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Abstract

Transfer learning for deep neural networks has achieved great
success in many text classification applications. A simple
yet effective transfer learning method is to fine-tune the pre-
trained model parameters. Previous fine-tuning works mainly
focus on the pre-training stage and investigate how to pre-
train a set of parameters that can help the target task most.
In this paper, we propose an Instance Weighting based Fine-
tuning (IW-Fit) method, which revises the fine-tuning stage to
improve the final performance on the target domain. IW-Fit
adjusts instance weights at each fine-tuning epoch dynami-
cally to accomplish two goals: 1) identify and learn the spe-
cific knowledge of the target domain effectively; 2) well pre-
serve the shared knowledge between the source and the tar-
get domains. The designed instance weighting metrics used
in IW-Fit are model-agnostic, which are easy to implement
for general DNN-based classifiers. Experimental results show
that IW-Fit can consistently improve the classification accu-
racy on the target domain.

Introduction
Text classification is one of the fundamental tasks in Nat-
ural Language Processing (NLP) with many important ap-
plications such as sentiment analysis (Landeiro and Cu-
lotta, 2016; Xu et al., 2017; Zhang, Huang, and Zhao,
2018), information extraction (Angeli, Premkumar, and
Manning, 2015), and topic labeling (Wang and Manning,
2012). Deep Neural Network (DNN) based classifiers have
achieved state-of-the-art performance on many text classifi-
cation tasks (Cao et al., 2017; Yang, Salakhutdinov, and Co-
hen, 2017; Zhang, Barzilay, and Jaakkola, 2017). However,
two limitations generally exist when these methods are used
in practice: a) Classifiers are often trained from scratch; b)
A large annotated dataset is often required (Lu et al., 2014;
Howard and Ruder, 2018). To overcome these limitations,
transfer learning is usually applied by transferring knowl-
edge learned on a large source domain to help the classifica-
tion task on the target domain.

In general, there are mainly two categories of approaches
for transfer learning on DNN-based text classifiers. The first
∗Work done when Zhi Wang was interning at Tencent AI Lab.
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category is to transfer the source domain corpora (i.e., out-
domain data), which detects instances that are close to the
target domain (i.e., pseudo in-domain data), then trains a
model using the augmented set including the in-domain and
the pseudo in-domain data (Wang et al., 2017a,b). Such ap-
proaches involve the search of the pseudo in-domain data
from a potentially very large source domain and repeat-
edly re-train the model using the augmented data, thus the
computational efficiency may be problematic. Moreover, the
scoring function to select the pseudo in-domain data often
needs to be designed for each task specifically. Thus, a more
popular class of approaches is to transfer the model param-
eters, which pre-trains a model using the source corpus and
then fine-tune the parameters on the target domain (Kim et
al., 2015; McCann et al., 2017). It enables a fast and efficient
adaptation to the target domain without repeatedly accessing
or processing the large source dataset. Considering these su-
periorities, we study the fine-tuning method in this paper.

Most previous literature on fine-tuning a pre-trained
model focuses on how to pre-train a set of parameters that
can help the target task most. For example, Pennington,
Socher, and Manning (2014) pre-trained the popular GloVe
by leveraging the statistical information on the nonzero el-
ements in a word-word co-occurrence matrix. Howard and
Ruder (2018) pre-trained a language model using the long
short-term memory network and used it to initialize the first
layer of the target classifier. Based on a set of pre-trained
parameters, existing methods directly apply standard opti-
mization algorithms such as SGD or Adam (Sutskever et al.,
2013; Kingma and Ba, 2014) for fine-tuning on the target
domain. 1 However, these optimization algorithms are orig-
inally designed for randomly initialized DNN models.

In this work, we propose an Instance Weighting based
Fine-tuning (IW-Fit) method, which revises the fine-tuning
stage to improve the classification accuracy on the target
domain when a pre-trained model from the source domain
is given. The idea of our method is illustrated in Figure 1.
At each fine-tuning epoch, we will assign dynamic weights
to target instances to accomplish two goals: 1) identify and
learn the specific knowledge of the target domain effec-

1Some work fixed part of/all the pre-trained parameters and
only updated other model parameters to prevent overfitting (John-
son and Zhang, 2017; Felbo et al., 2017), which can be seen as a
special case of the fine-tuning methods.
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Figure 1: Illustration of the proposed Instance Weighting
based Fine-tuning (IW-Fit). The weights are dynamically
adjusted based on the current classifier.

tively; 2) well preserve the shared knowledge between the
source and the target domains. Intuitively, IW-Fit puts more
training effort on instances that either contain more target
knowledge or help to preserve the shared knowledge, ac-
cording to their relationship with the current classifier. To
accomplish this idea, we propose to calculate the instance
weights using two metrics: the prediction loss and the vari-
ance of historical prediction losses. A good property of the
two designed metrics is that they do not depend on the spe-
cific design of the DNN-based classifier, thus can be easily
applied to any network structure.

We extensively evaluate IW-Fit on two text classification
tasks under various settings: Amazon to Yelp and Yelp-2015
to Yelp-2016/Yelp-2017. Our experimental results show that
IW-Fit can consistently improve the classification accuracy
on the target domain.

In summary, our contributions are threefold:
1. We propose Instance Weighting based Fine-tuning (IW-

Fit), a method applied on the fine-tuning stage given a set
of pre-trained parameters.

2. We design two model-agnostic metrics to calculate the
weights used in IW-Fit and their mixing variants.

3. We perform extensive experiments to verify that IW-Fit
can consistently improve the classification accuracy on
the target domain over several baselines.

Related Work
With respect to the contribution of this paper, we discuss
two threads of related work in this section: DNN-based fine-
tuning methods and methods that involve the idea of instance
weighting in NLP tasks.

DNN-based fine-tuning methods transfer the model pa-
rameters from a pre-trained model to the target domain
for fine-tuning. In many state-of-the-art models for vari-
ous NLP tasks, the popular pre-trained word embeddings
from the Skip-grams model (Mikolov et al., 2013) or the
GloVe (Pennington, Socher, and Manning, 2014) were usu-
ally utilized as an initialization. Johnson and Zhang (2017)
improved the pre-trained region embedding by extending
ShallowCNN with unsupervised training on the extra un-
labeled data. Felbo et al. (2017) sequentially unfroze and

fine-tuned a single layer at a time to enhance a regular-
izing effect at the expense of extra computation. Howard
and Ruder (2018) performed a two-step approach by fine-
tuning the pre-trained language model first and then the en-
tire classifier on the target domain. Similarly, Chung, Lee,
and Glass (2018) pre-trained a complex question-answering
(QA) model on a large source domain and transferred all
model parameters to the target domain for fine-tuning.

As stated in the introduction, the above methods focus on
the pre-training stage. In our work, we try to improve the
fine-tuning stage with the idea of instance weighting, which
can be combined with all these methods complimentarily.

Another thread of work is about using the idea of instance
weighting in various NLP tasks. Previous approaches as-
signed each instance/domain a weight relying on designed
rules or statistical methods. Jiang and Zhai (2007) iteratively
pruned instances across domains for better domain adapta-
tion under a semi-supervised learning setting. Neural ma-
chine translation domain adaptation methods utilized a pre-
trained language model (Wang et al., 2017b), or the sentence
embedding from a machine translation model (Wang et al.,
2017a), to score the out-domain data used for jointly train-
ing with the in-domain data. Data selection methods (Ruder
and Plank, 2017; Ruder, Ghaffari, and Breslin, 2017) opti-
mized an instance weighting function of many specific do-
main similarity features to select relevant training instances
that are useful for transfer learning. The idea could be traced
back to curriculum learning (Bengio et al., 2009; Jiang et
al., 2015), which required a manually pre-defined ranking to
weigh training instances for speeding up learning.

In this paper, we investigate the idea of instance weight-
ing used in the DNN-based fine-tuning methods. Different
from the previous instance weighting methods, we assign
different weights to the target data only, and the fine-tuning
method is trained on the target data without repeatedly ac-
cessing or processing any source data.

Instance Weighting based Fine-tuning
In this section, we first formulate the problem of the
DNN-based fine-tuning method. Then, the framework of
the proposed Instance Weighting based Fine-tuning (IW-
Fit) method is presented, following by the designed weight-
ing metrics used in IW-Fit explained in detail. Finally, we
present two mixing variants of the two weighting metrics.

Problem Formulation
We are given a static source task Ts and a target task Tt with
Ts 6= Tt. Our goal is to improve the classification accuracy
in Tt. Specifically, we have a source dataset Ds, and a tar-
get dataset Dt = {(x, y)}. Here, x denotes the input of an
instance and y ∈ {0, 1}m is the corresponding one-hot label
vector over the m classes. Let gθ(·) denote the discrimina-
tive function of a DNN parameterized by θ. In text classi-
fication, the loss function, f , is generally set as the cross-
entropy loss over m classes:

f(y, gθ(x)) = −yT log p(y|x), (1)

where p(y|x) is the prediction probability vector output by
the softmax layer of the DNN. Given an observed datasetD,
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Algorithm 1: Instance Weighting based Fine-tuning
(IW-Fit) for text classification

Input: Datasets Ds, Dt; Learning rate α;
Mini-batch size k.

Output: Optimal parameters θ∗ for Dt.
1 Pre-train the classifier on Ds to obtain θs.
2 Initialize the classifier gθ(x) on Dt: θ ← θs.
3 while Not converged do
4 while Epoch not ended do
5 Fetch a mini-batch {(xi, yi)}k1 from Dt

uniformly at random.
6 Calculate and normalize the instance weight wi

by metrics introduced in (4) and (5), or their
mixing variants in Section 3.4.

7 Update the network in (2).
8 end
9 end

we usually train the DNN with the following objective:

θ∗ = argmin
θ

1

|D|
∑

(x,y)∈D

f(y, gθ(x)). (2)

In our problem setting, we aim at obtaining the optimal pa-
rameters θ∗ that can achieve a high classification accuracy
on the target domain Dt.

In fine-tuning methods, we first train a model on the
source domain Ds. Next, we can apply existing meth-
ods (Howard and Ruder, 2018; Chung, Lee, and Glass,
2018; Felbo et al., 2017) to select a set of/all pre-trained
model parameters as the initialization for the target model.
Then, the target model starts to update itself using the tar-
get dataset Dt until it is converged. By using standard opti-
mization algorithms such as SGD (Sutskever et al., 2013) or
Adam (Kingma and Ba, 2014), we update the model param-
eters by treating all target instances with equal importance.

Framework and Two Weighting Metrics
Our proposed IW-Fit method is presented in Algorithm 1.
On the fine-tuning stage, we assign a weight wi to each in-
stance in one mini-batch according to metrics introduced
later, and update the network by a weighted sum of their
individual gradients as:

θ ← θ − α
k∑
i=1

wi · ∇θf(yi, gθ(xi)), (3)

where α is the learning rate, and k is the mini-batch size.
Next, we will introduce our two metrics to calculate the

weight w and their mixing variants in detail. Recall that
the designed weighting metrics in IW-Fit should accomplish
two goals: 1) identify and learn the specific knowledge of the
target domain effectively; 2) well preserve the shared knowl-
edge between the source and the target domains.

At the early fine-tuning epochs, parameters are close to
those obtained from the pre-trained classifier that has not
adapted to the target domain yet. An instance with a large

prediction loss means that it is not fitted well by the pre-
trained classifier, and it is likely to contain more target
knowledge. Thus, if we assign large weights to these in-
stances, the model will put more emphasis on learning the
specific knowledge on the target domain. This motivates us
to use the prediction loss as our first metric.

After a number of fine-tuning epochs, the classifier is
likely to capture more target-specific knowledge, and some
target-specific instances tend to have small prediction losses.
To enable the algorithm to consistently distinguish these in-
stances, we propose another metric - the variance of his-
torical prediction losses. For instances with target-specific
knowledge, it generally starts with a large prediction loss.
If it is now with a small gradient, we can still identify it
through calculating the variance of its historical prediction
losses along the fine-tuning epochs.

On the other hand, for instances similar to the source
domain, it usually starts with a small prediction loss at the
early epochs. If such instances receive large losses at the
later fine-tuning epochs, it is probable that our fine-tuned
classifier is over-fitted by instances with the target-specific
knowledge. In this case, these instances produce a large
prediction loss as well as a large variance of prediction
losses. Assigning them large weights can balance our model
to accomplish the second goal. Next, we introduce how to
calculate the two metrics in detail.

Prediction loss
The prediction loss in (1) can be used as the first metric to
assign the instance weight:

w =
1

τ
(−yT log p(y|x) + ε), (4)

where ε is a smoothness constant for preventing the weight
of an instance with a small loss being zero, and τ is a
normalization constant making the average of weights from
a mini-batch equal to 1. When ε gets larger, all w’s will be
close to 1, and this metric reduces to uniform weighting.

Variance of historical prediction losses
At epoch t of our algorithm, assume that ht−1 =
[f1, . . . , f t−1] is the vector containing the historical terms of
the prediction loss f =−yT log p(y|x) . Our second metric
can be computed based on the variance of prediction losses:

w =
1

τ
(std(ht−1) + ε), (5)

where std(ht−1) is the estimated standard derivation plus its
confidence interval in ht−1:

std(ht−1) =

√
ς(ht−1) +

ς2(ht−1)

|ht−1| − 1
,

where ς2(ht−1) is the estimated variance of prediction
losses, and |ht−1| is the number of stored prediction losses.

Mixing Variants of Weighting Metrics
As stated in the above framework, the prediction loss is
more effective at the early fine-tuning epochs. On the
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contrary, the variance of historical prediction losses should
be used at some latter epochs. Thus, we further present two
mixing variants to combine these two weighting metrics.

Hard-mixing
We adopt the prediction loss at the first η burn-in epochs and
then switch to use the variance of prediction losses as:

w =
1

τ
[It≤η · (−yT log p(y|x)) + It>η · std(ht−1) + ε], (6)

where the indicator function IA equals 1 when A is true and
0 otherwise.

Soft-mixing
In the hard-mixing variant, the hyperparameter η needs to be
carefully adjusted, and the two metrics are mutually exclu-
sive at each fine-tuning epoch. To explore a potentially more
flexible combination of the two metrics, we propose to use a
soft-mixing variant as:

w =
1

τ
[β · (−yT log p(y|x)) + (1− β) · std(ht−1) + ε], (7)

where β is a balancing ratio that decreases linearly from 1
to 0 at fine-tuning epochs. Experimental results show that
IW-Fit with the soft-mixing weighting metric generally per-
forms the best among all compared fine-tuned methods.

Convergence analysis
Following Reddi et al. (2016), we give a convergence anal-
ysis in Theorem 1 to show that IW-Fit stabilizes and con-
verges to a stationary point, and the convergence rate is
O(1/

√
T ). The proof can be found in Appendix A.

Theorem 1 Suppose the loss function of IW-Fit in (1) f ∈
Fn, where Fn is the class of finite-sum Lipschitz smooth
functions, has σ-bounded gradients, and the instance weight
w is clipped to be bounded by [w,w]. Let αt = α = c/

√
T

where c=
√

2(f(θ0)−f(θ∗))
Lσ2ww , and θ∗ is an optimal solution.

Then, the iterates of IW-Fit satisfy:

min
0≤t≤T−1

E[||∇f(θt)||2] ≤

√
2(f(θ0)− f(θ∗))Lw

Tw
σ.

Experiments
In this section, we first introduce the two transfer learning
tasks conducted in our experiments, following by compared
baselines and training configurations. Next, the empirical re-
sults of IW-Fit with different configurations are reported. We
want to empirically answer the following questions:
1. Can IW-Fit improve the classification accuracy on the tar-

get domain?
2. Why can IW-Fit boost the fine-tuning performance on the

target domain?
3. How robust is IW-Fit?
We present our first set of experimental results to answer the
first question. Testing accuracies of all methods show the ad-
vantage of IW-Fit over the baselines. Further, we divide the

target instances into two types according to their differences
from the source domain and observe that instances differ-
ing more from the source domain can benefit more. Finally,
we demonstrate the robustness of IW-Fit regarding various
aspects in our last experiment section.

Tasks
Our classification task is to use the review content to predict
the number of stars ranging from 1 to 5 that the user has
given (Johnson and Zhang, 2017; Tang, Qin, and Liu, 2015;
Yang et al., 2016). To simulate the transfer learning setting
and verify the effectiveness of IW-Fit, we conduct two tasks:

• Amazon to Yelp: We conduct this task for cross-domain
transfer. The source dataset from 2015 Amazon re-
views (Zhang, Zhao, and LeCun, 2015; Conneau et al.,
2016) is mainly about products of online shopping. The
target dataset of Yelp reviews is obtained from the latest
2018 Yelp Dataset Challenge, which is mainly about the
daily life such as restaurants or home services.

• Yelp-2015 to Yelp-2016 and Yelp-2015 to Yelp-2017: The
topics on the web change frequently and the reviews can
be easily outdated. From the results shown in later sec-
tions, transfer learning is beneficial for this cross-time
transfer task. From Yelp, we select out reviews in the year
2015/2016/2017 as the subsets Yelp-2015/2016/2017. We
use Yelp-2015 as the source dataset, and Yelp-2016/2017
as the target datasets, respectively. No overlapped data ex-
ist among Yelp-2015, 2016 and 2017.

Dataset construction: In each set of experiments, we ran-
domly select 100, 000 instances from the source domain to
construct the source dataset. Correspondingly, 10, 000 train-
ing instances and 1, 000 testing instances are randomly sam-
pled from each target domain to construct the target dataset.
The number of instances in each category is the same for
all datasets on both the source and the target domains. We
also try various data sizes for both domains in our last ex-
periment section. To demonstrate the performance stability
of the compared methods, we randomly sample three sets
of source/target datasets for each task and run three sets of
experiments for each of our experimental settings.

Baselines
Since we aim at improving the transfer learning performance
on the fine-tuning stage, our focus is to compare with the
fine-tuning baseline in this paper. Additionally, several other
baselines are compared in our experiment:

• SrcOnly: It trains the model only on the source data, i.e.,
D = Ds. The obtained model is usually not generalized
well on the target domain due to different data distribu-
tions between Ds and Dt.

• TgtOnly: The model is trained on the target data with
D = Dt. However, we often have limited training data
on the target domain.

• All: Both datasets are adopted to train the model, i.e.,
D = {Ds,Dt}. This method also suffers from the data
distribution gap between {Ds,Dt} and Dt.
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Method Amazon to Yelp

Baselines
TgtOnly 50.22± 0.11
SrcOnly 46.30± 0.06

All 50.94± 0.08

Fine-tuned

Uniform 52.46± 0.06
Gradient 52.80± 0.09
Variance 53.20± 0.07

Hard-mixing 53.44± 0.08
Soft-mixing 53.54± 0.07

Table 1: Testing accuracies from Amazon to Yelp.

Training Configurations
Since we are interested in validating the usefulness of IW-
Fit on the fine-tuning stage, we use the same DNN struc-
tures, hyperparameters, and datasets for pre-training and
fine-tuning for all compared methods for a fair comparison.

We adopt the recurrent neural network with long short-
term memory (LSTM) as the text encoder due to its superior
performance in various text classification problems (Liu et
al., 2016; Liu, Qiu, and Huang, 2017; Lin et al., 2017; Yang,
Salakhutdinov, and Cohen, 2017). The encoder is followed
by a fully-connected (FC) layer with ReLU activation and a
Softmax layer that outputs the final prediction probabilities.
The hyperparameters are set as: vocabulary size = 30, 000,
embedding size = 100, LSTM hidden size = 200, FC layer
size = 200, dropout rate = 0.2, L2 regularization = 1e−4,
batch size = 32, fine-tuning epochs = 50, burn-in epochs =
10, learning rate = 1e−3. We also change to use a CNN-
based text encoder and vary different parameter settings in
section Robustness Study.

Due to the randomness of DNNs, we repeat five runs over
each training dataset and report the mean and the standard
error regarding the testing accuracy on the target domain.

Results of All Compared Methods
Due to the limit of space, we show one set of results for
each task. The other two sets of results for all the tasks are
provided in the Appendices.

Table 1 reports the classification accuracy results on the
task from Amazon to Yelp. 2 Table 2 reports the results on
the task from Yelp-2015 to Yelp-2016/Yelp-2017. It can be
observed that all fine-tuned methods perform better than the
baselines. IW-Fit achieves superior performance compared
to the fine-tuned method with uniform weighting. Specif-
ically, IW-Fit with the soft-mixing weighting metric per-
forms the best with an increased accuracy of 1.08% on the
task Amazon to Yelp, 1.12% on task Yelp-2015 to Yelp-2016,
and 0.82% on the task Yelp-2015 to Yelp-2017. We attribute
this advantage to the flexible combination of the two metrics,
which enables the algorithm to emphasize domain-specific
instances while balancing the model to preserve the shared
knowledge. In the other two sets of experiments in Appendix
B, the accuracies increase by 0.80% and 0.65% on the task

2For all reported results, bold numbers are significantly better
than the second best results with p-values smaller than 0.01.

Method Yelp-2016 Yelp-2017

Baselines
TgtOnly 50.23± 0.11 51.14± 0.10
SrcOnly 56.43± 0.10 54.06± 0.11

All 56.97± 0.11 54.73± 0.10

Fine-tuned

Uniform 57.18± 0.09 55.08± 0.08
Gradient 57.82± 0.10 55.08± 0.08
Variance 57.60± 0.08 55.66± 0.10

Hard-mixing 58.13± 0.09 55.78± 0.10
Soft-mixing 58.30± 0.09 55.90± 0.10

Table 2: Testing accuracies from Yelp-2015 to Yelp-2016 /
Yelp-2017.
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Figure 2: Testing accuracies of the fine-tuned methods with
uniform and soft-mixing weighting: (a) at the fine-tuning
epochs; (b) on two types of target instances.

Amazon to Yelp. In appendix C, the accuracies increase by
0.76% and 0.64% on the task Yelp-2015 to Yelp-2016, and
0.70% and 1.22% on the task Yelp-2015 to Yelp-2017. As
can be seen, IW-Fit can consistently improve the classifica-
tion accuracy on the target domain.

In Figure 2-(a), we further plot the testing accuracies
of IW-Fit with soft-mixing weighting metric and the fine-
tuned method with uniform weighting along the fine-tuning
epochs on the task Amazon to Yelp. We can observe that with
the use of IW-Fit, the testing accuracy on the target domain
consistently increases during the entire fine-tuning process.

Results and Analysis of IW-Fit
To understand why IW-Fit can help fine-tuning, we first an-
alyze what types of target instances can benefit from our
method. We extract the top 1000 frequent tokens in Amazon
and Yelp domains, respectively. The two sets of tokens have
an overlap of 575 tokens. Then, we divide the 1000 testing
instances in Yelp domain into two types: 1) tgt-only instances
that do not contain any frequent Amazon tokens; 2) overlap
instances that contain tokens which appear in both domains.
Tgt-only instances should be considered more different from
the source domain than overlap instances.

Figure 2-(b) shows the testing accuracies on the two types
of target instances. The test accuracy on the 478 overlap in-
stances increases slightly by 0.10%, which shows that IW-
Fit well preserves the shared knowledge between the source
and the target domains. The performance on the other 522
tgt-only instances is improved obviously with an increased
accuracy of 1.98%. It can be observed that a better boost can
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Metric Weight Example

Prediction loss (Epoch 1)
0.53 (low) (Star 5) My mirrors turned out perfect, I

highly recommend ABC Glasses!
(Star 1) Worst customer service ever.

1.44 (high) (Star 5) So many options for you to
include that are vegetarian friendly.

(Star 1) Shrimp tempura was greasy.

Variance of prediction losses (Epoch 20)
0.62 (low) (Star 5) Great experience. Nice staff.

(Star 1) Terrible service, I will never go
back and do not recommend at all.

1.37 (high) (Star 5) Everything is delish! Brownie
dessert in made when you ordered it.
(Star 1) Overpriced and so salty. My
tongue was tingling due to the crazy

amount of MSG in the broth.

Table 3: Training examples with different weights at Epochs
1 and 20 using IW-Fit. Italic words commonly appear on
both domains, while bold words appear more frequently on
the target than the source domain.

be achieved on instances that differ more from the source
domain. This indicates that the advantage of IW-Fit is due
to capturing more specific knowledge of the target domain
while well preserving the shared knowledge.

Table 3 gives some training instances with different
weights on the task Amazon to Yelp using IW-Fit. The
weights are computed according to the prediction loss at
Epoch 1 and according to the variance of historical pre-
diction losses at Epoch 20. We can observe that by both
metrics, instances with high weights tend to contain more
domain-specific words, which appear more frequently on the
target than the source domain. Correspondingly, instances
with low weights are likely to contain domain-independent
words that commonly appear on both domains. This result
also illustrates the effectiveness of the proposed metrics for
assigning instance weights used in IW-Fit.

Robustness Study
In this section, we conduct various experiments to demon-
strate the robustness of IW-Fit regarding five aspects
including: 1) using CNN as the text encoder; 2) varying
different parameters for fine-tuning; 3) varying the target
data size for fine-tuning; 4) varying the source data size for
pre-training; 5) varying the training mini-batch size. Here
we show the results of Uniform and Soft-mixing for better
readability. Full results of all compared methods can be
found in the Appendices.

Using CNN as the text encoder
Since our method and the proposed metrics do not depend
on the specific design of the DNN-based classifiers, we
investigate the performance of IW-Fit under different DNN
structures by changing to use Text-CNN (Kim, 2014) as
our text encoder. Table 4 shows the testing accuracies
of Soft-mixing and Uniform. It can be observed that the
proposed model-agnostic method still achieves statistically
significant improvement on the fine-tuning stage under the
CNN architecture.

Varying the sets of model parameters for fine-tuning
In Problem Formulation, we have discussed that previous
fine-tuning methods study to transfer different sets of pa-
rameters for fine-tuning. For the LSTM-based text classifier

used in our experiments, the model parameters include word
embeddings, parameters in LSTM and those in FC layers. To
test the robustness of our method regarding the transferred
model parameters, we keep some model parameters fixed
and only fine-tune the other parameters.

Tables 5 and 8 report the results when the encoder includ-
ing word embedding and LSTM is fixed (i.e., only fine-tune
parameters in FC), when only the word embedding is fixed
(i.e., fine-tune parameters in LSTM and FC) and when no
parameters are fixed (i.e., fine-tune all parameters). We can
see that in these three fine-tuning settings, Soft-Mixing
always performs better than Uniform. Additionally, both
methods yield the best performance when fine-tuning all
the model parameters. We conjecture that this is due to the
appropriate model structure for both the source and the
target datasets so that fine-tuning all the model parameters
results in the best performance.

Varying the fine-tuning data size.
Moreover, the performance of the fine-tuned methods
should be verified on datasets with different sizes (Chung,
Lee, and Glass, 2018; Howard and Ruder, 2018). This
experiment is conducted to study the relationship between
the amount of target data and IW-Fit. We vary the training
data size of the target dataset in the fine-tuning process.
The results are shown in Tables 6 and 9. As expected,
the performance of Uniform and Soft-mixing is improved
when the number of training data used for fine-tuning
increases. Soft-mixing achieves the best performance for
most settings, and it obtains a consistent improvement in
testing accuracy by 0.38% to 1.12% compared to Uniform.

Varying the pre-training data size.
We also vary the size of the source dataset used for pre-
training to analyze the relationship between the amount of
source data and IW-Fit. The results are shown in Tables 7
and 10. Usually, the performance of the fine-tuned methods
can be boosted as the source data size increases. It can be
inferred that model pre-trained on a larger source domain
can provide a better initialization of parameters for the
target domain. Consistent with the above observations,
Soft-mixing can stably improve the classification accuracy
by 0.50% ∼ 1.30% on the target domain.

Varying the training mini-batch size
Generally, small batch sizes tend to produce convergence in
fewer epochs while large ones offer more data-parallelism
and better computational efficiency (Keskar et al., 2016).
To investigate the robustness of IW-Fit regarding the train-
ing batch size, we vary the batch size from 16 to 64 on the
task Amazon to Yelp. Table 11 reports the testing accura-
cies of Soft-mixing and Uniform. It shows that the proposed
method achieves better classification accuracy regarding dif-
ferent mini-batch sizes during fine-tuning.

Conclusion and Future Work
In this paper, we proposed the IW-Fit method, which incor-
porates the idea of instance weighting into the fine-tuning
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Amazon to Yelp Yelp-2015 to Yelp-2016 Yelp-2015 to Yelp-2017
Uniform 47.94± 0.06 55.44± 0.08 53.26± 0.04

Soft-mixing 48.56± 0.07 56.00± 0.06 53.80± 0.03

Table 4: Testing accuracies of Uniform and Soft-mixing implemented with the CNN architecture.

Fixed Yelp2015 to Yelp-2016 Yelp2015 to Yelp-2017
parameters encoder embedding None encoder embedding None
Uniform 56.96± 0.02 56.78± 0.02 57.18± 0.09 53.46± 0.04 54.93± 0.06 55.08± 0.08

Soft-mixing 57.68± 0.03 57.60± 0.04 58.30± 0.09 54.84± 0.04 55.48± 0.07 55.90± 0.10

Table 5: Testing accuracies of varying fine-tuning parameters from Yelp-2015 to Yelp-2016 / Yelp-2017.

Percentage Yelp2015 to Yelp-2016 Yelp2015 to Yelp-2017
of target set 25% 50% 75% 25% 50% 75%

Uniform 56.58± 0.03 56.98± 0.02 57.15± 0.05 54.40± 0.03 54.52± 0.06 54.90± 0.04
Soft-mixing 57.28± 0.06 57.92± 0.06 58.20± 0.10 54.95± 0.08 55.42± 0.10 55.28± 0.03

Table 6: Testing accuracies of varying the target fine-tuning data size from Yelp-2015 to Yelp-2016 / Yelp-2017.

Percentage Yelp2015 to Yelp-2016 Yelp2015 to Yelp-2017
of source set 25% 50% 75% 25% 50% 75%

Uniform 54.58± 0.10 55.77± 0.07 56.26± 0.05 53.63± 0.05 55.00± 0.10 55.05± 0.06
Soft-mixing 55.23± 0.09 56.37± 0.07 57.56± 0.06 54.83± 0.07 55.73± 0.10 55.55± 0.03

Table 7: Testing accuracies of varying the source pre-training data size from Yelp-2015 to Yelp-2016 / Yelp-2017.

Fixed encoder embedding Noneparameters
Uniform 47.98± 0.04 51.00± 0.05 52.46± 0.06

Soft-mixing 48.23± 0.03 51.53± 0.10 53.54± 0.07

Table 8: Testing accuracies by varying fine-tuning parame-
ters from Amazon to Yelp.

Percentage 25% 50% 75%of target set
Uniform 49.72± 0.09 50.90± 0.10 51.68± 0.10

Soft-mixing 50.46± 0.09 51.50± 0.09 52.36± 0.10

Table 9: Testing accuracies by varying the target fine-tuning
data size from Amazon to Yelp.

Percentage 25% 50% 75%of source set
Uniform 50.30± 0.09 51.15± 0.08 52.20± 0.07

Soft-mixing 51.20± 0.09 51.78± 0.08 52.70± 0.10

Table 10: Testing accuracies of varying the source pre-
training data size from Amazon to Yelp.

stage to improve the text classification accuracy on the tar-
get domain. The proposed method enabled the algorithm

Batch size 16 32 64
Uniform 51.78± 0.05 52.46± 0.06 51.56± 0.07

Soft-mixing 52.30± 0.04 53.54± 0.06 52.12± 0.05

Table 11: Testing accuracies of Uniform and Soft-mixing re-
garding the mini-batch size on the task Amazon to Yelp.

to emphasize the specific knowledge on the target domain,
while well preserving the shared knowledge between the
source and the target domains. Rather than relying on spe-
cific rules or statistical approaches, the weighting metrics
are model-agnostic and easy to implement for general DNN-
based structures. We performed extensive experiments on
two kinds of transfer learning tasks to verify the advantage
of IW-Fit. Experimental results showed the effectiveness of
the weighting metrics, and that IW-Fit consistently boosted
the classification accuracy on the fine-tuning stage. In the fu-
ture, we will try to extend our idea for applications on more
NLP tasks such as sequence labeling and text generation.
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