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Abstract
In fine-grained opinion mining, aspect and opinion terms ex-
traction has become a fundamental task that provides key in-
formation for user-generated texts. Despite its importance,
a lack of annotated resources in many domains impede the
ability to train a precise model. Very few attempts have ap-
plied unsupervised domain adaptation methods to transfer
fine-grained knowledge (in the word level) from some labeled
source domain(s) to any unlabeled target domain. Existing
methods depend on the construction of “pivot” knowledge,
e.g., common opinion terms or syntactic relations between
aspect and opinion words. In this work, we propose an in-
teractive memory network that consists of local and global
memory units. The model could exploit both local and global
memory interactions to capture intra-correlations among as-
pect words or opinion words themselves, as well as the inter-
connections between aspect and opinion words. The source
space and the target space are aligned through these domain-
invariant interactions by incorporating an auxiliary task and
domain adversarial networks. The proposed model does not
require any external resources and demonstrates promising
results on 3 benchmark datasets.

Introduction
Fine-grained opinion extraction involves the identification
of aspect terms (a.k.a opinion targets) and opinion terms.
As an illustrating example, given a review sentence “It’s
kinda loud when the computer fan is running”, the aspect
term and the opinion term to be extracted are computer fan
and loud, respectively. Several supervised models have been
proposed for fine-grained opinion extraction given sufficient
labeled training data. They treated the task as a sequence
labeling problem and apply graphical models (Jakob and
Gurevych 2010; Li et al. 2010) or deep learning models (Liu,
Joty, and Meng 2015; Yin et al. 2016; Wang et al. 2017;
Li and Lam 2017) to solve it. However, the success of these
supervised models depends on the availability of annotated
resources, which are not the case in many real situations.
Although unsupervised methods have also been proposed to
extract aspect/opinion terms without any labeled data (Hu
and Liu 2004; Qiu et al. 2011), they largely relied on man-
ual constructions of rules with pipelined procedures and the
performances are not promising.
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To address these problems, unsupervised domain adapta-
tion methods can be applied to transfer knowledge learned
from labeled source domain to any unlabeled target do-
main. Suppose the source domain contains restaurant re-
views, e.g., “They have nice food”, and the target do-
main is laptop, e.g., “The problem is the noisy fan”. Li
et al. (2012) proposed to use opinion seeds (nice, noisy)
and pre-mined common syntactic relations between aspect
and opinion terms (noisy→amod→fan, nice→amod→food)
to bridge the gap between different domains. They applied
bootstrapping method to iteratively select candidate aspect
terms and opinion terms for the target domain. Ding, Yu,
and Jiang (2017) proposed to use auxiliary tasks as a super-
vision that are integrated into a recurrent neural network to
learn shared representations for words across domains. The
auxiliary tasks are generated from manually-designed rules
that could inform common syntactic relations between tar-
get words. The above works both depend on prior knowl-
edge to construct the bridges which are fixed and inflexible.
Recently, Wang and Pan (2018) applied recursive neural net-
works with pre-generated dependency tree for each sentence
to learn dependency-sensitive representation for each word,
where structural correspondences across domains are built
according to syntactic structures. This approach requires a
dependency parser that is not guaranteed to be accurate es-
pecially on user-generated texts, which may lead to negative
effect on the extraction performance.

To alleviate the dependency on linguistic resources to
construct prior knowledge, we propose a Transferable
Interactive Memory Network (TIMN) that could learn
shared representations across domains automatically and ef-
fectively. To be specific, the model consists of multiple lay-
ers of attention modules with both local and global mem-
ory units. The local memory includes the hidden represen-
tation of each word within an input sentence, whereas the
global memory includes an aspect summary vector and an
opinion summary vector. At each layer, the attention module
produces 2 sets of transformed representation and attention
weight for each word to update global aspect memory and
opinion memory, respectively, by exploiting the complex in-
teractions between local and global memory units. The at-
tention mechanism selects most probable aspect words to be
incorporated in the aspect summary, and opinion words to
be incorporated in opinion summary.
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Existing works have shown that two kinds of pivot1 in-
formation are crucial to transfer knowledge across different
domains: (1) common opinion terms. (2) syntactic relations
among aspect and opinion words within a sentence. Moti-
vated by (1), we incorporate a domain adversarial network
(DAN) on global opinion memory at each layer to learn sim-
ilar representations for opinion words across domains. For
(2), instead of using syntactic structures that rely on imper-
fect parsers, we automatically generate 3 types of pivot in-
teractions among target terms. The first type refers to intra-
correlations among aspect words, e.g., French fries in restau-
rant domain and sound output in laptop domain are both as-
pect compounds. The second type refers to intra-correlations
among opinion words, e.g., tasty and enjoyable in restaurant
domain and fast and efficient in laptop domain both contain
opinion conjunctions. The third type relates to inter-relations
between aspect and opinion words, e.g., nice food and noisy
fan share the same pattern where the opinion word modi-
fies the aspect word. These 3 interactions can be modeled
through global memory interactions, with an auxiliary task
to classify the interaction type in order to align two different
domains according to target-word interactions.

In summary, our model has the following contributions:
1) We propose to focus on the complex interactions among
the target words within a sentence that could be transfered
for cross-domain fine-grained opinion extraction and sum-
marize these interactions into 3 different categories. 2) We
present a novel memory network with both local and global
memory interactions that can model the desired relations
with sharing strategies automatically without the reliance on
external linguistic resources. 3) We demonstrate the effec-
tiveness of the proposed model with extensive experiments.

Related Work
Fine-grained opinion extraction has been actively investi-
gated using supervised methods, including graphical mod-
els (Jin and Ho 2009; Li et al. 2010) and deep learn-
ing models (Liu, Joty, and Meng 2015; Yin et al. 2016;
Wang et al. 2016; Xu et al. 2018; Zhang, Zhang, and
Vo 2015; Li and Lam 2017). Syntactic structure has been
proven to be useful for the extraction task (Yin et al. 2016;
Wang et al. 2016), however, they are prune to parsing er-
rors. Recent works have applied attention mechanism (Mnih
et al. 2014) and memory network (Weston, Chopra, and
Bordes 2015) to automatically model aspect-opinion cor-
relations without the reliance on linguistic parsers (Wang
et al. 2017; Li and Lam 2017), but they have not made
these interactions precise, neither did they explore the pos-
sibility for knowledge transfer. On the other hand, unsu-
pervised methods were long since been proposed includ-
ing rule-based mining (Hu and Liu 2004; Qiu et al. 2011;
Zhuang, Jing, and Zhu 2006; Popescu and Etzioni 2005),
topic modeling (Titov and McDonald 2008; Mei et al. 2007;
Lu, Zhai, and Sundaresan 2009; Zhang et al. 2010; He et
al. 2017) and word alignment (Liu et al. 2013). However,
prior knowledge is required to achieve reasonable perfor-

1Pivot information refers to common knowledge shared across
domains as a bridge to associate other uncommon information.

mances and they can not make use of labeled data in the
cross-domain setting.

Many domain adaptation methods have been proposed for
cross-domain sentence-level or document-level sentiment
classification. Some of them aimed to utilize pivot infor-
mation that are shared across domains as a bridge to align
different feature spaces (Blitzer, Dredze, and Pereira 2007;
Pan et al. 2010; Bollegala, Maehara, and ichi Kawarabayashi
2015; Yu and Jiang 2016). Another group of works directly
learned shared spaces across different domains through pro-
jection via auto-encoders (Glorot, Bordes, and Bengio 2011;
Chen et al. 2012; Zhou et al. 2016) or domain adversar-
ial network (Li et al. 2017). Few works have addressed
the problem of cross-domain fine-grained opinion extrac-
tion. Jakob and Gurevych(2010) proposed cross-domain
CRF that was built on non-lexical invariant feature engi-
neering. Li et al.(2012) and Ding, Yu, and Jiang(2017) ex-
plored pivot knowledge on opinion lexicon and syntactic re-
lations to build correspondences across domains. Wang and
Pan(2018) constructed dependency-based recursive neural
networks that incorporated syntactic correspondences into
the deep model learning process. However, all of these meth-
ods depend on external linguistic tools and thus are prune to
knowledge errors. To alleviate this problem, we propose an
end-to-end memory network without additional resources.

Problem Statement & Motivation
Formally, the task of aspect and opinion terms extraction is
modeled as a sequence labeling problem. The input is a se-
quence of tokens denoted as w = {w1, w2, ..., wn}, with the
corresponding word embeddings as x = {x1,x2, ...,xn}.
The output is a label sequence that assigns a label for each
word y={y1, y2, ..., yn}with yi∈{BA, IA,BO, IO,N}. Here
we use “BIO” encoding scheme to denote “BA” (“BO”) as
beginning of an aspect (opinion) term, “IA” (“IO”) as inside
of an aspect (opinion) term, and “N” as none of the above.
For cross-domain extraction, we are given a set of labeled
data DS = {(xS

i ,y
S
i )}

NS
i=1 from source domain and a set of

unlabeled data DT = {(xT
j )}

NT
j=1 from target domain. We

aim to transfer knowledge from DS to DT in order to pro-
duce label sequence yT for target domain.

Motivation & Overview
It has been shown that aspect words and opinion words
within a sentence are usually correlated through certain syn-
tactic relations which are crucial for the extraction by propa-
gating label information. However, explicit relations require
an external parser to obtain and are not guaranteed to be ac-
curate especially for user-generated texts. On the other hand,
memory networks have proven to be capable of modeling
implicit interactions through attention mechanism and mem-
ory updates. With this intuition, we propose to use a mem-
ory network with multi-layer attentions to iteratively and in-
teractively select most relevant aspect words and opinion
words within each sentence. The selection is achieved by
exploiting 3 types of interactions: intra-correlations within
aspect words, intra-correlations within opinion words and
inter-connections between aspect and opinion words, each
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Figure 1: The overall architecture of TIMN.

of which is measured by a 3-dimensional tensor operation.
Specifically, we design an interactive memory network that
consists of local memories with hidden representation for
each word, a global aspect memory and a global opinion
memory that integrates aspect candidates and opinion can-
didates, respectively. At each layer, the attention module
computes the interactions between each local memory and
global memories. In that case, if a word has both active intra-
correlations with aspect memory and inter-connections with
opinion memory, it will be attended as an aspect candidate.

To transfer knowledge across domains, we utilize 2 types
of pivot information to bridge the gap between the source
domain and the target domain. Firstly, the two domains
share some opinion terms, which makes it easier to align
two domains through invariant opinion representations. This
could be achieved through a DAN on top of opinion mem-
ory vector for each layer of the memory network. Secondly,
the interactions among target words, which are summarized
into 3 different categories as mentioned above, are also in-
variant across domains. To learn interaction-invariant rep-
resentations, we create an auxiliary task for both domains
to predict the relation types on global memory interac-
tions. Specifically, we regard the interactions between global
aspect (opinion) memories in consecutive layers as intra-
correlations and the interactions between aspect and opinion
memories in the same layer as inter-connections as the aux-
iliary labels for each domain. Furthermore, we use another
relational DAN (named as rDAN) to discriminate the con-
catenation of aspect memory and opinion memory at each
layer across domains to emphasize invariant aspect-opinion
relations. It can be deemed as aligning aspect representations
conditioned on their corresponding opinion memories.

The overall architecture of TIMN is shown in Figure 1.
For illustration, we present networks of both the source and
target domains. For the source domain, TIMN consists of
two global memory vectors, namely aspect memory mSa

and opinion memory mSo, and a local memory matrix HS ,
where each column hS

i is the hidden representation for wi.
We denote ml

Sa and ml
So as global memory representations

at the l-th layer. For each domain, the local memory interacts
with two global memory vectors at each layer to update the

global memories at the next layer. At the same time, domain
adaptations are incurred through the following strategies (we
use P ∈{S, T} to indicate source or target domain): 1) ml

Po
at each layer is taken as input to a DAN with domain labels.
2) Both ml

Pa and ml
Po are fed into rDAN to align aspect-

opinion relations. 3) (ml
Pa, ml+1

Pa ), (ml
Po, ml+1

Po ) and (ml
Pa,

ml
Po) are fed into the global interaction module to predict

interaction type as an auxiliary task.

Transferable Interactive Memory Network
The proposed TIMN focuses on two forms of memory inter-
actions: domain-specific local-global memory interactions
and cross-domain global memory correlations. Specifically,
local-global memory interactions are firstly exploited within
each domain to select domain-specific aspect and opinion
words and produce global memory representations for each
domain, which are then employed for knowledge transfer.

Local-Global Memory Interactions
For each domain, the task of aspect and opinion terms ex-
traction relies on the modeling of complex relations among
aspect words and opinion words. Without any explicit prior
knowledge, we summarize these relations into 3 categories
and apply tensor operations to exploit multi-level bilinear
interactions among the related entities. Figure 2 provides a
specific structure for domain-specific local-global memory
interaction module for the l-th layer. Here domain subscript
is removed for ease of illustration. We use a 3-dimensional
tensor Ta to exploit intra-correlations among aspect words,
To to exploit intra-correlations among opinion words, and
Tao to model inter-connections between aspect words and
opinion words. At l-th layer, the model reads a global as-
pect memory ml

a, a global opinion memory ml
o and a local

memory matrix H. To incorporate sequential information of
a sentence, H is obtained by applying a GRU (Gated Recur-
rent Unit) network on pre-trained word embeddings.

The attention module for each layer computes two sets
of outputs, one for aspect memory and the other for opin-
ion memory. As a first step, the local memory hi ∈ Rd for
each word interacts with the global memories to produce two
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transformed correlation vectors via the following formula:

zla,i = [ml
a

>
Tahi : ml

o

>
Taohi], (1)

zlo,i = [ml
o

>
Tohi : ml

a

>
Taohi], (2)

where [:] indicates concatenation of vectors and Ta, To,
Tao ∈ Rk×d×d. zla,i and zlo,i can be regarded as corre-
lation vectors for aspect module and opinion module, re-
spectively, that measure the extent of interactions between
hi and global memories. For example, if hi has high intra-
correlations with aspect memory ml

a and inter-connections
with opinion memory ml

o, it is more likely to be an aspect
word. The final transformation vectors at l-th layer are pro-
duced through another GRU network to incorporate contex-
tual attention influence:

z̄la,i = fGRU(z
l
a,i, z̄

l
a,i−1; θ

a
GRU), (3)

z̄lo,i = fGRU(z
l
o,i, z̄

l
o,i−1; θ

o
GRU), (4)

with θaGRU, θoGRU representing all parameters within a GRU
network. The attentions then compute normalized relevance
scores αl

a,i and αl
o,i that indicate the possibility of each word

being an aspect word or opinion word, respectively:

αl
a,i =

exp(ela,i)∑n
j=1 exp(e

l
a,j)

, ela,i = va
>z̄la,i, (5)

αl
o,i =

exp(elo,i)∑n
j=1 exp(e

l
o,j)

, elo,i = vo
>z̄lo,i, (6)

where va and vo are one-dimensional vectors to be learned
during training. These attentions scores, together with local
memories, will generate aspect- or opinion-related represen-
tations for the input sentence to update the global memories
for the next layer:

ml+1
a = tanh(Mam

l
a) +

n∑
i=1

αl
a,ihi, (7)

ml+1
o = tanh(Mom

l
o) +

n∑
i=1

αl
o,ihi. (8)

Ma and Mo are transformation matrices for global memo-
ries. The updates iteratively refine the global memory repre-
sentations to incorporate more relevant candidates according
to attention mechanism. Without knowledge transfer, this
module is similar to (Wang et al. 2017).

Global Memory Correlations
With global aspect and opinion memories generated for
each domain, shared pivot knowledge could be exploited
to bridge the gap between domains. The first type of pivot
knowledge lies in common opinion terms across domains.
From (8), the global opinion memory at each layer sum-
maries most probable opinion words in the input sentence.
Then sharing of opinion representations could be achieved
through a domain adversarial network on top of the global
opinion memories. As shown in Figure 1, we apply DAN
for ml

o at each layer by integrating a domain discrimina-
tor that generates a probability distribution P (D|ml

o) over

Attention Attention

Σ Σ

H H

ml
a ml

o

ml+1
a ml+1

o

Memory interaction

Aspect memory Opinion memory

local-global

Ta Tao To

Z̄l
a Z̄l

o

Figure 2: Local-global memory interaction at layer l.

2 domains, where D = 1 indicates the source domain. The
prediction is produced via a fully-connected layer:

m̄l
o = tanh(Wd

om
l
o + bd

o), (9)

ȳd
o = P (D|ml

o) = softmax(Vd
om̄

l
o + cdo). (10)

Since aspect terms are usually disjoint across domains, sim-
ply aligning them is difficult. We propose to use rDAN that
learns invariant aspect-opinion relations, thus aligning as-
pect memories conditioned on their corresponding opinion
representations. With similar procedures, we obtain

m̄l
a = tanh(Wd

a[m
l
a : ml

o] + bd
a), (11)

ȳd
a = P (D|ml

a,m
l
o) = softmax(Vd

am̄
l
a + cda). (12)

The second type of pivot information is domain-invariant
correlations among target words. As mentioned previously,
there exists 3 types of interactions including aspect-aspect,
opinion-opinion and aspect-opinion relations. We formulate
these relations with different forms of global memory inter-
actions. As the global aspect memory ml

a at each layer con-
tains attended aspect candidates at the current timestamp,
the aspect-aspect interactions could be modeled by apply-
ing tensor operator Ta between consecutive layers ml

a and
ml+1

a . Similar strategy applies for opinion memories. We
use aspect and opinion memories at the same layer to com-
pute inter-connections.

ra = ml
a

>
Tam

l+1
a , (13)

ro = ml
o

>
Tom

l+1
o , (14)

rao = ml
a

>
Taom

l
o. (15)

To make these relations invariant across domains, an auxil-
iary task is applied on top of rp∈Rk (p∈{a, o, ao}) to predict
the relation type, which is a 3-class classification task:

ȳu
p = softmax(Vurp + cu). (16)

Training
For token-level prediction, we take transformed hidden rep-
resentations z̄la,i and z̄lo,i from (3), (4) of each word at each
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layer as the input and apply a softmax function to classify the
“BIO” position of the word corresponding to aspect terms or
opinion terms:

ȳa,i = softmax(Va

L∑
l=1

z̄la,i + ca), (17)

ȳo,i = softmax(Vo

L∑
l=1

z̄lo,i + co), (18)

where ȳa,i, ȳo,i ∈ R3 with each entry indicating the proba-
bility of position “B”, “I” or “O” for aspect or opinion pre-
dictions, respectively. The final prediction for each word is
generated by comparing ȳa,i with ȳo,i. If both of them agree
on “O”, the final prediction then follows. If only one of them
is “O”, we abide by the other prediction. When neither of
them belong to “O”, we compare the maximum entry for
each vector and choose the largest as the final prediction.

In our unsupervised domain adaptation setting, the aspect
and opinion labels are only available for the source domain,
which we denote asDS = {(xS

n ,y
S
a,n,y

S
o,n)}

NS
n=1. For DAN

and rDAN, we generate domain-labeled data by combining
source and target domain as Do

d = {(ml
o,n,y

d
n)}

L,NS+NT

l=1,n=1

and Da
d = {(ml

a,n,m
l
o,n,y

d
n)}

L,NS+NT

l=1,n=1 . Furthermore,
the auxiliary task for interaction prediction involves both
source and target domains with corresponding relation la-
bels as Du = {(ml

p,n,m
l+1
p,n ,y

u
p,n)}

L−1,NS+NT

l=1,n=1,p∈{a,o,ao} Dur-
ing training, the following loss functions are adopted:

LS =
∑
DS

∑
p∈{a,o}

`(yS
p,n, ȳ

S
p,n), (19)

Ld =
∑
Da

d

L∑
l=1

`(yd
n, ȳ

d
a,l,n) +

∑
Do

d

L∑
l=1

`(yd
n, ȳ

d
o,l,n),(20)

Lu =
∑
Du

L∑
l=1

∑
p∈{a,o,ao}

`(yu
p,n, ȳ

u
p,l,n), (21)

where ` is the cross-entropy loss. The final objective is

L = LS + λLu − βLd, (22)

where λ and β are trade-off parameters to control the im-
pact of auxiliary task and adversarial networks. Let θf , θS ,
θd, θu denotes the parameter set for feature learning, word
prediction, domain prediction and auxiliary relation predic-
tion, respectively. We adopt the Gradient Reversal Layer
(GRL) (Ganin and Lempitsky 2015) for training DAN and
rDAN. The updates can be carried in the following rules:

θf ← θf − µ
(
∂LS

∂θf
+ λ

∂Lu

∂θf
− β ∂Ld

∂θf

)
, (23)

θS ← θS − µ
(
∂LS

∂θS

)
, (24)

θu ← θu − µ
(
λ
∂Lu

∂θu

)
, (25)

θd ← θd − µ
(
β
∂Ld

∂θd

)
. (26)

Dataset Description Sentences Training Testing
RES Restaurant 5,841 4,381 1,460
LAP Laptop 3,845 2,884 961
DEV Digital Device 3,836 2,877 959

Table 1: Data statistics from each domain.

Here µ represents the learning rate and all parameters are
shared across domains.

Experiments
Experimental Setup
Datasets Our experiments are conducted on three bench-
mark datasets with customer reviews including restaurant
reviews, laptop reviews and reviews from digital device.
Follow the setup from (Wang and Pan 2018), we com-
bine restaurant reviews from SemEval 2014 task 4 subtask
1 (Pontiki et al. 2014) and SemEval 2015 task 12 subtask
1 (Pontiki et al. 2015) to form our restaurant domain. The
laptop reviews consist of challenge dataset from the laptop
domain in SemEval 2014 task 4 subtask 1. The device do-
main is a combination of the reviews from 5 different digital
products provided by (Hu and Liu 2004). Detailed statistics
are shown in Table 1. We use three different splits follow-
ing (Wang and Pan 2018), where each split consists of 3/4
of the original data for training, and the rest constitutes the
test set. The number of sentences for training and testing for
each split is shown in Table 1. For precise comparison, we
take the average results of 3 splits as the final performance.

Settings The input word embeddings are pre-trained us-
ing word2vec (Mikolov et al. 2013), with the training corpus
being a combination of Yelp Challenge dataset2 and elec-
tronics dataset from Amazon reviews3. The dimension of
word vectors is set to be 100. As mentioned earlier, the in-
put local memory for each word is obtained through a GRU
network on its word embedding. We set the dimension of
GRU-transformed vector to be 50. For 3-dimensional ten-
sor parameters, we set the number of bilinear interactions
as k = 20. For our experiments, the transferable interac-
tive memory network consists of 3 layers. The trade-off pa-
rameters for adversarial loss and auxiliary loss are β = 0.5
and λ = 1.0. For training, we apply stochastic gradient de-
scent to update all the parameters with 0.1 as the learning
rate. To avoid over-fitting, partial dropout strategy is adopted
with dropout rate set as 0.5 for non-recurrent GRU param-
eters as well as 3-dimensional tensors. All the experiments
are conducted with 20 epochs and the best performance for
each split is being recorded. Under the setting of unsuper-
vised domain adaptation, no labels are available for the tar-
get domain. Hence, we only use the labeled training data
from source domain and unlabeled training data from target
domain to train all the models. And we investigate two dif-
ferent settings: transductive setting that tests the model on
training data from the target domain and inductive setting

2http://www.yelp.com/dataset challenge
3http://jmcauley.ucsd.edu/data/amazon/links.html

7196



Models RES→LAP RES→DEV LAP→RES LAP→DEV DEV→RES DEV→LAP
AS OP AS OP AS OP AS OP AS OP AS OP

TCRF 19.72 59.20 21.07 52.05 28.19 65.52 29.96 56.17 6.59 39.38 24.22 46.67
RAP 25.92 62.72 22.63 54.44 46.90 67.98 34.54 54.25 45.44 60.67 28.22 59.79

ARNN 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 -
RNSCN (r) 39.27 59.41 33.42 57.24 45.79 69.96 38.21 59.12 45.36 72.84 50.45 68.05

RNSCN 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18
IMN 38.88 66.89 31.31 59.12 40.27 69.62 36.92 61.78 45.62 74.05 50.60 65.94

TIMN 43.68 68.44 35.45 59.05 54.12 73.69 38.63 62.22 53.82 76.52 52.46 69.32

Table 2: Comparisons in F1 scores with different baselines.

that tests the model on the test data in the target domain. The
evaluations are conducted using F1 scores that only assign
a true positive prediction to an exact match for any multi-
word aspect or opinion term. We use Intel(R) Xeon(R) CPU
E5-1650 v2 @ 3.50GHz for the experiments. Specifically,
training 1 epoch with around 6000 sentences takes around
30 mins. The training usually converges at about 5 epochs.

Baselines To demonstrate the effectiveness of TIMN, we
compare its performance with several baseline models for
unsupervised domain adaptation, listed in the following:

• TCRF: Transferable CRF model proposed by Jakob and
Gurevych (2010). It implements a linear-chain CRF for
sequence prediction that focuses on non-lexical features,
e.g., POS tags and dependency relations, that are shared
across different domains.

• RAP: A cross-domain boosting method called Relational
Adaptive bootstraPping (Li et al. 2012) that iteratively ex-
pand target lexicon according to pivot opinion words and
syntactic relations.

• ARNN: A recurrent neural network with auxiliary tasks
which are formed from manually-designed rules that in-
form the relations among aspect and opinion words (Ding,
Yu, and Jiang 2017).

• RNSCN: The recently proposed recursive neural network
by Wang and Pan (2018). It incorporates syntactic struc-
ture into the deep model and an auto-encoder to denoise
relation labels generated from the parser.

• RNSCN (r): Using the same model as RNSCN, but
changing the dataset by randomly replacing dependency
relations in the source domain that connect to an aspect or
opinion word with 50% probability.

• IMN: Single-domain Interactive Memory Network. We
directly use the model trained on labeled source domain
to make predictions in the target domain.

• TIMN: The proposed Transferable Interactive Memory
Network which learns a shared space through memory
representations and memory interactions.

Experimental Results
The comparison results with various baselines are shown in
Table 2 for inductive setting with average F1 scores over
3 splits. Clearly, traditional feature-engineering-based and
boosting-based models TCRF and RAP are not good enough

to extract necessary information to be adapted in the target
domain, compared to deep learning models. ARNN relies
on the construction of auxiliary tasks, and hence is not flexi-
ble to adapt to specific dataset, especially for user-generated
texts. Although the most recent method RNSCN proposed
by (Wang and Pan 2018) addresses the limitation of manual-
designed rules by incorporating syntactic information into a
dependency-tree-based recursive neural network, the perfor-
mance still relies on the accuracy of the dependency parser.
This can be revealed when observing the performance of
RNSCN (r). By randomly replacing some of the dependency
relations obtained from the parser, it simulates the situation
when the parser does not perform well, which is common
for informal texts. In this case, the performance for RN-
SCN (r) is inferior than RNSCN using the same model, with
large degradation for opinion predictions and aspect pre-
diction for LAP→RES (7.12% drop). Without any transfer
strategy, IMN is already able to achieve comparable perfor-
mances for most of the experiments by simply sharing all
the parameters learned from the source domain with the tar-
get domain. This indicates that the attention mechanism is
transferable to some extent in the way it models interactions
among aspect and opinion words through local-global mem-
ory interactions. To further exploit these shared information,
we propose TIMN that explicitly project the interactions
from both domains into a shared space. Without any ex-
ternal resources, TIMN achieves the state-of-the-art perfor-
mances on most experiments. Specifically, it shows 3.25%
and 2.59% improvements on aspect and opinion term pre-
dictions for RES→LAP, 5.46% and 2.77% improvements on
aspect and opinion term predictions for DEV→RES.

To demonstrate the effect of each component in TIMN,
we conduct ablation test for each transfer experiment. The
results are shown in Table 3. The first row represents the
model IMN where no transfer strategies are used except
sharing parameters. The next three rows present the per-
formances for each transfer component. At most situations,
DAN is able to achieve better results for opinion term predic-
tions, compared to the other two constituents, which proves
that domain adversarial network is capable of aligning the
opinion words from two domains for more accurate extrac-
tion. On the other hand, rDAN is more advantageous for
identifying aspect terms by conditioning the information on
corresponding opinions. The auxiliary task shows interme-
diate performance compared to DAN and rDAN. In general,
the models combining any two transfer components outper-
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Models RES→LAP RES→DEV LAP→RES LAP→DEV DEV→RES DEV→LAP
AS OP AS OP AS OP AS OP AS OP AS OP

None 38.88 66.89 31.31 59.12 40.27 69.62 36.92 61.78 45.62 74.05 50.60 65.94
DAN 39.70 67.41 32.33 59.13 51.98 72.73 38.27 60.55 51.18 75.72 49.74 69.58
rDAN 42.43 67.72 32.90 58.12 52.33 71.19 38.08 61.30 53.49 76.15 49.79 69.97

aux 41.60 65.25 32.54 59.08 51.20 73.29 37.26 58.60 53.04 75.51 50.47 68.04
DAN+rDAN 42.82 67.91 33.34 57.66 52.46 72.75 37.91 59.79 51.29 74.72 50.58 69.76

DAN+aux 43.11 68.51 33.33 58.71 51.57 72.85 37.95 59.84 51.79 75.56 51.37 70.40
rDAN+aux 42.25 68.05 34.64 58.46 52.96 72.62 37.71 58.72 52.01 75.69 49.81 67.10

TIMN 43.68 68.44 35.45 59.05 54.12 73.69 38.63 62.22 53.82 76.52 52.46 69.32

Table 3: Performances for different combinations of each transfer component in terms of F1 scores.

RES→LAP RES→DEV LAP→RES LAP→DEV DEV→RES DEV→LAP
AS OP AS OP AS OP AS OP AS OP AS OP

OUT

1 layer 36.69 65.64 32.98 59.55 46.28 71.95 37.88 61.87 49.21 76.03 51.14 68.75
2 layers 42.65 67.73 31.28 57.20 50.26 72.11 38.75 61.49 51.86 76.09 51.81 68.02
3 layers 43.68 68.44 35.45 59.05 54.12 73.69 38.63 62.22 53.82 76.52 52.46 69.32
4 layers 43.38 68.10 35.04 58.44 52.28 73.45 38.27 59.64 53.63 75.97 52.34 69.05

IN

1 layer 34.37 64.89 31.29 58.89 47.32 72.14 39.22 61.27 47.80 76.89 50.33 68.40
2 layers 39.27 67.42 32.07 57.23 51.69 71.60 40.30 62.13 51.58 76.69 50.34 69.81
3 layers 40.28 67.64 34.45 59.36 52.24 72.85 38.85 60.78 53.94 76.25 52.21 70.13
4 layers 39.49 67.05 34.39 59.01 51.77 72.73 38.62 61.70 53.11 76.43 51.87 70.05

Table 4: Comparisons with different number of layers and settings in terms of F1 scores.

form those independent ones, which shows each constituent
actively affect the learning process of the other. For example,
if DAN helps to align opinion words across domains, rDAN
could in turn make more accurate extraction for aspect terms
according to the interactions between aspect memory and
opinion memory. Without doubt, the joint model that com-
bines all 3 components attains the best performance.

The proposed TIMN model consists of multiple layers to
iteratively refine the global memory representations and the
transformed hidden vectors for each word. The multi-layer
architecture is also crucial for modeling intra-correlations
among aspect or opinion words across domains. To prove
that, we conduct experiments with different number of lay-
ers as shown in Table 4. In most cases, increasing the number
of layers from 1 to 3 demonstrates gradual improvements for
extraction with the best performance attained using 3 layers.
We conjecture that the reason for degradation with 4 lay-
ers might be caused by over-extraction when the previous
3 layers are already sufficient to exploit all necessary target
information. Note that the model with only 1 layer does not
involve global memory interactions for auxiliary task, be-
cause there does not exist two consecutive layers to com-
pute the interaction. Hence, it perform much worse com-
pared to other results in terms of aspect extraction. Table 4
also presents results for both inductive (OUT) and transduc-
tive (IN) settings. We shall observe little difference in the
performances between these two settings, which shows the
model’s robustness to guarantee comparable results when
the data for evaluation is not presented during training.

The robustness of the proposed model is illustrated in
Figure 3. Specifically, we conduct experiments varying the
number of bi-linear interactions (k) in tensor operation for
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Figure 3: Sensitivity studies for hyper-parameters.

RES→LAP as well as changing the trade-off parameter for
auxiliary loss (λ) for DEV→RES. The plots demonstrate
stableness of TIMN over different hyper-parameters.

Conclusion
This paper presents a novel memory network that empha-
sizes the complex correlations among aspect words and
opinion words which are summarized into 3 categories. The
model not only exploits local-global memory interactions
for attending target terms at each domain, but also asso-
ciates global memories and their interactions for aligning
source and target spaces. The proposed model could achieve
promising results without the dependency over any external
resources compared with existing methods.
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