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Abstract

Deep learning models such as convolutional neural networks
and recurrent networks are widely applied in text classifica-
tion. In spite of their great success, most deep learning mod-
els neglect the importance of modeling context information,
which is crucial to understanding texts. In this work, we pro-
pose the Adaptive Region Embedding to learn context repre-
sentation to improve text classification. Specifically, a meta-
network is learned to generate a context matrix for each re-
gion, and each word interacts with its corresponding context
matrix to produce the regional representation for further clas-
sification. Compared to previous models that are designed to
capture context information, our model contains less parame-
ters and is more flexible. We extensively evaluate our method
on 8 benchmark datasets for text classification. The experi-
mental results prove that our method achieves state-of-the-art
performances and effectively avoids word ambiguity.

Introduction
Text classification is a fundamental task in many NLP
applications such as web searching, information retrieval
and sentiment analysis. One key challenge in text classi-
fication is to understand the compositionality in text se-
quences for which the modeling of regional relationships
between words and their neighbours is crucial. Traditional
methods usually exploit n-grams as composition function,
which proves to be effective by directly gathering adja-
cent words. With the emerging development of deep learn-
ing, a variety of deep models are recently used for text
classification. The most commonly used models are Recur-
rent Neural Networks (RNNs) (Tang, Qin, and Liu 2015;
Yang et al. 2016; Zhou et al. 2016) and Convolutional Neu-
ral Networks (CNNs) (Kim 2014; Zhang, Zhao, and LeCun
2015). RNN and its variants LSTM/GRU model the regional
relationships by encoding the previous words into its hidden
unit while CNN captures the compositional structure by lay-
ers of convolution and pooling. In spite of their success on
various NLP tasks, RNNs and CNNs are only generic mod-
els for sequences or images. They may neglect the intrinsic
semantic relations in text sequences and often require large
computational cost and memory space.
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Subsequently, several simple and effective models have
been proposed to improve the text classification by learn-
ing a specially designed high-level representation that con-
tains the necessary regional context information. Here we
loosely refer to these learned compositional representations
as ‘Region Embedding’. Among these methods, (Johnson
and Zhang 2015b) learn three types of region embeddings
and feed them to a CNN as extra inputs. The region embed-
dings help to improve the error rates by a significant margin
compared to vanilla CNN. Qiao et al. (2018) propose a two-
layer architecture, and introduce a matrix called ‘Local Con-
text Unit’ to produce region embeddings. They achieve com-
parable or even superior performances to a 29-layer CNN
(Conneau et al. 2017), which is the current state-of-the-art
method.

Although Qiao et al. (2018)’s region embedding method
is able to effectively capture rich context information, it still
has the following limitations. First, the region embedding
is generated by word embedding and Local Context Unit,
where both of them are only and uniquely determined by
word indices in the vocabulary. Such embedding method
lacks the capability to capture the semantic ambiguity since
each word has the same unique region embedding even un-
der different contexts.

Second, its representation capability is limited by the fact
that the Local Context Unit is generated within just a fixed-
length region. This leads to the negligence of richer depen-
dencies outside the region. Third, the embedding look-up
tensor that generates Local Context Unit is of size E ∈
Rv×h, where v, h are sizes of vocabulary and embedding
dimension, respectively. For dataset such as Yahoo Answer
with ˜300k words in the vocabulary, i.e. v ≈ 300k, the
storage of embedding matrix E requires large memory re-
sources.

To address the limitations of Qiao et al. (2018)’s method,
we need to design a light-weighted and flexible network
component which is able to take the whole sequence into
account, and produce effective region embedding adaptive
to different contexts.

Inspired by the recent work of dynamic parameter gener-
ation (Bertinetto et al. 2016; Jia et al. 2016; Ha, Dai, and Le
2016), we propose a novel region embedding method in this
paper. First we use a meta-network (Ha, Dai, and Le 2016) to
distill meta knowledge from the whole sequence and gener-
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ate the context matrix (or context unit) for each small region
of texts. Then the region embedding is produced by both the
context unit and the word embeddings in the correspond-
ing region. The meta-network we use here can be of any
form of fully differentiable neural network that can be
jointly trained end-to-end. Our meta-network only requires
a tiny amount of parameters, leading to much smaller mem-
ory cost. We call our context unit generated by the meta-
network Adaptive Context Unit to distinguish from Local
Context Unit (Qiao et al. 2018). For simplicity, we refer to
Local Context Unit and Adaptive Context Unit as LCU and
ACU, and Local Region Embedding and Adaptive Region
Embedding as LRE and ARE respectively in the following
discussion.

We compare our method with Qiao et al. (2018)’s and
previous state-of-the-art methods on eight benchmark text
classification datasets. The experimental results demonstrate
that our method is able to achieve state-of-the-art results
with much less parameters than Qiao et al. (2018)’s method.

Apart from the experimental superiority, we also try to
explore the mechanisms behind. We study the differences
and relationships between our method, Qiao et al. (2018)’s
method and the normal convolution, and generalize them
to instance-level, word-level, dataset-level respectively from
the perspective of Generalized Text Filtering. This general-
ization partly explains why our proposed method is more
flexible and performs better.

To sum up, the main purpose of this work is to learn
a more flexible and compact region embedding. Our main
contributions are threefold:

• We propose a new region embedding method where richer
context information is acquired through a meta-network.

• Our method achieves state-of-the-art performances on
several benchmark datasets with a small parameter space.
We also demonstrate that our model is able to avoid word
ambiguity.

• We generalize convolution, Qiao et al. (2018) and our
method under the same framework, which reveals the
mechanisms accounting for our method’s superiority.

Related Work
Text Classification
Text classification has long been studied in Natural Lan-
guage Processing. Before the deep learning era, traditional
methods usually consist of high-dimensional features fol-
lowed by classifiers such as SVM and logistic regression
(Joachims 1999; Fan et al. 2008; McCallum, Nigam, and
others 1998). Bag-of-words (BoW) and n-grams are the
commonly used features. However, BoW usually suffers
from the ignorance of word order, whereas n-grams usu-
ally suffers from the notorious curse of dimensionality. Be-
sides, traditional methods (Joachims 1999; Fan et al. 2008;
Forman 2003; Li et al. 2012) usually rely heavily on hand-
crafted features or graphical models, which are often labori-
ous and time-consuming.

In recent years, the emergence of distributed word rep-
resentations (Mikolov et al. 2013) and deep learning has

enabled automatic feature learning and end-to-end training,
providing superior performances over the traditional meth-
ods on various NLP tasks. Most deep learning models that
are used for text classification are based on RNN (Sunder-
meyer, Schlüter, and Ney 2012; Yang et al. 2016; Yogatama
et al. 2017), or CNN (Kim 2014; Johnson and Zhang 2015a;
Zhang, Zhao, and LeCun 2015; Conneau et al. 2017). While
these deep models are equipped with more complex compo-
sition function to aggregate the separate word embeddings
into a single semantic vector, they usually require large pa-
rameter space and computational cost.

Apart from these deep models, there are also other sim-
ple and effective models adopted as composition function
for text classification. (Johnson and Zhang 2015b) design an
extra network that represents the context of each word by
learning to predict the neighbours of the word unsupervis-
edly, and use that extra network to produce context-related
features as additional inputs. FastText (Joulin et al. 2017)
utilizes the averages of distributed word embeddings as in-
puts to a hierarchical softmax. (Shen et al. 2018b) apply hier-
archical pooling to word embeddings and achieve compara-
ble performances to the CNN/LSTM based methods. Wang
et al. (2018)’s method leverages the label information as at-
tention map, and learns a joint embedding of words and la-
bels. Qiao et al. (2018) choose to represent the context in-
formation with the LCU, and produce its region embedding
by the projecting the word embedding of each region onto
the context unit. Our work is also similar to another contem-
porary work (Shen et al. 2018a) where both methods utilize
the meta-network structure. However, our work differs from
(Shen et al. 2018a) in both the particular meta-network used
and the whole architecture. Moreover, our proposed Gener-
alized Text Filtering perspective provides a generalization of
three levels of text filtering, and will generalize both Shen et
al. (2018a) and Qiao et al. (2018)’s methods.

Dynamical Weight Generation
Another related research area is the Dynamical Weight Gen-
eration, which refers to a special kind of network architec-
ture, where the parameters of the basic network are gen-
erated by a higher-level network, which is called meta-
network. This structure (Jia et al. 2016; Ha, Dai, and Le
2016; Bertinetto et al. 2016; Chen et al. 2018) usually in-
volves two kinds of parameters: meta-network parameters
and dynamically generated parameters. The meta-network
parameters are learned through gradient descent, whereas
the dynamically generated parameters are generated by the
meta-network parameters with each instance as input, thus
they are instance-specific. Besides, the parameter space of
the meta-network is usually small, so that the whole struc-
ture is practical in large-scale applications.

In the literature, (Jia et al. 2016) mainly focus on gen-
erating dynamic convolutional filters conditioned on the
input. (Ha, Dai, and Le 2016) further extend the meta-
network structure to both CNN and RNN-based structures.
They also put forward factorization techniques to make the
meta-network scalable and memory-efficient. Then meta-
network structures are applied to several other applications.
(Bertinetto et al. 2016) model one-shot learning as dynamic
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Figure 1: Overall Architecture of Adaptive Region Embedding

parameter prediction, and use a siamese-like structure to en-
able one-shot learning. (Chen et al. 2018) adopt an LSTM-
based meta-network structure for multi-task sequence mod-
eling, where the meta-network module is shared between
tasks, and it controls the parameters of task-specific private
layers.

The insight behind using the meta-network is that the pa-
rameters/weights that multiply with the input features are re-
duced from dataset-level to instance-level so that they are
more adaptive. Take CNN for example, normal CNN ker-
nels or filters are learned and updated through the whole
dataset by gradient descent, and do not adapt to any partic-
ular instance, where in meta-network structure the dynami-
cally generated weights can adapt to any specific instance,
so that the whole network is able to capture richer informa-
tion.

Proposed Method
Overview
The proposed model architecture is shown in Figure 1. Its
core component is the meta-network-generated ACU. Given
a region centered at position i with radius c (which we de-
note as region(c, i)), our model first generates the ACU
with a meta-network, and then applies the ACU back to the
region itself to produce the ARE for final classification. The
architecture we propose here is similar to that in Qiao et
al. (2018), where both models achieve state-of-the-art text
classification performances with a context unit as the core
component. However, the conversion from LCU to ACU
brings several benefits, including higher classification accu-
racies, smaller memory consumption and word ambiguity
avoidance. We will also discuss further why ACU will result
in the improvements mentioned above from a generalized
filtering perspective.

Since our main contribution lies in the ACU, as a more
flexible version of LCU, we will first briefly introduce the
word preprocessing procedure and Qiao et al. (2018)’s meth-
ods, then put our main focus on how ACU is generated.

Preliminary
Word-level Preprocessing We implement the whole net-
work at word-level, that is, we use a one-hot vector wi to
represent each word at position i and then transform each
word to an h-dimension continuous word embedding ei, us-
ing an embedding look-up matrix V ∈ Rh×v , where h and v

are the embedding size and vocabulary size respectively. We
do not use any pre-trained word embedding as initialization
in our model.

Local Context Unit In Qiao et al. (2018), the authors in-
troduce LCU to interact with the words in a given region
to generate the region embedding LRE. The core idea is
that the LCU of a word is determined by retrieving a look-
up tensor U with the given word index. To be specific, if
we use h, c, v to denote the embedding size, region radius
and vocabulary size respectively, the LCU for a given word
wi is represented as a matrix Kwi

∈ Rh×(2c+1), which
contains all the information from wi’s ‘viewpoint’ and is
calculated by looking up wi’s index in the look-up tensor
U ∈ Rh×(2c+1)×v . Consequently the whole LCU for a
given sequence is K ∈ Rh×(2c+1)×L, where L is the length
of the sequence.

The interaction between a word and its corresponding
LCU is to project the word embedding by the LCU Kwi

:

pi
wi+t = Kwi,t � ewi+t, −c ≤ t ≤ c

Where ewi+t is the word embedding of word wi+t, and �
denotes element-wise multiplication. By doing projection,
the region embedding r(i,c) for region(c, i) is built by max-
pooling the projected embedding pi

wi+t
. The authors also

propose two types of pooling schemes to produce the LRE,
which we will not discuss in detail in this paper.

Adaptive Region Embedding
In this section, we deliberate on how ACU is constructed,
how it interacts with the words in the region to produce
ARE.

Our model takes a matrix of word embeddings E =
[e0, e1, ..., eL] ∈ Rh×L as input, where ei is the word em-
bedding of wi in a given sequence. Then the ACU is gener-
ated by a fully-differentiable meta-network, which takes the
original sequence embedding as input, and output the pa-
rameters of a base learner. To be more specific, it takes the
input of all the word embeddings E in the sequence, and
output the ACU: K ∈ Rh×(2c+1)×L, where each element
Kwi

∈ Rh×(2c+1) can be seen as filters or projection matrix
for region(i, c) centered at word wi.

In this work, we choose our meta-network to be a one-
layer convolutional neural network, such that,
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K = Bn(Conv(E))

where Conv stands for 1-d convolution, and Bn stands
for batch normalization layer (Ioffe and Szegedy 2015) for
the purpose of reducing covariate shift. The 1-d convolution
layer has h input channels, and h × (2c + 1) output chan-
nels. Thus the output of the convolution K ∈ Rh×(2c+1)×L

meets the requirement to be the context unit. It is worth not-
ing that although the region size is fixed, the ‘receptive field’
of ACU is not limited to region(i, c) since K is produced
by the meta-network which takes the whole sequence as in-
put. Therefore, unlike LCU which is determined only by the
region itself, ACU is more flexible and adaptive.

The above calculation outputs the ACU, i.e. K, which is
generated at instance-level as we explained in Section 2.2.
Then we project the word embedding E into the region em-
bedding space using the ACU,

pi = Kwi
�Ei−c:i+c

where Ei−c:i+c = [ei−c, ..., ei+c], and pi ∈ Rh×(2c+1) rep-
resents the projected embedding for region(i, c). Each col-
umn pi,wt represents the projected embedding at position i
filtered by wt’s information.

Finally we pool the projected embedding within each
region(i, c):

ri = g(pi,wi−c:i+c
)

where ri ∈ Rh represents the ARE at position i, and g is the
pooling function. Here we choose g = max() which stands
for max-pooling along the second dimension of pi. Finally,
the ARE for the whole sequence r is calculated by summing
region embeddings at all positions r =

∑
i ri.

After obtaining the ARE r, we feed it into a fully-
connected layer followed by a softmax layer,

y = Softmax(Wr+ b)

Where W,b are learnable parameters in the fully-connected
layer. We choose cross entropy as our loss function.

Generalizing Region Embedding and
Convolution

Kernels

Meta-network

LCU ACU

( , )( , )( , )

(a) Dataset-level (b) Word-level (c) Instance-level

Look-
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TensorLearnable 
Weights
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Figure 2: Illustration of three levels of filtering.

In this section, we will analyze Qiao et al. (2018)’s LRE
method, our ARE method, and convolution in CNN from the
aspect of generalized framework Generalized Text Filtering,
which will partly account for the superiority of our proposed
method.

Assume L, L
′
, h, r denote the input sequence length, out-

put sequence length, word embedding size and window size,
respectively, we define Generalized Text Filtering as below:

Definition 1. Generalized Text Filtering f takes the input
sequence x0:L−1 = [x0,x1, ...,xL−1] ∈ Rh×L, and output
the filtered sequence y ∈ RL′ with one filter W ∈ Rr×h

y = f(x0:L−1) = [y0, y1, ..., yL′ ]

yi = g(wT
0 xi,w

T
1 xi+1, ...,w

T
r−1xi+r−1), i ∈ [0, L′]

where each wk ∈ Rh is the filter at position k, k ∈ [0, r−
1], function g is the pooling function that can be either g =
max() or g = sum().

When g = sum(), the Generalized Text Filtering equals
to normal convolution. In Qiao et al. (2018) and our method,
g = max().

Regarding the definition of Generalized Text Filtering ,
convolutional kernels, LCU and ACU can all be regarded
as special instances of filters in Generalized Text Filtering.
The process of generating region embedding or convolved
features can be regarded as the process of filtering the text
with the corresponding filters W .

Moreover, the relationship between these methods is that
they correspond to three different levels of filtering. The con-
volution uses the same set of filters that are shared by all the
instances in the dataset, thus corresponding to dataset-level
filtering. Qiao et al. (2018) use filters (LCU) uniquely deter-
mined by the words in the region center, and they are gener-
ated from a look-up tensor by the word’s index in the vocab-
ulary, thus corresponding to word-level filtering. Our ACU
filters however, are generated by feeding the whole sequence
of an instance into a meta-network, which we assume will
acquire general knowledge during joint training, thus corre-
sponding to instance-level filtering. The generated ACU fil-
ters are expected to be capable of not only exploiting global
information, but also adapting to each instance and capturing
detailed compositionality. One of the benefits of adopting
ACU is the avoidance of word ambiguity. Since LCU filters
for each word are uniquely stored in the look-up tensor U,
they remain the same even under different contexts where
our ACU filters solve such problem thanks to the flexibil-
ity brought by the meta-network. An illustration of the three
types of filtering can be found in Figure 2.

Our key insights are as follows: The usage of a jointly
trained meta-network acquires meta-knowledge among
texts, and the learned general knowledge is transferred to the
generated adaptive filters ACU so that it can capture local
compositionality more effectively than convolution, while
also being more adaptive to specific context than LCU.

Evaluation
Datasets and Tasks
We report results on 8 benchmark datasets for large-scale
text classification. These datasets are from (Zhang, Zhao,
and LeCun 2015) and the tasks involve topic classification,
sentiment analysis, and ontology extraction. The details of
the dataset can be found in Table 2.

Baselines
Our baselines include traditional methods and deep learn-
ing methods. For traditional methods, BoW, ngrams, ngrams
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Dataset Yelp P. Yelp F. Amaz. P. Amaz. F. AG Sogou Yah. A. DBP

BoW 92.2 58.0 90.4 54.6 88.8 92.9 68.9 96.6
ngrams 95.6 56.3 92.0 54.3 92.0 97.1 68.5 98.6
ngrams TFIDF 95.4 54.8 91.5 52.4 92.4 97.2 68.5 98.7
char-CNN (Zhang, Zhao, and LeCun 2015) 94.7 62.0 94.5 59.6 87.2 95.1 71.2 98.3
VDCNN (Conneau et al. 2017) 95.7 64.7 95.7 63.0 91.3 96.8 73.4 98.7
FastText (Joulin et al. 2017) 95.7 63.9 94.6 60.2 92.5 96.8 72.3 98.6
SWEM (Shen et al. 2018b) 93.8 61.1 - - 92.2 - 73.5 98.4
LEAM (Wang et al. 2018) 95.3 64.1 - - 92.5 - 77.4 99.0
LRE (Qiao et al. 2018) 96.4 64.9 95.3 60.9 92.8 97.6 73.7 98.9
ARE (Ours) 96.6 65.9 95.9 62.6 93.1 97.5 74.9 99.1

Table 1: Classification accuracies on 8 benchmarks. Traditional methods’ result come from (Zhang, Zhao, and LeCun 2015),
all deep learning baselines’ results come from their original paper.

Dataset Train Size Test Size Class Vocab Size
AG 120,000 7,600 4 42783
Sogou 450,000 60,000 5 99394
DBP. 560,000 70,000 14 227863
Yelp.P 560,000 38,000 2 115298
Yelp.F 650,000 50,000 5 124273
Yah.A. 1,400,000 60,000 10 361926
Amaz.P 3,600,000 400,000 2 394385
Amaz.F 3,000,000 650,000 5 356312

Table 2: Detailed information of datasets

and its TF-IDF is used as hand-crafted features, and logistic
regression is used as the classifier. For deep learning meth-
ods, char-CNN (Zhang, Zhao, and LeCun 2015) and VD-
CNN (Conneau et al. 2017) are both deep CNN-based mod-
els. FastText (Joulin et al. 2017), SWEM (Shen et al. 2018b),
LEAM (Wang et al. 2018) and LRE (Qiao et al. 2018) are
other neural network based methods. Among them, VDCNN
(Conneau et al. 2017) which is as deep as 29 layers, LEAM
(Wang et al. 2018) and LRE (Qiao et al. 2018) are the previ-
ous state-of-the-art methods.

Implementation Details
Input We use the same data preprocessing procedure as
Qiao et al. (2018), that we convert all the words into lower
case, and tokenize them using Standford tokenizer. The
words that only appeared once are removed out of the vo-
cabulary and we pad each document with length c at the start
and the end for filtering. Then each word is represented as a
one-hot vector by filling 1 at its index in the vocabulary.

Hyperparameters We tune the region size (2c+ 1) to be
9, embedding size to be 256. We also discuss the impact of
these hyperparameters in the following paragraph.

Training Since the meta-network is fully differentiable,
we train them together with the whole model with the same

optimizer and learning rate. We choose the batch size to be
16 and the learning rate to be 1 × 10−4 with Adam opti-
mizer (Kingma and Ba 2014), no regularization method is
used here.

Main Results
Table 1 contains the experimental results on 8 benchmark
datasets from (Zhang, Zhao, and LeCun 2015). All results
reported are averaged on five runs. From the results we can
see that the use of meta-network brings improvements on
7 out of 8 benchmarks, with a largest performance gain
of 1.7%, while also achieves state-of-the-art results on 5
datasets.

Comparison of the Number of Parameters
One of the motivations of adopting meta-network to gener-
ate context unit is to reduce the large memory cost in (Qiao
et al. 2018) where over 80% parameters are used as the
look-up tensor to generate LCU, due to its storage of the
whole vocabulary’s context embedding. The counterpart in
our method, ACU, however, greatly reduces the parameter
space since the look-up tensor is replaced by a more com-
pact meta-network which functions similarly.

If we denote v, h, r, n to be the vocabulary size, word
embedding size, region size and class number respectively
(r = 2c+ 1), then the total number of parameters for (Qiao
et al. 2018) and our method can be calculated as follows:

LRE : v × h︸ ︷︷ ︸
Emb.

+ v × h× r︸ ︷︷ ︸
LCU

+h× n+ n︸ ︷︷ ︸
FC

(1)

ARE(Ours) : v×h︸ ︷︷ ︸
Emb.

+h×(h×r)×r︸ ︷︷ ︸
ACUConv

+(2×h×r)︸ ︷︷ ︸
ACUBN

+h×n+n︸ ︷︷ ︸
FC

(2)

For text classification task, especially large-scale datasets
such as Yahoo Answers, v is several magnitudes’ larger than
other hyperparameters like h, r, n, and is the dominant factor
of the total number of parameters.

A comparison of the number of parameters between Qiao
et al. (2018) and ours can be found in Table 3. The first two
columns demonstrate the total parameters size in the whole
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Params (Qiao et al.
2018)’s Total

Ours Total LCU Only ACU Only

AG’s news 43,810,308 16,268,804 38,333,568 5,315,328
Sogou News 101,780,101 30,761,477 89,057,024 ∼

DBPedia 233,333,518 63,651,854 204,165,248 ∼
Yelp Review Polarity 118,065,410 34,832,130 103,307,008 ∼

Yelp Review Full 127,256,197 37,130,501 111,348,608 ∼
Yahoo! Answers 370,613,514 97,970,954 324,285,696 ∼

Amazon Review Polarity 403,850,498 106,278,402 353,368,960 ∼
Amazon Review Full 364,864,133 96,532,485 319,255,552 ∼

Table 3: Comparison of the number of parameters. ‘∼’ in the last column indicates that the number of parameters remains the
same on different datasets. It is worth noting that these parameters correspond to the models that achieve the best performances
where for (Qiao et al. 2018) region size and embedding size are 7 and 128, and for ours are 9 and 256 respectively.

(a) (b)

Figure 3: Effect of embedding size and region size. For (a) the embedding size is fixed to 128, and LRE(mul) refers to an
ensemble of region sizes of [3,5,7], for (b) the region size is fixed to 7. All competitor results come from Qiao et al. (2018)’s
paper.

architecture, and the last two columns indicate the parame-
ters size that is used to generate the context unit, correspond-
ing to the embedding look-up tensor U ∈ Rh×(2c+1)×v and
the meta-network respectively. From the table, we find that
our total parameter space is only ˜26% large as that in Qiao
et al. (2018), and if we only take the context unit generation
part into account and leave out the rest, our ACU generation
network reduced the LCU’s parameters’ number to less than
5%. It is worth to mention that if we choose the region and
embedding size to be 7 and 128 as that in Qiao et al. (2018),
the parameter space will be further reduced to nearly half
of that in Table 3 and our method still outperforms Qiao et
al. (2018)’s. Besides, our meta-network’s parameter space
is invariant to the vocabulary size, making it possible to be
applied in large-scale datasets with a large vocabulary size.

Effect of Embedding Size and Region Size
Apart from the main classification results, we also experi-
ment with different embedding and region sizes and com-

pare with Qiao et al. (2018)’s method. The results from Fig-
ure 3 show that our method outperforms LRE and its ensem-
ble of multiple region sizes with significant margins. More-
over, our method also performs better with different embed-
ding sizes except for 1024, in which case the output space
of the dynamically generated parameters is too large for the
meta-network to learn. Besides, we find that the optimal re-
gion and embedding size are different for ARE and LRE
(9/256 and 7/128) which indicates our ARE requires a larger
embedding size to contain more context information, and the
meta-network is able to capture long-distance patterns, lead-
ing to a larger optimal region size.

Visualization of Word Ambiguity Avoidance
In order to illustrate that our method is able to distinguish
context-sensitive words, we select the two words like and
well with different meanings and visualize their contribu-
tions to the sentiment analysis on Amazon Review Polarity
dataset. We adopt and modify the First-Derivative Saliency
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like well

positive
2.25 0.01      4.34 2.55 -0.67 5.30   1.99           2.58 10.34   2.72 5.13 2.80

neutral/negative
-5.30      -2.82    -3.20 -4.63 -3.53 -3.55 -3.42 -4.51 -2.81 -3.16 -1.82      -3.92

anyway I like the idea It arrived packaged Well and very promptly

didn't feel like the two main Well , what can I say

sentiment
word

Figure 4: Heatmaps of Samples from Amazon Review Polarity. Green denotes positive contribution and red denotes negative.
It demonstrates that our model is able to distinguish different meanings of the same word under different contexts.

strategy proposed in (Li et al. 2016) for visualization. The
results are shown in Figure 4.

We find that in the first row, the like conveys the positive
attitude in the sentence I like the idea, its derivative is greater
than other words, which means that it contributes most to
the final prediction of positive, the word well means of high
standard which also has positive effects on the classifica-
tion result, thus corresponding to the highest value. In the
second row, however, both words convey neutral or negative
attitude, where like is part of the phrase feel like and well is
a spoken expression, and the visualizations show that these
two words do not contribute as much as that in the first row
to the final sentiment prediction. These visualizations also
accord with our intuition.

Choice of the Meta-network
It is worth noting that the choice of meta-network can be
any differentiable architecture that is trainable using gradi-
ent descent. It can be multi-layer perceptron, convolutional
network, or recurrent network etc. In this paper we choose
a one-layer convolutional neural network to be our meta-
network for its superior performance and simple network
structure.

In order to further investigate the influence of the choice
of meta-network, we also experiment with the following
variants:

• SmallCNN: Instead of producing ACU of size Kwi
∈

Rh×(2c+1), the SmallCNN meta-network produces
Kwi

∈ Rh×1, and uses the same set of filters for all the
positions from [−c : c]. This meta-network contains less
parameters than our proposed CNN meta-network.

• FactoredCNN: The produced filters are Kwi
∈ Ru×1

where u is relatively small compared to h. Then the fil-
ters are transformed to K ′ ∈ Rh×(2c+1) by multiplying
a matrix P ∈ Ru×(h×(2c+1)). This model can be inter-
preted as factorizing the filters K′ into the multiplication
of two matrices: K′ = KP, where K is generated by the
meta-network, and P is updated by gradient descent. This
meta-network further reduces the number of parameters.
In the experiment, we set u = 32.

• LSTM: We use an LSTM to generate the filters K where
the hidden unit of LSTM is of size h× (2c+ 1).

Hypernet AG DBP Yahoo.A.
CNN 93.1 99.1 74.9
SmallCNN 93.0 98.9 74.9
FactoredCNN 92.7 98.9 74.3
LSTM 92.5 98.6 73.5
GRU 92.5 98.6 73.5
Ensemble (CNN+LSTM) 93.1 99.1 75.1

Table 4: Impact of the Choice of the Meta-network

• GRU: We use a GRU to generate filters K where the hid-
den unit of LSTM is of size h× (2c+ 1).

• Ensemble (CNN+LSTM): We generate two set of fil-
ters KCNN , KLSTM , and use the element-wise product
KCNN �KLSTM as the context unit.

We report the experimental results on AG’s News, DBPe-
dia and Yahoo Answers dataset due to page limit. From the
result we find that the recurrent structure is not so suitable
for generating adaptive filters, where the CNN variants with
smaller parameter space yield comparable performances.

Conclusion and Future Work
In this paper, we propose a novel region embedding method
called Adaptive Region Embedding using the meta-network
structure which is able to adaptively capture regional com-
positionality with a more compact parameter space. We also
discuss the internal relationships between these methods un-
der the Generalized Text Filtering framework, where our
method corresponds to the instance-level filtering which is
more flexible. By experimenting on benchmark text classifi-
cation datasets, we are able to gain higher classification per-
formances with a small parameter space, while also avoiding
word ambiguity. In future, we aim to design more efficient
structures of meta-network and combine techniques such as
attention mechanism into our model.
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