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Abstract

The recent artificial intelligence studies have witnessed great
interest in abstractive text summarization. Although remark-
able progress has been made by deep neural network based
methods, generating plausible and high-quality abstractive
summaries remains a challenging task. The human-like read-
ing strategy is rarely explored in abstractive text summariza-
tion, which however is able to improve the effectiveness of the
summarization by considering the process of reading com-
prehension and logical thinking. Motivated by the human-
like reading strategy that follows a hierarchical routine, we
propose a novel Hybrid learning model for Abstractive Text
Summarization (HATS). The model consists of three major
components, a knowledge-based attention network, a multi-
task encoder-decoder network, and a generative adversarial
network, which are consistent with the different stages of
the human-like reading strategy. To verify the effectiveness
of HATS, we conduct extensive experiments on two real-life
datasets, CNN/Daily Mail and Gigaword datasets. The exper-
imental results demonstrate that HATS achieves impressive
results on both datasets.

Introduction
Abstractive text summarization aims to generate condensed
and concise summaries that retain the salient information
and overall meaning of the source articles. As opposed to the
extractive text summarization, which extracts the best sum-
marizing components from the input documents, abstractive
summaries potentially contain new phrases that do not ap-
pear in the source articles. Abstractive text summarization
has attracted increasing attention recently due to its broad
applications in natural language processing (NLP).

Recent advances in the deep learning based approaches
(i.e., the sequence to sequence framework) (Rush, Chopra,
and Weston 2015; Nallapati et al. 2016) have taken the state-
of-the-art of abstractive text summarization to a new level.
The general idea behind these methods is to encode the in-
put documents as vector representations with a long short-
term memory (LSTM), and then use another LSTM as the
decoder to generate the corresponding summaries. The se-
quence to sequence (seq2seq) framework has become the
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mainstream due to their capability of capturing the seman-
tic and syntactic relations between raw documents and their
summaries in a scalable and end-to-end way.

Although great efforts have been devoted to the ab-
stractive text summarization, generating plausible and high-
quality abstractive summaries remains a challenging task in
practice, because computers lack human knowledge as well
as language capability to understand the entire text and then
write a summary highlighting its main points. Despite the
significance of human reading ability, to date, no attempt has
been devoted to exploring the human-like reading strategy in
abstractive text summarization (i.e., how humans summarize
an article).

When humans read, comprehend and summarize a piece
of text, their exploration of the reading process organizes it-
self most naturally into an examination of three phases: gen-
eral understanding of the document, task-specific reading
comprehension, and polishing process (Avery and Graves
1997; Toprak and Almacıoğlu 2009). Humans first set the
purpose of reading and pre-view the text quickly with prior
(background) knowledge to get a general understanding of
the document. As revealed by previous work (Tarchi and
others 2017), prior knowledge1 facilitates and enhances hu-
man reading, which is expected to have a large influence on
the reading process as it helps the reader to construct a co-
herent mental representation of the document and gain an
overview of the content in the document.

Reading comprehension is a central component of skilled
reading, which is essential to ensure the good understanding
of a document. To construct the meaning of a text, readers
have to go beyond literal information through the genera-
tion of inferences. Indeed, inferences are what make readers
move from a mere interpretation of individual sentences to
a global meaning that integrates multiple sentences (Tarchi
and others 2017). After reading the text thoroughly, readers
are required to find the task-specific information and make
many different types of inferences, such as pointing out the
category and retaining the salient information of the input
documents.

Similar to human cognitive process for writing a high-
quality summary, the readers will evaluate the generated

1Here, prior knowledge is defined as the reader’s actual knowl-
edge, available before a certain learning task.
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summary and then polish the summary when necessary
based on the evaluation signal. This polishing process cre-
ates opportunities for deeper understanding as well as er-
ror correction and ensures that the summarization goal has
been met. For example, in practice, the generated sum-
mary usually needs to be edited for accuracy and fluency
by adding further information and rephrasing the generated
words when necessary. Overall, if one desires to create a ma-
chine intelligence possessing such a reading comprehension
skill of humans for abstractive text summarization, explor-
ing these hierarchical stages of the human-like reading strat-
egy is quite necessary.

In this paper, we propose a novel Hybrid learning model
for Abstractive Text Summarization (HATS), which mim-
ics the process of how humans write a summary for a piece
of text. Similar to previous state-of-the-art methods (Paulus,
Xiong, and Socher 2017), the sequence to sequence frame-
work is used as the backbone of our summarization sys-
tem. HATS additionally consists of three components corre-
sponding to the hierarchical stages of the human-like read-
ing strategy. First, we design a knowledge-attention network
to get the general understanding of the document, which
leverages the commonsense knowledge from the knowledge
base (KB) as prior knowledge to distinguish the important
information from the input text and determine the focus
of the summary. It is intuitive that the importance of each
context word in the document is significantly influenced by
the entity mentions in KB. Second, to enhance the process
of reading comprehension and deeply understand a text, a
multi-task learning is proposed to jointly train the task of ab-
stractive summarization and two other related tasks: text cat-
egorization and syntax annotation. Specifically, text catego-
rization improves the quality of locating salient information
of the text and syntax annotation exploits word-level syntax
to generate high-quality summaries from the language mod-
eling perspective. Third, we employ a generative adversar-
ial network (GAN) to further refine the performance of ab-
stractive text summarization by using a discriminative model
to guide the training of the generative model in an adver-
sarial process. This adversarial process can eventually ad-
just the generative model to generate human-like and high-
quality abstractive summaries.

We summarize our main contributions as follows:

• To the best of our knowledge, this is the first work explor-
ing human-like reading strategy for abstractive text sum-
marization.

• We leverage the commonsense knowledge from the
knowledge base as prior knowledge to capture the impor-
tant information of the input document, obtaining the gen-
eral understanding of the document.

• A multi-task learning system is employed to jointly train
the abstractive summarization task and two other related
tasks: text categorization and syntax annotation. Specifi-
cally, text categorization helps to learn a category-specific
text encoder and improve the quality of locating salient in-
formation of the text. The syntax annotation helps to gen-
erate high-quality summaries from the language modeling
perspective, and thus alleviates the issues of incomplete

sentences and duplicated words.
• A generative adversarial network is employed to further

refine the summarization performance and generate more
plausible, high-quality and human-like abstractive sum-
maries.

• Extensive experiments are conducted to show that HATS
achieves substantial improvements over the compared
methods on the widely used CNN/Daily Mail and Giga-
word datasets.

Related Work
Abstractive Text Summarization There has been in-
creasing interest in generalizing the neural language model
to the field of abstractive summarization based on the
sequence-to-sequence model (Rush, Chopra, and Weston
2015; Nallapati et al. 2016; See, Liu, and Manning 2017).
For example, Rush, Chopra, and Weston (2015) were the
first to apply the attention-based encoder-decoder model
to abstractive text summarization, achieving state-of-the-art
performance on two sentence-level summarization datasets.
Nallapati et al. (2016) proposed the attention encoder-
decoder RNN that captured the hierarchical document struc-
ture and identified the key sentences and keywords in the
document. See, Liu, and Manning (2017) proposed a hybrid
pointer-generator network that allowed both copying words
from the source text via pointing and generating words from
a fixed vocabulary. Cao et al. (2018a) used existing sum-
maries as soft templates to guide the seq2seq model. Cao
et al. (2018b) exploited open information extraction and de-
pendency parse methods to extract actual fact descriptions
from the source text, and then forced the generation of sum-
maries conditioned on both the source text and the extracted
fact descriptions.

Several recent studies attempted to integrate the encoder-
decoder RNN and reinforcement learning paradigms for ab-
stractive summarization, taking advantages of both (Paulus,
Xiong, and Socher 2017; Liu et al. 2018). For example,
Paulus, Xiong, and Socher (2017) combined the maximum-
likelihood cross-entropy loss with rewards from policy gra-
dient reinforcement learning to reduce exposure bias. Liu
et al. (2018) proposed an adversarial process for abstrac-
tive text summarization, in which the generator is built as
an agent of reinforcement learning.

Human-like Reading Strategy in NLP In parallel, at-
tempts have also been made to study how people read the
natural language. Masson (1983) explored how people an-
swer questions by first skimming the document, captur-
ing relevant information, and carefully reading these con-
tent to get the answer. Furbach, Schon, and Stolzenburg
(2014) briefly introduced the principles of cognitive com-
puting and revealed that natural language question answer-
ing is an example of this new computing paradigm. Li, Li,
and Wu (2018) presented a human-like reading strategy for
document-based question answering. Based on the reading
strategy, they made a good combination of general under-
standing of both document and question. To date, no work
explores the human-like reading strategy for abstractive text
summarization. Our work takes the lead in this topic.
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Our Methodology
Problem Definition
Assume that each input article X = {x1, x2, ..., xn} has a
corresponding reference summary Y = {y1, y2, ..., yk} and
a category label C, where n and k denote the length of the
input document and reference summary, respectively. Given
an input articleX , the abstractive summarization task tries to
generate a summary Ŷ = {ŷ1, ŷ2, ..., ŷm}, wherem denotes
the length of the generated summary. For the text categoriza-
tion task, given an input article X , our objective is to predict
the category label Ĉ for the input article. For syntax anno-
tation, we have Z = {z1, z2, ..., zm} denoting the Combi-
natory Category Grammar (CCG) (Steedman and Baldridge
2011) supertag sequence for the corresponding summary Y
of source text X . CCG uses a set of lexical categories to
represent constituents, which provides a connection between
syntax and semantics of natural language. CCG supertag an-
notation (Clark 2002) is a task to assign lexical categories to
each word in a piece of text.

Architecture of Our Approach
As discussed in Section 1, there are three phases (general
understanding of the document, task-specific reading com-
prehension, and polishing process) when humans read, com-
prehend and summarize a piece of text. Accordingly, we pro-
pose a hybrid learning model HATS to simulate the process
of how humans summarize an article. As depicted in Figure
1, HATS also consists of three components: a knowledge-
based attention module, a multi-task learning module, and a
generative adversarial network module. Next, we will elabo-
rate each component of the proposed HATS model in details.

Knowledge-based Attention Module
The knowledge-based attention module leverages the com-
monsense knowledge in KB as prior knowledge to learn a
knowledge-aware document encoder of our sequence to se-
quence framework, getting the general understanding of the
document.

Initial Context Representations
Each word x in the input text is mapped to a low-
dimensional embedding v ∈ Rde by embedding layers,
where de denotes the dimension of word embedding. Then,
the hidden states of words in the document are learned by
LSTM layers. Formally, given the input word embedding vk
at index k in the input text, the hidden state hk ∈ Rdc (dc
is the number of hidden states for each LSTM unit) can be
updated from the previous hidden state hk−1, which is com-
puted by

hk = LSTM(hk−1, vk) (1)

Thus, given the input document X , we can obtain
the initial contextual document representation Hinit =
[h1, ..., hn], where n is the length of the input article X .
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Figure 1: The overall architecture of our model.

Initial Knowledge Representations
We perform entity mention detection by n-gram matching
and provide a set of top-N entity candidates from KB for
each entity mention in the document. The embeddings of en-
tities in KB are learned by DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014). Formally, we present candidate entities for the
entity mention at time step k as Ek = {ek1, ek2, ..., ekN} ∈
RN×dkb , where dkb is the dimension of the entity embedding
in KB. Then, the candidate entities are averaged to form the
knowledge representation for the k-th word in the document:
Ēk = 1

N

∑N
i=1 eki ∈ Rdkb .

After obtaining the knowledge representation for each en-
tity mention in the document, a CNN layer is then employed
to capture the local n-gram information and learn a high
level knowledge representation Einit ∈ Rn×dk (dk is the
number of hidden states of CNN):

Einit = CNN(Ē) (2)

We refer the interested readers to (Kim 2014) for the im-
plementation details of CNN in text modeling.

Knowledge-aware Document Representations
We design a multi-view co-attention network (MCN) to dis-
till the crucial information from both context and knowledge
representations. Specifically, MCN makes uses of the inter-
active guidance between the context and knowledge repre-
sentations to supervise the modeling of each other. In ad-
dition, MCN adopts the multi-view attention mechanism to
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capture the important information from different representa-
tion subspaces at different positions.

Formally, MCN takes as input the initial knowledge rep-
resentation as attention source to learn the knowledge-aware
context representation:

Hfinal = flat(Σ ·H init) (3)
Σ = [Σ1,Σ2, . . . ,Σn] (4)

Σi = softmax (%(hi, µ(Einit))) (5)

%(hi, µ(Einit)) = tanh(U1hi + V1µ(Einit) + b1) (6)

where flat is an operation that flattens matrix into vector
form; U1 and V1 are attention parameters to be learned; b1
is the bias term; Σ ∈ Rb×n is the attention matrix, Σi ∈ Rb
indicates the importance of the i-th word of the input doc-
ument in multiple hops of attention, and b is the number of
hops of attention; each row of attention matrix denotes one
hop of attention on the whole document, namely a single-
head attention.

Similarly, we can use initial context representation as at-
tention source to learn the context-aware knowledge repre-
sentation for the input document, denoted as Efinal.

Finally, the knowledge-aware context representation and
context-aware knowledge representation are concatenated to
form the final knowledge-aware representation for input ar-
ticle X: emb = {[Hfinal

1 , Efinal
1 ], . . . , [Hfinal

n , Efinal
n ]} ∈

R(n×(dc+dk)).

Multi-task Learning Module
Motivated by the fact that humans have no difficulty per-
forming text summarization because they have the capabil-
ities of multiple domains (Zhao et al. 2018), we propose a
multi-task encoder-decoder module to mimic the process of
active reading.

Text Categorization Task
The abstractive text summarization task shares its encoder
with the text categorization task. For the text categorization
task, we feed the knowledge-aware document representation
emb into a task-specific fully-connected layer followed by a
softmax layer to predict the category probability distribution:

Ĉ = softmax (Vtext · tanh(Utext · emb + btext)) (7)

where Ĉ is prediction probabilities of text categories; Vtext ,
Utext are weight matrices, and btext is bias term.

The parameters of text categorization task are learned in
a supervised manner. In particular, given a labeled training
data set {(X1:M , C1:M )}, we minimize directly the cross-
entropy between the predicted label distribution Ĉ and the
ground truth distribution C as the objective function:

J text
ML (θ1) = −

M∑
i=1

L∑
j=1

Cij log(Ĉij), (8)

where Ĉi is the prediction probabilities of the i-th sample,
Ci is the ground truth label of the i-th sample, L is the num-
ber of category classes,M is the number of training samples,
θ1 denotes the parameters related to text categorization.

Syntax Annotation and Abstractive Text
Summarization Tasks
Shared LSTM Decoder LSTM decoder is shared by the
abstractive summarization task and the syntax annotation
task, which is essentially a language model for estimating
the contextual probability of the next word except that it
is conditioned on the output of the encoder. We use the
knowledge-aware document representation (i.e., emb) as the
initial state of the LSTM decoder. On each decoding step t,
the decoder receives the input ut (while training, ut is the
embedding of the previous word of the reference summary;
at test time it is the embedding of the previous word emitted
by the decoder) and update its hidden state st as

st = LSTM(st−1, ct, ut) (9)

where ct is the context vector at time step t. It can be com-
puted as a weighted sum of the hidden states of the en-
coded input representation emb. Formally, we use the atten-
tion mechanism to calculate the attention weights βt and the
context vector ct as

ct =

n∑
i=1

βt,i · embi, βt,i = softmax (ft,i) (10)

ft,i = vT tanh(Wh · embi +Ws · st + battn) (11)

where Wh, Ws and battn are learnable parameters.
The context vector ct can be viewed as the representation

of the source text at time step t. We then concatenate the
context vector ct and the decoder hidden state st at time step
t and feed it to a linear function to produce the hidden vector
of the decoder:

Ot = V [st, ct] + b (12)
The generation probabilities of the t-th word and the t-th

CCG supertag can be computed by:

P sum.
t = P (yt|Ŷ1:t−1;X) = softmax (U sum.Ot + bsum)

(13)

P syn.
t = P (zt|Ŷ1:t−1;X) = softmax (U syn.Ot + bsyn.)

(14)

where the U sum., U syn., bsum., bsyn. are parameters to be
learned. The superscripts syn. and sum denote the param-
eters related to supertag annotation and abstractive summa-
rization, respectively. Ŷ1:t−1 denotes the previously gener-
ated tokens. Note that P sum

t denotes the word distribution
over the whole vocabulary at time step t.

However, the pure generation model sometimes suffers
from the out-of-vocabulary generation issue and produces
many “UNK” tokens in the summary. To alleviate this
limitation, copy mechanism is widely adopted in recent
abstractive summarization systems (Gulcehre et al. 2016;
Gu et al. 2016; See, Liu, and Manning 2017). Similar to the
work (See, Liu, and Manning 2017), in this study the gen-
eration probability pgen ∈ [0, 1] for time step t is calculated
from the context vector ct, the decoder state st, and the de-
coder input ut:

Pgen = σ(V Tc ct + V Ts st + V Tu ut + bgen) (15)
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where vectors Vc, Vs, Vu and scalar bgen are learnable pa-
rameters.

For each timestep t, given a candidate tokenwj (j denotes
the index of the vocabulary), if wj is out-of-vocabulary to-
ken, then pwt (wj) = 0, if it does not appear in the source
text, then at,j = 0.

P̄ sum.
t (wj) = Pgen∗P sum.

t (wj)+(1−Pgen)∗
∑

at,j (16)

For the syntax annotation and summarization generation
subtasks, we employ the minimum negative log-likelihood
estimation. Specifically, the objective is the sum of the neg-
ative log likelihood of the target word/supertag at each de-
coding step.

Jsum.
ML (θ2) = −

m∑
t

log(P̄ sum.
t ) (17)

Jsyn.
ML (θ3) = −

m∑
t

log(P syn.
t ) (18)

where m is the length of the sequence during decoding
phase.

Joint Training
For the purpose of improving the shared LSTM encoder and
LSTM decoder, we train these three related tasks simultane-
ously. The joint multi-task objective function is minimized
by:

JML(Θ) = λ1J
text
ML + λ2J

sum.
ML + λ3J

syn.
ML (19)

where Θ denotes the collective parameters of the model. λ1,
λ2 and λ3 are hyper-parameters that determine the weights
of the three objectives. Here, we set λ1 = λ2 = 0.45, and
λ3 = 0.1, which are determined by performing the grid
search on a validation set.

Policy Gradient for Summary Generation However, the
maximum likelihood estimation (MLE) method suffers from
two main issues. First, the evaluation metric is different from
the training loss. Second, the input of the decoder at each
time step is often the previous ground-truth word during
training. This exposure bias (Ranzato et al. 2016) leads to er-
ror accumulation at the testing phase. To alleviate the afore-
mentioned issues when generating summaries, we also op-
timize directly for ROUGE-1 since it achieves best results
among the alternatives such as METEOR (Lavie and Agar-
wal 2007) and BLEU (Papineni et al. 2002), by using policy
gradient algorithm, and minimize the negative expected re-
wards:

Jsum
RL = (r(ŷ)− r(ys))

m∑
t

log p(yst |Y s1:t−1;X) (20)

where r(ŷ) is the reward of a greedy decoding generated se-
quence ŷ, and r(ys) is the reward of sequence ys generated
by sampling among the vocabulary at each step.

After pre-training the proposed model by minimizing the
joint ML objective (see Eq.(19)), we switch the model to fur-
ther minimize a mixed training objective, integrating the re-
inforcement learning objective Jsum

RL with the original multi-
task loss JML:

Jmixed(Θ) = βJML + (1− β)Jsum
RL (21)

where β is a hyper-parameter, and we set β=0.1; Θ denotes
the set of parameters of the encoder-decoder framework.

Generative Adversarial Network Module
Generative adversarial network (GAN) (Goodfellow et al.
2014) is proposed to refine the performance of text summa-
rization. GAN consists of a generative model G and a dis-
criminative model D that compete in a minimax game with
two players: The discriminative model tries to distinguish
the real high-quality summaries from the training dataset or
generated by G, and the generative model G tries to fool the
discriminative model to generate plausible summaries. Con-
cretely, D and G play the following game on L(D,G):

min
G

max
D

L(D,G) =EY∼Pdata
[logD(Y )]+

EȲ∼G[log(1−D(Ȳ ))]
(22)

Here, Y is the input data from the training set, Ȳ is the data
generated by the generative model.

Discriminative Model D
The discriminative model is a binary classifier and aims at
distinguishing the input sequence as originally generated by
humans or synthesized by machines. We encode the input
sequence with a CNN as it shows great effectiveness in text
classification (Kim 2014). We use multiple filters with vary-
ing window sizes to obtain different features and then apply
a max-over-time pooling operation over the features. These
pooled features are passed to a fully connected softmax layer
whose output is the probability of being “original”.

In the adversarial process, using the discriminator as a re-
ward function can further improve the generative model it-
eratively by dynamically updating the discriminative model.
Once we obtain more realistic and high-quality summaries
generated by G, we re-train the discriminative model as:

minΦ−EY∼Pdata
[logDΦ(Y )]−EȲ∼GΘ

[log(1−DΦ(Ȳ ))]
(23)

where Φ and Θ represent the parameter sets of discrimina-
tive model D and generative model G.

Generative Model G
When the discriminative model D is obtained and fixed, we
are ready to update the generative model G. The loss func-
tion of our generative G is defined by Eq.(21). According to
the policy gradient theorem (Sutton et al. 2000), we compute
the gradient of Jmixed w.r.t. the parameters Θ:

OΘJmixed =
1

T

T∑
t=1

∑
yt

R((Ŷ1:t−1, X), yt) · OΘ(GΘ(yt|Ŷ1:t−1, X))

=
1

T

T∑
t=1

Eyt∈GΘ
[R((Ŷ1:t−1, X), yt)OΘ log p(yt|Ŷ1:t−1, X)]

(24)

where R((Ŷ1:t−1, X), yt) is the action-value function, and
we have R((Ŷ1:t−1, X), yt) = Dφ(Ŷ1:T ), T is the length
of the generated sequence. We update the parameters using
stochastic gradient descent, Ŷ1:t is the generated summary
up to time step t, X is the source text to be condensed.
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Experimental Setup
Datasets Description
We conduct experiments on two widely used real-life
datasets. The detailed properties of the datasets are described
as follows.
CNN/Daily Mail Corpus We first evaluate our model on
the CNN/Daily Mail Corpus (Hermann et al. 2015), which
is widely used in abstractive text summarization. The dataset
comprises news stories in CNN/Daily Mail websites paired
with multi-sentences human-generated summaries. Totally,
it consists of 287,226 training instances, 13,368 validation
instances and 11,490 test instances. There are 781 tokens on
average of articles and 56 tokens on average of summaries.

Gigaword Corpus The Gigaword corpus is originally in-
troduced by (Graff et al. 2003). Following (Nallapati et al.
2016), we utilize publicly available scripts to preprocess the
data2. Totally, there are about 3.8M training instances, 400K
validation and test instances.

In all experiments, data preprocessing is performed. Each
text is tokenized with a widely used natural language pro-
cessing toolkit NLTK3. We build independent vocabularies
for articles and summaries by keeping the top 20,000 words
with the highest frequency. The rest words that are not in-
cluded in the vocabulary are replaced by the “UNK” token.

For the text categorization task, we explore the source
webpage of each news story, which provides a specific cat-
egory for each article. We divide these data into 11 cat-
egories: Sports, Showbiz, Politics, Opinion, Tech, Travel,
Health, Crime, Living, Business, and Other.

For the syntax annotation task, the training data is anno-
tated with CCG supertags4, where each word has a corre-
sponding dependency label of supertags.

Implementation Details
Following the setting of (See, Liu, and Manning 2017), we
use the non-anonymized version and truncate the input ar-
ticles/target summaries to a maximum length of 400/100
words. We adopt Freebase as our KB in the experiments.
100-dimensional word2vec (Mikolov et al. 2013) embed-
dings are used to initialize the word embeddings for both
datasets. For both datasets, the recurrent parameter matrices
are initialized as orthogonal matrices, and we initialize the
other parameters with the normal distribution N (0, 0.01).
We set both dc and dk to 200. For the convolutional layer of
discriminative model D, we set the number of feature maps
of CNN to 200. The width of the convolution filters is set to
be 2.

We first pre-train ML model for summarization with a
learning rate of 0.15 (See, Liu, and Manning 2017). Then
switch to HATS training using the Adam optimizer (Kingma
and Ba 2014), with a mini-batch size of 16 and a learning
rate of 0.001. We use the beam search with a beam size of 5
during decoding. Dropout (with the dropout rate of 0.2) and

2Code is available at https://github.com/kyunghyuncho/dl4mt-
material

3http://www.nltk.org
4https://github.com/uwnlp/EasySRL

L2 regularization (with the weight decay value of 0.001) are
used to avoid overfitting.

Baseline Methods
In the experiments, we compare the proposed model with
several strong competitors, including ABS and ABS+ (Nal-
lapati et al. 2016), RAS-LSTM and RAS-Elman (Chopra,
Auli, and Rush 2016), CopyNet (Gu et al. 2016), LenEmb
(Kikuchi et al. 2016), PGC (See, Liu, and Manning 2017),
DeepRL (Paulus, Xiong, and Socher 2017), and GANsum
(Liu et al. 2018).

Experimental Results
In this section, we evaluate the proposed HATS model from
both quantitative and qualitative perspectives.

Quantitative Evaluation
Following the same evaluation as in (Nallapati et al. 2016),
we evaluate HATS items of Rouge-1, Rouge-2, Rouge-L,
and human evaluation. Rouge-1 and Rouge-2 (Lin 2004)
are widely used evaluation metrics for summarization tasks,
which estimate the consistency between n-gram occurrences
in the generated and reference summaries. Rouge-L com-
pares the longest common sequence between the generated
summary and the reference summary. For human evaluation,
we evaluate the informativeness and fluency of the generated
summaries by randomly select 1000 examples from the test
set. Similar to (Yang et al. 2018), three human evaluators
were invited to score each summary generated by all mod-
els based on their informativeness (if the summary captures
important information in the article) and fluency (if the sum-
mary is written in well-formed English). They are required
to score the summaries by taking the above 2 factors into
consideration, where 1 indicates the lowest score and 10 in-
dicates the highest score.

We report the ROUGE scores and human evaluation re-
sults in Tables 1-2. Our HATS model substantially and con-
sistently outperforms the compared methods by a notice-
able margin on both datasets. PGC consistently perform bet-
ter than ABS. This may be because that the copy mecha-
nism used in PGC can handle the out-of-vocabulary words.
DeepRL and GANsum are better than PGC, because they
utilize reinforcement learning to alleviate the exposure bias
problem and optimize directly the evaluation metrics. Our
model performs even better than the strong competitors by
exploring the human-like reading strategy in abstractive text
summarization.

To better understand the training process, we visualize the
learning curves of HATS as shown in Figure 2. Due to the
limited space, we only report the learning curves with re-
spect to Rouge-L for CNN/Daily and Gigaword datasets.
The other evaluation metrics exhibit a similar trend. As
shown in Figure 2, during pre-training, our model converges
after about 7 epochs for CNN/Daily and 10 epochs for Gi-
gaword. The Rouge-L scores are further improved on both
datasets when employing the GAN framework, verifying
that the generator G becomes better with the effective feed-
back (reward) from the discriminator D.
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Methods Rouge-1 Rouge-2 Rouge-L Human
ABS 35.46 13.30 32.65 3.76

ABS+ 35.63 13.75 33.01 3.99
RAS-LSTM 37.46 15.11 34.45 4.51
RAS-Elman 38.25 16.28 35.43 4.73

PGC 39.53 17.28 36.38 5.43
DeepRL 39.87 15.82 36.90 5.35
GANsum 39.92 17.65 36.71 5.72

HATS 42.16 19.17 38.35 6.35
w/o KB 41.54 18.64 37.53 5.86
w/o text 41.77 18.76 37.85 5.93

w/o syntax 42.05 18.98 38.12 5.82
w/o GAN 41.35 18.43 37.44 5.98

Table 1: Quantitative evaluation results for CNN/Daily Mail
dataset. All the scores have a 95% confidence interval of at
most ±0.25.

Methods Rouge-1 Rouge-2 Rouge-L Human
ABS 29.55 11.32 26.42 4.05

ABS+ 29.78 11.89 26.97 4.32
RAS-LSTM 32.55 14.70 30.03 4.78
RAS-Elman 33.78 15.97 31.15 4.92

PGC 33.44 16.09 31.43 5.94
DeepRL 35.16 16.75 31.68 5.33
GANsum 35.04 16.55 31.96 6.32

HATS 36.78 18.65 33.96 6.53
w/o KB 35.35 17.54 31.98 6.23
w/o text 36.08 18.17 32.35 6.35

w/o syntax 36.42 18.36 32.37 6.14
w/o GAN 35.27 17.23 31.71 6.09

Table 2: Quantitative evaluation results for Gigaword
dataset. All the scores have a 95% confidence interval of at
most ±0.25.
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Figure 2: Learning curves of HATS in terms of Rouge-L.

Ablation Study
To investigate the effect of each component of the HATS
model, we also perform the ablation test of HATS in terms of
discarding external knowledge from KB (denoted w/o KB),
text categorization (denoted as w/o text), syntax generation
(denoted as w/o syntax), and generative adversarial network
framework (denoted as w/o GAN), respectively.

The ablation results are summarized in Table 1-2 (bottom
four lines). Generally, all three factors contribute a great im-

provement to HATS. From the results, we can observe that
the Rouge and human evaluation scores decrease sharply
when discarding the generative adversarial network frame-
work. This is within our expectation since the RL reward
signal coming from the discriminative model D guides the
model to enjoy considerable success in generating high-
quality and human-like summaries. In addition, common-
sense knowledge from KB also contributes to the effective-
ness of HATS. This verifies that the prior knowledge from
KB helps to learn more comprehensive document represen-
tations. However, the improvement of Rouge scores by inte-
grating syntax annotation is relatively limited. This may be
explained by the fact that the issue of the incomplete sen-
tence has little effect on the automatic evaluation metrics of
summarization. In contrast, syntax annotation contributes a
great improvement on human evaluation scores.

Case Study
To evaluate the proposed model qualitatively, we report
some generated summaries by different models. Due to lim-
ited space, we randomly choose one generated summary by
DeepRL and our model from test data for comparison. The
results are reported in Table 3. We observe that our model
tends to generate more specific and meaningful summary
given the source article. For example, our model success-
fully catches the key point of “dark matter” and “the size
of the map”, while DeepRL attends over some trivial facts
instead of the key facts.

Input: “University of Waterloo astrophysicists have cre-
ated a 3D master map of the universe spanning nearly
two billion light years. The innovative spherical map of
galaxy superclusters is the most complete picture of our
cosmic neighbourhood to date. It will help astrophysi-
cists understand how matter is distributed in the universe
and provide key insights into dark matter one of physics’
greatest mysteries. Scroll down for video a slice through
the Map of the nearby Universe. Our Milky Way Galaxy
galaxy is in the centre, marked by a cross.(...)”
Ground-truth: “Map spans nearly two billion light
years. Will help astrophysicists predict the universe’s ex-
pansion. Could help identify where, and how much dark
matter exists.”
DeepRL: “University of Waterloo created a 3D master
map of galaxy universe spanning nearly two billion light
years. The innovative spherical map galaxy superclusters
is the most complete picture of our cosmic neighbour-
hood to date. It will help astrophysicists understand how
matter is distributed in the universe and provide key in-
sights into dark matter. The lighter blue and white areas
on the map represent greater concentrations of galaxies.”
Ours: “3D master map of the universe spans nearly two
billion light years. Innovative spherical map of galaxy su-
perclusters is the most complete picture. Will help astro-
physicists understand the universe distribution and pro-
vide key insights of dark matter.”

Table 3: Example summaries.
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Conclusion and Future Work
In this paper, we propose a hierarchical human-like strat-
egy to mimic how humans approach the task of abstractive
text summarization. The experimental results showed that
the proposed HATS model achieved higher ROUGE scores
and human evaluation results than several strong baseline
methods. Moreover, the experimental results of human eval-
uation also verified that HATS could generate summaries
with better informativeness and fluency. In the future, we
would explore automatic evaluation metrics that may better
match the human judgments.
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Hermann, K. M.; Kočiskỳ, T.; Grefenstette, E.; Espeholt, L.; Kay,
W.; Suleyman, M.; and Blunsom, P. 2015. Teaching machines to
read and comprehend. In ICNIPS, 1693–1701. MIT Press.
Kikuchi, Y.; Neubig, G.; Sasano, R.; Takamura, H.; and Okumura,
M. 2016. Controlling output length in neural encoder-decoders.
EMNLP 1328–1338.
Kim, Y. 2014. Convolutional neural networks for sentence classi-
fication. In EMNLP.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Lavie, A., and Agarwal, A. 2007. Meteor: An automatic metric
for mt evaluation with high levels of correlation with human judg-
ments. In ACL, 228–231.
Li, W.; Li, W.; and Wu, Y. 2018. A unified model for document-
based question answering based on human-like reading strategy. In
AAAI, 604–611.
Lin, C.-Y. 2004. Rouge: A package for automatic evaluation of
summaries. Text Summarization Branches Out.
Liu, L.; Lu, Y.; Yang, M.; Qu, Q.; Zhu, J.; and Li, H. 2018. Gen-
erative adversarial network for abstractive text summarization. In
AAAI.
Masson, M. E. 1983. Conceptual processing of text during
skimming and rapid sequential reading. Memory & Cognition
11(3):262–274.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J.
2013. Distributed representations of words and phrases and their
compositionality. In NIPS, 3111–3119.
Nallapati, R.; Zhou, B.; Gulcehre, C.; Xiang, B.; et al. 2016. Ab-
stractive text summarization using sequence-to-sequence rnns and
beyond. In SIGNLL, 280–290.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. Bleu: a
method for automatic evaluation of machine translation. In ACL,
311–318.
Paulus, R.; Xiong, C.; and Socher, R. 2017. A deep reinforced
model for abstractive summarization. ICLR.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: online
learning of social representations. In SIGKDD, 701–710.
Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2016. Se-
quence level training with recurrent neural networks. In ICLR.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural attention
model for abstractive sentence summarization. In EMNLP, 379–
389.
See, A.; Liu, P. J.; and Manning, C. D. 2017. Get to the point:
Summarization with pointer-generator networks. In ACL, 1073–
1083.
Steedman, M., and Baldridge, J. 2011. Combinatory catego-
rial grammar. Non-Transformational Syntax: Formal and Explicit
Models of Grammar 181–224.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning with
function approximation. In NIPS, 1057–1063.
Tarchi, C., et al. 2017. Comprehending and recalling from text: The
role of motivational and cognitive factors. Issues in Educational
Research 27(3):600.
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