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Abstract

A translation memory (TM) is proved to be helpful to
improve neural machine translation (NMT). Existing ap-
proaches either pursue the decoding efficiency by merely ac-
cessing local information in a TM or encode the global infor-
mation in a TM yet sacrificing efficiency due to redundancy.
We propose an efficient approach to making use of the global
information in a TM. The key idea is to pack a redundant TM
into a compact graph and perform additional attention mecha-
nisms over the packed graph for integrating the TM represen-
tation into the decoding network. We implement the model by
extending the state-of-the-art NMT, Transformer. Extensive
experiments on three language pairs show that the proposed
approach is efficient in terms of running time and space occu-
pation, and particularly it outperforms multiple strong base-
lines in terms of BLEU scores.

Introduction
A translation memory (TM) typically consists of bilingual
sentence pairs that are most similar to the sentence to be
translated (Robinson 2012). In computer-aided translation,
professional translators are able to quickly figure out the
faithful translation by standing on top of a TM instead
of translating from scratch. In statistical machine trans-
lation (SMT), various research work have also been de-
voted to making use of a TM to improve translation qual-
ity (Simard and Isabelle 2009; Koehn and Senellart 2010;
Ma et al. 2011).

Recent years have witnessed an evolutionary shift from
SMT to neural machine translation (NMT), and many no-
table works investigate on how to integrate a TM into neural
translation models (Li, Zhang, and Zong 2016; Zhang et al.
2018; Gu et al. 2018). For example, Zhang et al. (2018) pro-
pose a simple approach which defines a quantity over a TM
to bias word selection for NMT decoding. The quantity is
calculated based on n-gram matching between a TM and the
sentence to be translated. This method indeed captures help-
ful local patterns from a TM while inescapably omitting sig-
nificant global information such as long distance reordering
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in a TM. In addition, it introduces an additional hyperpa-
rameter to balance the contribution of a TM and the NMT
model. The sensitive hyperparameter is required to be tuned
manually for each specific task by selecting a suitable devel-
opment set. On the other hand, Gu et al. (2018) propose an
alternative approach to making full use of the global infor-
mation in a TM. The method encodes all bilingual sentences
in a TM into a key-value memory, in which each target word
and its corresponding context vector represent a pair of value
and key. Nevertheless, the integration of the memory leads
to considerable inefficiency in terms of both computational
time and space occupation due to redundant words in both
source and target side of a TM.

In this paper, we propose a new approach to integrating
a translation memory into NMT which utilizes global infor-
mation within a TM in an efficient fashion. The key to the
proposed approach is to represent a TM using a compact
structure. Specifically, our approach retrieves a translation
memory consisting of multiple bilingual sentences from our
training corpus. As the source sentences in a TM are similar
to the input sentence, we directly ignore the source side of a
TM and only focus on representing the target side. To avoid
redundancy in the target side of a TM, we further pack the
target side into a directed graph, where each target sentence
in a TM indicates a path from the beginning to the end. Then
we incorporate this packed graph into the decoding network
by performing a self-attention mechanism over the graph in-
spired by Veličković et al. (2018).

Our approach is more efficient while keeping global in-
formation because it performs an attention mechanism over
fewer attentive nodes in the packed graph, compared with
the large key-value memory in Gu et al. (2018). Further-
more, our approach is more robust in practice because it
does not introduce additional sensitive hyperparameters to
be manually tuned like Zhang et al. (2018).

To validate the effectiveness of the proposed approach,
we implement our idea on top of the state-of-the-art model
Transformer (Vaswani et al. 2017). Extensive experiments
on six translation tasks demonstrate the following advan-
tages of the proposed approach:

• It is more efficient than the approach in Gu et al. (2018)
in terms of both running time and space occupation;

• It delivers BLEU improvements over strong baselines in-
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cluding Transformer and both approaches in Zhang et al.
(2018) and Gu et al. (2018).

Preliminary
Suppose x =

〈
x1, . . . , x|x|

〉
is a source sentence with length

|x| and y =
〈
y1, . . . , y|y|

〉
is the corresponding target sen-

tence of x with length |y|. Generally, for a given x, the neu-
ral machine translation baseline, Transformer, aims to gen-
erate a translation y according to the conditional probability
P (y | x) defined by neural networks:

P (y | x) =
|y|∏
i=1

P (yi | y<i,x) , (1)

where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of y with
length i−1. To expand each factor P (yi | y<i,x) in Eq.(1),
Transformer adopts the encoder-decoder framework similar
to the standard sequence-to-sequence learning in (Bahdanau,
Cho, and Bengio 2014).

In encoding x, an encoder employs L layers of neural
networks, each layer consisting of different sub-layers, i.e.
multi-head attention, residual connection, layer normaliza-
tion, and feed-forward network as mentioned in (Vaswani et
al. 2017). The output of the lth layer is obtained from the
output of the (l − 1)th layer via four sub-layers as follows:

hE,l
j = RL ◦ F ◦RL ◦MH(hE,l−1

j ,hE,l−1) (2)

where hE,l
j indicates the jth hidden unit with dimension d

after passing l layers during the encoding phase and par-
ticularly hE,0

j denotes the word embedding plus positional
encoding of xj ; hE,l = 〈hE,l

1 , · · · , hE,l
n 〉 denotes an (|x|, d)-

matrix, i.e. a sequence of hidden units with dimension of
d; ◦ denotes the composition operator between two func-
tions; MH , RL and F respectively denote the functions cor-
responding to the sub-layers of multi-head attention, resid-
ual connection plus layer normalization, and feed-forward
network with parameters omitted for easier understanding.

Note that RL and F maps a vector to another vector and
we refer enthusiastic readers to Vaswani et al. (2017) for de-
tailed definitions.MH(hj ,h) maps a vector hj and a matrix
h into another vector as follows:

MH(hj ,h) = ϕ(head1, · · · , headK) (3)

where ϕ is a linear projection function, and

headk = softmax

(
hjW

1
k

(
hW 2

k

)>
√
d

)
hW 3

k (4)

where W 1
k , W 2

k and W 3
k are transformation matrices for

head k and d is the dimension of vector hj .
During decoding phase, Transformer similarly employs L

layers of neural networks, yet each layer consisting of six
sub-layers as follows:

hD,l
i = RL ◦ F ◦RL◦

MH
(
RL ◦MH(hD,l−1

i ,hD,l−1
<i+1 ),h

E,L
)

(5)

where hD,l
i indicates the ith hidden unit at lth layer in the

decoding phase, and in particular hD,0
i denotes the word

embedding of yi−1 plus its positional encoding for the first
layer; all other functions are defined as in Eq.(2). Note that
Eq.(5) differs from Eq.(2) in an additional multi-head atten-
tion mechanism over the hidden unit sequence hE,L derived
from the encoding phase.

Finally, the factor P (yi | y<i,x) in Eq.(1) is defined as
follows:

P (yi | y<i,x) = softmax
(
φ(hD,L

i )
)

(6)

where φ is a linear network to project the hidden unit to a
vector with dimension of the target vocabulary size.

Graph Representation of TM
For a source sentence x to be translated, we firstly use the
off-the-shelf search engine Lucene to retrieve a set of sen-
tences {xi|i ∈ [1,M ]} together with its translations {yi|i ∈
[1,M ]}. Following Gu et al. (2018) and Zhang et al. (2018),
we prune the retrieved set to anN -best list (M � N ) by the
fine-grained similarity score based on the edit-distance:

1− dist(x,xi)

max(|x|, |xi|)
(7)

where dist denotes the edit-distance. This N -best list is re-
ferred to as a translation memory in this paper, which is rep-
resented by {(xi,yi) | i ∈ [1, N ]}.

Gu et al. (2018) encode each word in both the source and
target sides of TM as a neural memory, and repeatedly ac-
cess the memory during decoding. Unfortunately, since a
word even a phrase may appear repeatedly in both source
and target side of a TM, redundant words are encoded mul-
tiple times, leading to a large key-value memory, where
the key value pairs are determined by target words. This
large memory makes the attention computation inefficient
in speed, and also consumes a considerable GPU memory,
which is expensive for machines in practice.

To address these issues, we propose an effective approach
to representing a TM in a compact way by the following two
steps in this paper.

Ignoring source side
It is observed that most source words in the TM also appear
in the input sentence x and have already been represented
by the encoder. In addition, we believe that those words in
the TM yet beyond x may not be informative to translate
the sentence x itself. Therefore, in our proposed model, we
directly ignore the source sentences of the TM and only rep-
resent the target side. In other words, we expect the target
side of the TM to directly capture relevant parts in the sen-
tence x without bothering to access its source side counter-
part. Since the GPU memory consumed by TM encoding is
proportional to the total number of words in a TM, this trick
is able to reduce memory consumption greatly. Note that this
trick can only improve the computational speed to a limited
extent, because it still maintains the same number of target
words corresponding to key value pairs.
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Src:  Esta enmienda no afecta la versión inglesa. 

Source Encoding Target Side Self Attn.

Encoder-Decoder Attn.

Encoder-Decoder-TM
Encoding

This amendment does not …

TM 1 Src: Esta enmienda no afecta la versión danesa.
Ref: This amendment does not affect the Danish version. 

TM 2 Src: Esta enmienda solo afecta el texto danés.
Ref: This amendment only affects the Danish text. 

This amen-
dment

does not affect

only affects

the Danish

version

text

.

Ref:  This amendment does not
affect the English version. 

… affect …

TM Graph Attn.

affect

not the

the

affect

affects

Danish

Danish

the

version

textMulti-head
Attention

Add & Norm

Attn.

Feed Forward
Network

Add & Norm

Encoding

L ×

L ×

… …

Figure 1: The architecture of the proposed NMT with graph based TM. 1) Graph representation - The part in the dashed box is
a concrete example of the graph representation of a TM. The source and target languages are Spanish and English respectively.
Src is the source sentence and Ref is the corresponding target sentence. Note that only 2 TM pairs are used in this example for
simplicity. 2) Model architecture - The part outside of the dashed box shows the core components of the model architecture.
A light blue box consists of a multi-head attention mechanism and a residual connection plus a layer normalization. A light
yellow box consists of one more free-forward network and a residual connection plus a layer normalization. Specifically, the
graph attention operation is presented with three selected nodes. L is the number of repetition of each part.

Packing target side
Secondly, instead of sequentially encoding target sentences
in a TM, we pack them into a compact graph such that some
words in different sentences may correspond to the same
node in the graph, which is inspired by the notion of lat-
tice or hypergraph in statistical machine translation (Koehn
2009). To this end, we convert the target side in a TM into
a confusion network by using the algorithm proposed by
Mangu, Brill, and Stolcke (1999) and Mangu, Brill, and
Stolcke (2000). The basic idea is to cluster each word into
an equivalent class, and organize all the classes according to
an order defined over classes. Finally, we can obtain a graph
via computing the dual of the confusion network, by treating
edges as nodes (West and others 2001).

Figure 1 shows an example of a resulting graph for a TM
(including two sentences for simplicity), where each node
represents a word. In the graph, the nodes representing the
words ”This”, ”amendment”, ”the”, ”Danish”, and ”.” ap-
pear in both sentences, but only appear once in the graph. In
terms of both space and speed, it is more efficient to encode
the graph, compared with the representation of all source
and target words of a TM in Gu et al. (2018).

NMT with Graph based TM
Suppose G = (v, e) is the directed graph obtained from
a translation memory, where v = 〈v1, · · · , v|v|〉 is a se-
quence of nodes, and e = 〈e1, · · · , e|e|〉 is a sequence
of edges. In addition, ni = 〈ni1, · · · , ni|ni|〉 denotes a se-
quence of first-order neighborhood nodes of vi in graph G
including vi itself. Nodes are arranged in topological or-
der. For example, as illustrated in Figure 1, v1 = This,

n1 = 〈This, amendment〉 and v2 = amendment, n2 =
〈This, amendment, does, only〉.

Generally, the enhanced Transformer shares the similar
architecture as the baseline but with two major differences
in encoding and decoding phases. The model structure is il-
lustrated in figure 1.

Enhanced Graph Encoding
Besides encoding the input sequence x, the proposed model
also encodes v from G by using L layers of networks in a
similar fashion to the encoding of the input x. Suppose hG,l

i
denotes the hidden units at lth layer regarding the node vi.
Inspired by the graph attention in Veličković et al. (2018),
hG,l
i is calculated by the hidden units at l − 1th layer as

follows:
hG,l
i = RL ◦ F ◦RL ◦MH(hG,l−1

i ,hG,l−1[ni]) (8)
where RL, F and MH are functions corresponding to sub-
layers of residual connection plus layer normalization, feed-
forward network and multi-head attention mechanism de-
fined in Eq.(2). hG,l−1[ni] is a matrix obtained by taking
the slice over the matrix hg,l−1 along the first axis via ni.

Based on the encoding schema elaborated above, there are
different variations of the graph encoding in real practice.
We can choose to fix the graph encoding after L layers’ com-
putation and introduce the fixed encoding to each decoding
layer, which is the same as the encoding of the source side x.
We can also introduce a flexible encoding to each decoding
layer, which is calculated as follows:

hG,l
i = RL ◦MHl(h

G,0
i ,hG,0[ni]) (9)

where hG,0 denotes the word embedding plus positional en-
coding of the translation memory sequence. When flexible
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encoding is applied, each decoding layer gets its own unique
graph encoding. Besides, the outermost components RL and
F are removed from flexible encoding to reduce complexity.

Because the directed graph G roughly records the global
order of nodes, which somehow captures the reordering in
the original TM, it would be helpful to encode the direc-
tional information for translating the input x. In this paper,
we index the nodes v in topological order and integrate addi-
tional positional encoding signal before the graph attention
similar to the encoding of x as in the standard Transformer
architecture. In detail, the first layer of graph encoding is the
sum of the word embedding of vi and position encoding of i
(Vaswani et al. 2017).

Enhanced Decoding
Suppose hE,L is the hidden unit sequence encoded from x
and hG,L is that encoded from G. As metioned in the last
subsection, hG,L could be a fixed graph encoding or a flex-
ible one. Similar to Transformer, the proposed model em-
ploys L layers of networks in the decoding phase, but each
layer includes two additional sub-layers (MH and RL) to
incorporate hG,L, besides other six sub-layers. We place the
extra two layers nearest to the output of the decoder net-
work in order to let the graph encoding fully influence the
decoding process. Formally, at the lth layer in the decoding
phase, the hidden unit hD,l

i is computed from hD,l−1
i , hE,L

and hG,L as follows:

hD,l
i = RL ◦ F ◦RL ◦MH

(
RL◦

MH
(
RL ◦MH(hD,l−1

i ,hD,l−1
<i+1 ),h

E,L
)
,hG,L

)
(10)

This equation Eq.(10) is similar to Eq.(5) except two extra
sub-layers including MH over hG,L and its immediate RL.
By applying these additional layers, the model is able to dy-
namically extract favorable semantic and syntactic informa-
tion from translation memory for each time step.

Note that in encoding vi, the sequence of ni only includes
the nodes which are directly adjacent to vi, one might argue
that the hidden unit hG,l

i ignores information far away from
the node vi. Indeed, we tried to reset ni to include higher or-
der neighbors of vi, but we did not observe additional gains
in translation quality. The possible reason is that the long
distance information is captured by the multi-layer structure.

Related Work
This section reviews the mostly related works, according to
the following three research lines.

TM based SMT
Many research works are devoted to integrating a translation
memory into the statistical machine translation paradigm.
For example, Koehn and Senellart (2010) extract bilin-
gual segments from a TM which matches the source sen-
tence to be translated, and constrain SMT to decode for
those unmatched parts of the source sentence. Unlike Koehn
and Senellart (2010) employing a heuristic score to decide

whether the extracted segments should be used as decod-
ing constraints or not, Ma et al. (2011) design a fine-grained
classifier to predict the score for making more reliable deci-
sions. In addition, Simard and Isabelle (2009), Wang, Zong,
and Su (2013) and Wang, Zong, and Su (2014) add the ex-
tracted bilingual segments to the translation table of SMT,
and then decode the source sentence with the augmented
translation table, which bias the decoder in a soft constraint
manner instead of a hard one as in Koehn and Senellart
(2010) and Ma et al. (2011).

TM based NMT
Recently, TM based neural machine translation has been
witnessed increasing interests. As NMT does not explic-
itly rely on the translation rules as SMT, many works resort
to different approaches. For example, Li, Zhang, and Zong
(2016) and Farajian et al. (2017) make use of a translation
memory to fine tune the NMT model which is pre-trained on
the entire training corpus in advance, similar to that in Liu et
al. (2012) in SMT. As different testing sentences may have
different TMs, this approach has to fine-tune the model on-
the-fly during testing. In order to avoid the on-the-fly tuning,
Zhang et al. (2018) define a quantity based on the n-gram in
TM to directly bias the word selection for NMT. Although
this approach is efficient, it can only captures local informa-
tion in a hard manner while ignoring the global information
in TM, leading to inferior performance to ours. Gu et al.
(2018) propose an additional encoder to encode the global
information (i.e. the entire sentences) in TM into vectors for
all words, and make use of the encoded vectors to decode a
target word by an additional attention mechanism. To some
extent, our approach is an extension of Gu et al. (2018) in
which we pack the sequential TM into a graph, which in-
cludes much fewer nodes, leading to a more efficient atten-
tion computation.

Graph based NMT
There are many works involving graph structures to improve
NMT. For instance, Stahlberg et al. (2016) implicitly em-
ploys a translation graph (i.e. lattice) generated by SMT by
rewarding the words which have high posterior probabilities
over the lattice. Meanwhile, Khayrallah et al. (2017) explic-
itly use a lattice generated by SMT to constrain the decoding
space and rerank to select the best translation from this con-
strained lattice. Both approaches obviously differ from ours
in that they do not encode the discrete graph into the continu-
ous vectors from the point view of neural networks. Ma et al.
(2018) and Su et al. (2017) encode a packed parse forest or a
word segmentation lattice of a source sentence. However, the
focus of our work is oriented to a translation memory instead
of a parse tree or word segmentation. Furthermore, we inte-
grate the encoded vectors into the strong Transformer, which
leads to nontrivial implementations compared with attention
operations in recurrent networks.

Experiments
In this section, we demonstrate, by experiments, the advan-
tages of the proposed model: it yields better translation than
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Zhang et al. (2018) with the help of global information from
translation memory; and it is more efficient than the model
in Gu et al. (2018) in terms of running time and memory
consumption mainly because of the compact graph repre-
sentation of translation memory.

Settings
Data Preparation Following the previous works investi-
gating on incorporating TM into NMT models, we use the
JRC-Acquis corpus for training and evaluating our proposed
model. The JRC-Acquis corpus is a collection of parallel
legislative text of European union Law applicable in the EU
member states. The highly related text in the corpus is suit-
able for us to make evaluations. To fully explore the effec-
tiveness of our proposed model, we conduct translation ex-
periments on three language pair bidirectionally, namely, en-
fr, en-es, and en-de.

We manage to obtain preprocessed datasets from Gu et
al. (2018). For each language pair, we randomly select 3000
samples to form a development and a test set respectively.
The rest of the pairs are used as the training set. Sentences
longer than 80 and 100 are removed from the training and
development/test set. The technique of Byte-pair Encoding
(Sennrich, Haddow, and Birch 2016) is applied and the vo-
cabulary size is set to be 20K for all the experiments.

Baseline Systems The proposed TM graph based model is
built on transformer (Vaswani et al. 2017), and it is denoted
by G-TFM. We also propose and implement another simpler
TM representation based transformer, SEQ-TFM which se-
quentially encodes all target sentences in a TM as one of
the baseline models. Specifically, each target sentence in
TM goes through a multi-head mechanism and an immedi-
ate residual connection plus layer normalization in lth layer,
which is calculated as follows:

hlk,i = RL ◦MHl(h
0
k,i,h

0
k) (11)

where hlk,i is the ith hidden unit of the kth sentence in the
TM; h0k,i is the word embedding plus positional encoding of
kth sentence in TM. The derived representations for these
sentences are then concatenated to form the representation
of the translation memory hS,l, which can be utilized flexi-
bly in lth decoding layer.

Besides, as the proposed model is directly built upon the
Transformer architecture, Transformer itself provides a nat-
ural baseline, which is referred to as TFM in this paper. In
addition, following Zhang et al. (2018) and Gu et al. (2018),
we implement two translation memory based systems on top
of Transformer for fair comparison and we refer them to P-
TFM and SEG-TFM, respectively. 1 For the broader com-
parison, we reproduce the model (denoted by P-RNN) in

1Note that due to the architecture divergence between RNN-
based NMT and Transformer, SEG-TFG differs from the RNN-
based counterpart in that two quantities ct and zt in Gu et al. (2018)
are replaced by the hidden units obtained from the multi-head at-
tention over the encoding units and the decoding hidden state units
before the softmax operator.

Word embedding 512
Layers 6
TM dropout 0.6
Other dropout 0.1
Beam size 5
Label smoothing 0.1
Batch size (tokens) 8192

Table 1: Hyper-parameters for training baselines and the
proposed model on top of the transformer architecture.

Zhang et al. (2018) on top of our in-house RNNsearch sys-
tem (denoted by RNN). 2

Training systems For each sentence, we retrieve 100
translation pairs from the training set by using Apache
Lucene. We score the source side of each retrieved pair
against the source sentence x with fuzzy matching score
in Eq. (7) and select top N = 5 translation sentence pairs
as a translation memory for the sentence x to be translated.
Sentences from the target side in the translation memory are
used to form a graph, with each word represented as a node
and the connection between adjacent words in a sentence
represented as an undirected edge.

For training all systems, we maintain the same hyper-
parameters as shown in Table 1 for comparison. Besides,
we adopt the same training algorithm to learn the models as
follows. We use a customized leaning rate decay paradigm
following Tensor2Tensor(Vaswani et al. 2018) package. The
learning rate increases linearly on early stages for a certain
number of steps, known as warm-up steps, and decay expo-
nentially later on. We set the warm-up step to be 5 epochs
and we early stop the model after training 20 epochs, typ-
ically the time when the development performance varies
insignificantly.

Furthermore, since there is a hyperparameter in the sys-
tem P-TFM of Zhang et al. (2018) which is sensitive to the
specific translation task, we tune it carefully on the develop-
ment set for all translation tasks. Its optimized value is 0.7
for es and de tasks while it is 0.8 for fr task. 3

Results and analysis on es-en task
Translation accuracy Table 2 shows the experiment re-
sults of all the systems on the es-en task in terms of BLEU.
Several observations can be made from the results. First, the
baseline TFM achieves substantial gains over RNN and even
outperforms P-RNN by around 1 BLEU point on the test set.
Compared with the strongest baseline P-TFM, the proposed
SEQ-TFM and G-TFM are able to obtain some gains up to
1.9 BLEU points on the test set. This result verifies that our

2We did not reimplement the model in Gu et al. (2018) on top of
our in-house RNN, because it was clearly demonstrated in Zhang
et al. (2018) that P-RNN works comparable to or even better than
Gu et al. (2018) on the same JRC-Acquis corpora as conducted in
our experiments.

3We run all 6 tasks with hyperparameters among [0.5, 1.5] with
scale of 0.1, and manually pick the optimized value according to
its performance on the development set.
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RNN P-RNN TFM P-TFM SEG-TFM SEQ-TFM G-TFM
Dev 57.74 60.87 62.78 63.97 63.16 64.81 66.37
Test 58.06 61.52 62.68 64.30 62.94 65.16 66.21

Table 2: Translation accuracy in terms of BLEU on the es-en task.

TFM SEG-TFM SEQ-TFM G-TFM
Train (s) 4579 44238 21920 8692
Test (s) 0.20 2.68 1.25 0.36
Words (#) 68.28 374.52 214.97 129.18
BLEU 62.68 62.94 65.16 66.21

Table 3: Running time and memory. Training time reports
the time in seconds for training one epoch on average, and
testing time reports the time in seconds for translating one
sentence on average. Words (#) denotes the number of words
encoded in the neural models on average.

compact representation of TM is able to guide the decoding
of the state-of-the-art model.

Second, it is observed that SEG-TFM is only compara-
ble to TFM on this task, although its RNN based counter-
part brought significant gains as reported in Gu et al. (2018).
This fact shows that the transformer architecture may need
a sophisticated way to well define a key-value memory for
TM encoding, which can be significantly different from that
on RNN architecture. This is beyond the scope of this pa-
per. Fortunately, this paper provides an easy yet effective
approach to encode a TM, i.e. G-TFM, which does not rely
on a context-based key-value memory.

Running time Since the retrieval time can be neglected
compared with the decoding time as found in Zhang et al.
(2018), we thereby eliminate the retrieval time and directly
compare running time for neural models as shown in Table
3. From this table, we observe that the proposed graph based
model G-TFM saves significant running time compared with
SEG-TFM and SEQ-TFM while achieving better translation
performance.

Memory consumption Ideally, the total memory con-
sumed by a system is proportional to the size of the com-
putational tensor graph. However, it is impossible to ex-
actly compare the complexity of the computational graph,
because it is dependent on the coding implementation. 4 As
a result, we roughly evaluate the memory consumption in
terms of the number of words encoded by the models, which
corresponds to a part of the nodes in the computational graph
and can be calculated.

Table 3 depicts the total number of source and target
words encoded by the corresponding model for each test
sentence on average. It’s observed that SEG-TFM needs
to encode approximately 3 times and SEQ-TFM encodes
approximately 2 times the number of words of our pro-

4Different implementation may lead to different computational
graphs due to temporary variables.

Similarity Sents Percent TFM P-TFM G-TFM

[0, 0.1) 2 0.19% 54.17 68.43 58.22
[0.1, 0.2) 138 11.40% 36.08 36.46 37.49
[0.2, 0.3) 462 20.76% 44.94 45.99 45.30

[0.3, 0.4) 305 14.56% 51.19 51.98 51.75
[0.4, 0.5) 272 12.83% 60.72 62.86 62.10
[0.5, 0.6) 206 7.82% 66.31 66.41 70.66

[0.6, 0.7) 203 7.40% 71.38 73.73 76.17
[0.7, 0.8) 188 7.05% 77.48 78.78 83.37
[0.8, 0.9) 377 10.90% 83.81 85.52 88.71
[0.9, 1) 432 7.09% 87.81 88.02 93.21

[0, 1) 2585 100% 62.68 64.30 66.21

Table 4: Translation quality on es-en task for the divided
subsets according to similarity. The averaged similarity for
the entire test set is 0.48.

TFM P-TFM G-TFM
BLEU 62.68 65.00 90.25

Table 5: Translation results when adding reference to TM.

posed model, G-TFM. There’s no wonder that TFM takes
the fewest words to encode because no extra TM is included.
These statistics indicate that under the scenario of incorpo-
rating TM in NMT, our model requires the least memory.

Influence on similarity Intuitively, the performance of
our proposed model is supposed to vary on the basis of
the similarity between the sentences to be translated and
the retrieved translation memory. To verify the hypothesis,
we divided the test set into bucketed subsets based on the
averaged similarity of each sentence in the retrieved trans-
lation memory. From the results reported in Table 4, it is
observed that the proposed G-TFM outperforms the base-
line TF on all bucketed subsets in general. As the similarity
score increases, G-TFM leads to more significant improve-
ments than those of the baseline TFM. In detail, the improve-
ments over TFM are up to 5 BLEU points when similarity is
around 0.9; while the improvements are less than 1 BLEU as
the similarity score is between 0.2 and 0.3. This fact shows
that the translation memory indeed brings improvements of
translation quality over all similarity buckets. And the more
similar the TM is, the better it will do.

In addition, P-TFM is slightly better than the proposed
G-TFM when the similarity is between 0.2 and 0.5. But G-
TFM outperforms P-TFM with a substantial margin if the
similarity is more than 0.5. In particular, as the similarity is
above 0.9, G-TFM delivers a gain of 5 BLEU over P-TFM.
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Example Fuzzy Matching Score: 0.31, T1 BLEU: 0.53, T2 BLEU: 0.56, T3 BLEU: 0.75

S Dentro de los lı́mites establecidos en el anexo III ,
se concederá un suplemento del pago por superficie de
344,5 euros por hectárea por las superficies sembradas
de trigo duro en las zonas tradicionales de producción
que figuran en la lista del anexo II .

T1 Within the limits laid down in Annex III , a supple-
ment to the area payment of EUR 344,5 per hectare shall
be granted for the areas sown with durum wheat in the
traditional production zones listed in Annex II .

R A supplement to the area payment of EUR 344,50 per
hectare shall be paid for the area down to durum wheat
in the traditional production zones listed in Annex II ,
subject to the limits fixed in Annex III .

T2 Within the limits laid down in Annex III , a supple-
ment to the area payment of EUR 344,5 per hectare shall
be granted for the areas sown to durum wheat in the tra-
ditional production zones listed in Annex II .

TMshall be paid for the area down to durum wheat in the
traditional production zones listed in Annex X , subject
to the following limits :

T3 A supplement to the area payment of EUR 344,5 / ha for
the areas down to durum wheat in the traditional produc-
tion zones listed in Annex II , subject to the limits fixed
in Annex III .

Table 6: An example of effects on using global information from es-en test set. S and R respectively denote source and reference
sentences, TM shows only one sentence in the given translation memory, T1, T2 and T3 represent TFM, P-TFM and G-TFM.

BLEU en-fr fr-en en-de de-en en-es
Dev TFM 66.33 65.95 53.32 58.54 60.43

P-TFM 68.90 68.61 55.54 60.10 61.50
G-TFM 69.69 70.65 57.43 61.85 62.50

Test TFM 66.36 66.96 53.29 58.86 60.52
P-TFM 68.73 68.70 55.14 60.26 61.56
G-TFM 69.59 70.87 56.88 61.72 62.76

Table 7: Translation Results on both development and test
sets across other 5 translation tasks.

One main reason is that P-TFM is highly sensitive to the
value of the reward defined in Zhang et al. (2018), which is
determined by the sentence similarity and the hyperparame-
ter. To further support this, we add the reference into TM for
testing to evaluate the performance of a well-trained existing
model. We compare the translation results of P-TFM and G-
TFM again. Table 5 shows that the gap between P-TFM and
G-TFM is substantially enlarged. This result shows that our
proposed G-TFM is able to adaptively make use of transla-
tion memory. A well-trained existing model can deliver al-
most absolutely correct translations when a extremely simi-
lar translation memory is available. But for P-TFM, the hy-
perparameter previously tuned on the development set is not
suitable for the translation task where the TM is very similar
to test sentences. In other words, the success of P-TFM also
depends on the selection of a development set.

Case study on global information In the example shown
in Table 6, it is clear that there is a long distance reorder
between the main and subordinate clauses, and the base-
line TFM fails to figure out this reorder as the reference.
Since the reward score of any n-gram defined in Zhang et
al. (2018) is all the same and irrelevant to its position infor-
mation, P-TFM can not encourage to make a long-distance
reordering decision. G-TFM succeeds to capture the long
distance reordering with positional encoding in this case by
learning from the similar pattern contained in the TM, which

indicates that G-TFM indeed is able to utilize the global in-
formation in TM.

Results on other tasks
We pick stronger baselines from the es-en task, i.e. TFM
and P-TFM, and compare them with the proposed G-TFM
model on other 5 translation tasks. Table 7 summarizes their
results on both the development and test sets. From this ta-
ble, we can see that on the test set, G-TFM steadily outper-
forms TFM by up to 3 BLEU points across all these 5 tasks,
In addition, contrast to P-TFM, G-TFM demonstrates better
performance by exceeding at least 1 BLEU point across all
these tasks except the en-fr task. These results are consistent
with the results on es-en task and further validates the effec-
tiveness of integrating graph-based translation memory into
the Transformer model.

Conclusion
We have proposed an approach to augmenting the neural
machine translation by a translation memory. The proposed
approach firstly packs the translation memory into a com-
pact graph, where each node may correspond to multiple
words for different sentences in a TM, and then it encodes
the packed graph into a deep representation during the de-
coding phase. The proposed approach is able to make use of
the global information from TM and is also efficient enough
even if the size of TM increases. Extensive experiments on
six tasks with three language pairs show that the proposed
approach is effective when compared with the strong base-
line Transformer: it not only gains over the baseline with
a large margin, but also consistently outperforms the ap-
proaches in Zhang et al. (2018) and Gu et al. (2018).
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