Liu et al. 2016; Luo et al. 2016). The labels
can be assigned to either words (Huang, Xu, and Yu 2015)
or characters (Dong et al. 2016). Currently, character-based
methods perform better than word-based methods (Li et al.
2014). Originally, features are manually defined (Nguyen,
Moschitti, and Riccardi 2010). Recently, nonlinear neural
features have enhanced the performance, including con-
volutional neural networks (CNN) (Collobert et al. 2011;
Ma and Hovy 2016; Santos and Guimaraes 2015), long
short-term memory (LSTM) (Hammerton 2003; He and
Sun 2017; Huang, Xu, and Yu 2015; Lample et al. 2016;
Rondeau and Su 2016; Zhang and Yang 2018), and oth-
ers such as fixed-size ordinally forgetting encoding (Xu,
Jiang, and Watcharawittayakul 2017). Knowledge base is
also an effective external source to improve NER perfor-
mance (Chiu and Nichols 2015; Radford, Carreras, and Hen-
derson 2015), and some work jointly deal with the NER
and entity linking (Luo et al. 2016; Sil and Yates 2013).
The lattice-based method achieves the state-of-the-art per-
formance (Zhang and Yang 2018).

The main difference is that we jointly model NER with
word segmentation, POS tagging and parsing. Previously,
some work employs the results of these accompanied tasks
as features (Jie, Muis, and Lu 2017). The advantage of a joint
multi-task model is that it can learn the direct dependencies
among the labels of these tasks, and therefore be avoid of
error propagations.

Joint Segmentation and Parsing
Previous joint models of segmentation and parsing are com-
posed of transition-based (Hatori et al. 2012; Kurita, Kawa-
hara, and Kurohashi 2017; Zhang et al. 2013) and graph-
based (Goldberg and Elhadad 2011; Qian and Liu 2012;
Wang, Zong, and Xue 2013). In NER, previous work demon-
strate that graph-based methods perform better. Thus we fo-
cus on graph-based methods. Previous graph-based models
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Figure 3: The probabilistic graph of the joint CRF.

can be further divided into two categories. The first one is a
two-stage model (Green and Manning 2010; Goldberg and
Elhadad 2011; Wang, Zong, and Xue 2013). Words are seg-
mented into word lattices first, and then fed to the parsing
model. The second category is to jointly infer segmentation
and parsing (Qian and Liu 2012).

The main difference of our work is that we retain all
the relational structure features, but previous work cut the
semi-CRF from 1-order to 0-order. The advantage of cut-
ting is that the previous dynamic programming algorithm
for tree-CRF can be directly employed. But the disadvan-
tage is that the dependencies among adjacent segmentations
are ignored. We design a novel dynamic programming for
the joint model of 1-order semi-CRF and tree-CRF, and also
derive a pruning algorithm for this joint model.

The Joint CRF Model
The Probabilistic Graph
Before constructing the joint model, we simplify the Chinese
treebank from three aspects. (1) POS and NE label combina-
tion. We merge the POS label space and the NE label space.
If an entity is composed by more than one word, the words
are merged together into an entity. (2) Unary rule elimina-
tion . All unary rules are removed, and only the top label
is retained. (3) Binarization of rules. We employ the ZPar
system (Zhang and Clark 2011) for the binarization of rules.

The notations of the joint model follow JERL (Luo et
al. 2016) and CRF-CFG (Finkel, Kleeman, and Manning
2008). Let x = {xi} be a sentence, which is composed
of a sequence of characters, with xi being the ith charac-
ter. Segmentation and parsing act as two kinds of structure
for x. In segmentation, let s = {si} be a legal segmenta-
tion for the sequence of x. si = (ui, vi) denotes the ith
segment. Its boundary starts from ui and ends at vi, where
0 ≤ ui ≤ vi ≤ |x| and ui+1 = vi + 1. Let y = {yi} be the
label assignments for the segments, where yi denotes the la-
bel of the ith segment. The label space of segmentation, de-
noted by Yseg , where yi ∈ Yseg , is an union set of alphabet
POS labels and alphabet NER labels. In parsing, after sim-
plification, each sentence in the Chinese treebank is gener-
ated by a context-free grammar (CFG). The CFG is defined
by, (1) a set of terminals Yseg; (2) a set of non-terminals
{N i}, i = 1, ..., n; (3) a designated start symbol N1; and

Figure 4: Neural feature for φ(yi−1, yi, s|x; θ).

(4) a set of rules U = {ρj}, where ρj = N i → ζaζb and
ζ ∈ Yseg ∪ {N i}. Given s for the sequence of x, let t be a
legal parsing tree on s. We utilize r ∈ t to denote a one-level
three-node subtree of t, which corresponds to a rule ρ.

The probabilistic graph of a sentence is shown in
Fig. 3. Following the work of neural semi-CRF (Liu et
al. 2016) and neural tree CRF (Durrett and Klein 2015),
two kinds of energy potentials are defined in local cliques.
φ(yi−1, yi, s|x; θ) models relational features of adjacent
segmentation labels, given the observations of x. φ(r|x; θ)
models the relational features of the parsing labels of a sub-
tree r, which corresponds to the parsing rule, given x. θ is
the parameters of energy potentials.

Based on the above two feature templates, the conditional
probability of the entire sentence, P (t, y, s|x; θ), is defined
by the standard CRF, as shown in the following equation.
Since the proposed CRF is a joint model of segmentation
and parsing, the normalizer Zx is the sum energy potential
of all possible segmentations, and all possible parsing trees
given a segmentation. ϕ(x) is the set of all segmentations,
given the sentence x. ψ(s′, x) is the set of all segment label
assignments, given x and s′ ∈ ϕ(x). τ(y′, s′, x) is the set of
all parsing trees and the corresponding assigned rules, given
x, s′ ∈ ϕ(x), and y′ ∈ ψ(s′, x).

P (t, y, s|x; θ) = 1

Zx
· exp |y|∑

i=1

φ(yi−1, yi, s|x; θ) +
∑
r∈t

φ(r|x; θ)



Zx =
∑

s′∈ϕ(x)

∑
y′∈ψ(s′,x)

∑
t′∈τ(y′,s′,x)

exp

 |y|∑
i=1

φ(y′i−1, y
′
i, s
′|x; θ) +

∑
r∈t′

φ(r|x; θ)
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Figure 5: Neural feature for φ(r|x; θ).

Neural Features
Span Feature Representation We employ three previous
methods to represent the span feature. The first one is based
on an independent RNN in the span (Kong, Dyer, and Smith
2016). The second one is based on the subtraction of hid-
den states (Cross and Huang 2016; Wang and Chang 2016).
The third one is based on an attention mechanism (Lee et al.
2017). Lattice LSTM (Zhang and Yang 2018) is employed
to encode the character sequence.

Constructing φ(yi−1, yi, s|x; θ) The neural fea-
ture construction for two adjacent POS/NE labels,
φ(yi−1, yi, s|x; θ), is shown in Fig. 4. The feature is
defined by a feed-forward neural network, with ReLU as
the active function. The input is the concatenation of several
component feature vectors. The first four components are
embedding feature vectors for segment-i, length-i, label
yi−1, and label yi, and the last component is the span
feature vector. The embedding of segment-i is obtained by
looking up a pre-learned word embedding knowledge base.
The embeddings of others are learned together with the
feed-forward neural network.

Constructing φ(r|x; θ) The neural feature construction
for φ(r|x; θ) is shown in Fig. 5. The feature is also defined
by a feed-forward neural network, with the concatenation of
several component feature vectors as the input vector. The
first two components are embedding feature vectors for the
parsing label and the parsing rule, and the last two compo-
nents are span feature vectors.

Algorithms
Dynamic Programming Algorithm
The parameters of the joint model, denoted by θ, include the
weights of the neural network in the two kinds of feature
potentials and some embeddings that are not pre-learned.

Figure 6: Four cases in the dynamic programming.

The learning process is to find θ to maximize the
log conditional likelihood of the training set D =
{(t(k), y(k), s(k), x(k))} as the following equation.

L(D; θ) =
∑

(t(k),y(k),s(k),x(k))∈D

[(

|y(k)|∑
i=1

φ(y
(k)
i−1, y

(k)
i , s

(k)
i ) +

∑
r∈t(k)

φ(r))− logZx(k) ]

In calculatingZx(k) , a dynamic programming algorithm is
designed. Given a character span (i, j), two iteration func-
tions α(i, j, A,Q,R) and β(i, j, A,R) are defined. Q and R
are POS/NE labels. A, B and C can be either POS/NE la-
bels or parsing labels.The calculation of α and β follows the
dynamic programming manner, as shown in the following
equations. The four indicator functions correspond to four
cases, which is shown in Fig. 6.

α(i, j, A,Q,R) =

I(hB<h,hC<h) ·
∑
B,C

∑
k

exp (φ (A→ BC|i, j, k))

{
I0 ·

∑
P ′

α(i, k, B, P ′, R) · α(k, j, C,Q, P ′)

+I1 · β(i, k, B,R) · α(k, j, C,Q,B)

+I2 ·
∑
P ′

α(i, k, B, P ′, R) · β(k, j, C, P ′)

+I3 · β(i, k, B,R) · β(k, j, C,B)

}

β(i, j, A,R) = exp (φ(R,A|i, j))

ξ(j,Q) =
∑

i,j,A,Q,R

ξ(i, R)α(i, j, A,Q,R)

Zx(k) =
∑
Q

ξ(|x(k)|, Q)
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The inference is to find a group of (t, y, s) for a sentence x
to maximize the conditional probability. Dynamic program-
ming can also be utilized by substituting the sum function to
the maximizing function in the above equations.

The complexity of the training and inference of the above
process is O(n · L · q2 · 4h · |U |), where n is the number
of characters in the sentence, L is the maximum span length
to be considered as word/entity, q is the number of POS/NE
tags, h is the height limit, |U | is the number of constituent
rules.

Pruning Algorithm
The pruning algorithm is designed to reduce the number of
atomic segments. Figure 7 shows an example of an atomic
segment, it is defined by the segment index i and j, as well as
its POS/NE tag P and the POS/NE tagR of its previous seg-
ment, and denoted as c(i, j, P,R). It is a fundamental unit in
the above dynamic programming. It is located at a leaf node
of the parsing tree, and there is no grammar rules inside. As
the parsing tree is constructed on these atomic segments, if
its total number can be reduced, the overall complexity of the
joint model will be reduced linearly. If pruning is not con-
ducted, there are n · L · q2 atomic segments for a sentence.
In practice, n ≈ 40, L = 10, and q ≈ 30. Thus the total
number is 360,000. The pruning target is to remove unlikely
segments and reduce this number to m · n · L · q2. For ex-
ample, in our setting, m = 0.001. Then only 360 segments
will be retained for constructing the parsing tree. Finally, the
total complexity of the joint model is reduced to 0.001 of the
original complexity, and the loss of the ground truth data is
within 2%.

The key of pruning is to calculate the max marginals of
these atomic segments’ energy potential. Our pruning algo-
rithm is under the framework of structured prediction cas-
cades (Weiss, Sapp, and Taskar 2012), but we derive and
implement it for the proposed CRF model. The dynamic
programming starts from the left to the right. As shown in
Fig. 7, at position i, given that an atomic segment ends at i
with the POS tagR, the maximum energy potential from the
left to i is denoted as δ(i, R). The dynamic programming is
conducted as follows, where f(.) is the energy potential on
the segment of c(a, i, R, T ), and δ(0, .) = 1 for initial case.

δ(i, R) = max
a,T

δ(a, T ) · f(a, i, R, T )

Similarly, if the dynamic programming is conducted from
the right to the left, the maximum energy potential from the
right to i, δ′(j, P ), is as follows, where δ′(n, .) = 1.

δ′(j, P ) = max
b,Q

δ′(b,Q) · f(j, b,Q, P )

Consequently, the max marginal of the segment c(i, j, P,R)
is

γ(i, j, P,R) = δ(i, R) · δ′(j, P ) · f(i, j, P,R).

For a sentence with the length n, there are totally n ·L ·q2
atomic segments. Therefore, we calculate the max marginal
of each atomic segment, and rank them by their max

Figure 7: An illustration of atomic segment.

marginal values in a descent order, as {c(1), c(2), ..., c(n·L)},
where the corresponding max marginals follow

γ(1) ≥ γ(2) ≥ ... ≥ γ(n·L).

In this manner, suppose k = bm · n · L · q2c,
{c(1), c(2), ..., c(k)} is selected as the retained atomic seg-
ments after pruning. Please note if γ(i) = γ(i+1) = ... =
γ(i+j), and i ≤ k ≤ i+ j, then we set k = i+ j.

Suppose s is a segmentation strategy for a sentence, Cs =
{cs1, cs2, ..., csk} denotes its corresponding atomic segment
set. v(s) denotes the total energy potential of the strategy s.

Lamma 1. For arbitrary atomic segment c(i) ∈
{c(1), c(2), ..., c(k)}, suppose s(i) is a strategy, where c(i) ∈
Cs(i) , and v(s(i)) = γ(c(i)). Then for arbitrary cj ∈ Cs(i) ,
we have cj ∈ {c(1), c(2), ..., c(k)}.

Proof of Lemma 1. For arbitrary cj ∈ Cs(i) , its marginal in
the strategy s(i) is equal to γ(c(i)). It means its max marginal
γ(cj) ≥ γ(c(i)). As c(i) ∈ {c(1), c(2), ..., c(k)}, therefore,
cj ∈ {c(1), c(2), ..., c(i)} ⊆ {c(1), c(2), ..., c(k)}.

Lamma 2. For arbitrary atomic segment c(i) /∈
{c(1), c(2), ..., c(k)}, suppose s(i) is arbitrary strategy that
fits c(i) ∈ Cs(i) , with the corresponding total energy po-
tential v(s(i)). There must be a strategy s, where Cs(i) ⊆
{c(1), c(2), ..., c(k)}, having v(s) > v(s(i)).

Proof of Lemma 2. From the definition, if c(i) /∈
{c(1), c(2), ..., c(k)}, we have γ(c(k)) > γ(c(i)). Sup-
pose s(k) is a strategy with v(s(k)) = γ(c(k)). Then
v(s(k)) ≥ v(s(i)), as γ(c(k)) is the max marginal of c(k).
From Lemma 1, we have Cs(k) ⊆ {c(1), c(2), ..., c(k)}. Thus
we have found the s(k) fitting the condition.

Experiments
Experimental Settings
The experiments are conducted on the dataset of OntoNotes
4.0 (Weischedel et al. 2011). It is the unique dataset in the
community, which have all the labels of word segmentation,
POS tagging, NER, and parsing, in Chinese. We split the
dataset in the same manner as previous work (Zhang and
Yang 2018) for comparisons. The dataset contains 15,724
sentences in the training set, 4,301 sentences in the develop-
ment set, and 4,346 sentences in the testing set, with more
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Parameter Value Parameter Value
char emb size 50 word emb size 50
tag emb size 20 rule emb size 40
length emb size 10 CRF hidden 128
LSTM layer 1 LSTM hidden 200
regularization λ 1e-08 AttSpan hidden 100
char/word dropout 0.5 LSTM dropout 0.5
learning rate (lr) 0.015 lr decay 0.05

Table 1: Hyper-parameters.

Models P R F1 O-R O-F1
Yang16a (gw) 65.59 71.84 68.57
Yang16b (gw) 72.98 80.15 76.40
Che13(gw) 77.71 72.51 75.02 – –
Wang13(gw) 76.43 72.32 74.32
Zhang18(gw) 78.62 73.13 75.77
Zhang18(aw) 73.36 70.12 71.70
Zhang18CRF 68.79 60.35 64.30 44.55 54.08
Zhang18Latt 76.35 71.56 73.88 60.04 67.22
SRSemiCRF 76.79 70.99 73.78 58.09 66.14
MiSemiCRF 76.41 73.19 74.77 60.59 67.59
AtSemiCRF 78.11 72.91 75.42 61.50 68.82
+POS+CWS 76.68 74.69 75.67 64.70 70.19
UnifiedCRF 77.18 76.16 76.67 66.38 71.37

Table 2: NER Performances on the testing set.

than 490,000 characters in total. Standard metrics of preci-
sion, recall, and F1-measure are utilized for evaluation.

The word embedding and character embeddings are em-
ployed from the work of (Zhang and Yang 2018). Other em-
beddings are trained as parameters with the joint model. The
detailed embedding dimension information and all the con-
figurations of the joint model are shown in Table 1. Some
of them are employed from the work of (Zhang and Yang
2018), and others are set according to parameter analysis.
The optimization is stochastic gradient descent with batch
size = 1. The height limit is 3.

Performances
We follow the work of (Zhang and Yang 2018) for perfor-
mance comparisons. The overall performances are shown in
Table 2. The first block in the table is the word-based base-
line methods (Che et al. 2013; Wang, Che, and Manning ;
Yang et al. 2016; Zhang and Yang 2018), with gold word
segmentation (gw) and automatic word segmentation (aw).
The second block is the character-based baseline methods.
“Zhang18CRF” denotes the BIO-CRF with LSTM features,
and “zhang18Latt” denotes the BIO-CRF with lattice LSTM
features. “SRSemiCRF” denotes the semi-CRF with LSTM
span features (Kong, Dyer, and Smith 2016). The third block
is our implemented semi-CRF methods. “MiSemiCRF” de-
notes the semi-CRF with substraction LSTM span features,
and “AtSemiCRF” denotes the semi-CRF with attention-
based span features. The last block is our proposed unified
CRF model. “O-R” denotes the recall for OOV entities, and
“O-F1” denotes the F1-measure with the overall precision
and the OOV recall. The values of these two columns are
calculated by our implementations.

Models P R F1 O-R O-F1
Zhang18(aw) 72.63 67.60 70.03 – –
Zhang18CRF 67.12 58.42 62.47 40.47 50.49
Zhang18Latt 74.64 68.83 71.62 53.91 62.6
SRSemiCRF 76.55 68.59 72.35 55.71 64.49
MiSemiCRF 75.23 70.39 72.72 56.44 64.49
AtSemiCRF 76.04 70.33 73.25 58.27 66.12
+POS+CWS 75.91 74.07 74.98 62.82 68.75
UnifiedCRF 76.09 74.66 75.37 63.56 69.27

Table 3: NER Performances on the development set.

Task Model P R F1

Word Seg. SemiCRF 95.31 95.29 95.30
UnifiedCRF 95.62 95.28 95.45

POS Tagging SemiCRF 84.02 83.97 83.99
UnifiedCRF 84.55 84.25 84.40

Parsing UnifiedCRF 59.00 68.01 63.19
Parsing Struct. UnifiedCRF 64.69 74.57 69.28

Table 4: Performances for other tasks.

For the overall entities, the unified model is observed to
outperform previous character-based methods by 2.79 points
in F1 (from 73.88% to 76.67%), and it also outperforms pre-
vious word-based method with gold segmentation (76.40%).
The improvement comes from two aspects. The first one
is we explore more neural features for semi-CRF. It is ob-
served by using the attention-based span feature (Lee et al.
2017), the performance of semi-CRF increases from 73.78%
to 75.67% in F1, compared with previous LSTM span fea-
tures. The second one is the improvement from the joint
model, from 75.67% to 76.67% in F1. This demonstrates
that the parsing, as well as the tasks of word segmentation
and POS parsing, improve the NER performance. We con-
duct an error analysis, on entities with different lengths in
the testing set. The length refers to the number of characters
in an entity. It is observed when the length increases, the F1-
measure drops accordingly. When the entity length is above
7 (with around three or more words), the F1 of SemiCRF is
70.26% and the F1 of UnifiedCRF is 74.42%.

For the OOV entities, our model outperforms previous
methods by 6.34 points in recall, and 4.15 points in F1. This
has demonstrated that the joint model obtained significant
improvement for the OOV entities. Table 3 shows the per-
formances on the development set, where observations can
be obtained. Figure 8 shows the performances with different
sentence lengths and different NER types.

Table 4 shows comparisons between semi-CRF and the
unified CRF on the tasks of word segmentation, POS pars-
ing, and height-limited constituent parsing. Although these
performances are not the focus of the paper, we still observe
that the joint model also achieves improvements on word
segmentation and POS tagging. “Parsing” denotes the per-
formances for height-limited constituent parsing, and “Pars-
ing Struct.” denotes the parsing structure without labels.

Table 5 shows the processing time of different methods
in the testing set, which contains 4636 sentences. The time
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Model Total Time Avg. /Sentence
Linear-chain CRF 5min 0.07s
SemiCRF+POS+CWS 50min 0.70s
UnifiedCRF 70min 1.00s

Table 5: The processing time of different methods.

Figure 8: Performances with different sentence length and
different entity types.

cost for BIO-CRF, semi-CRF, unified-CRF is compared. It is
observed that time complexity of the proposed unified model
is comparable with previous semi-CRF.

Figure 9 shows the loss of ground truth with different re-
taining rate of search space, from 0.0001 to 0.0010. It can be
observed that the proposed pruning method is very effective
for reducing the search space. We set the rate be 0.001, with
the loss of ground truth data being less than 2%.

Figure 10 illustrates a case study performed by the pro-
posed unified CRF, where the NER can be improved with
the help of grammar rules. In this example, “DaRunFa” is
a market name, which is an OOV entity. In both BIO and
semi-CRF, the entity “DaRunFa” cannot be recognized. But
with our proposed model, it can be successfully labeled.

Conclusion

In this paper, we investigate the problem of jointly modeling
NER and parsing, to promote Chinese NER performances.
We reformulate the parsing task to height-limited constituent
parsing, which significantly reduces the computational cost.
An unified model of neural semi-CRF and neural tree-CRF
is proposed with designed dynamic programming and prun-
ing algorithms. Experimental results demonstrated that the
proposed unified model outperforms previous methods by
2.79 point in the F1-measure.
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