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Abstract

Transition-based dependency parsing is a fast and effective
approach for dependency parsing. Traditionally, a transition-
based dependency parser processes an input sentence and pre-
dicts a sequence of parsing actions in a left-to-right manner.
During this process, an early prediction error may negatively
impact the prediction of subsequent actions. In this paper,
we propose a simple framework for bidirectional transition-
based parsing. During training, we learn a left-to-right parser
and a right-to-left parser separately. To parse a sentence, we
perform joint decoding with the two parsers. We propose
three joint decoding algorithms that are based on joint scor-
ing, dual decomposition, and dynamic oracle respectively.
Empirical results show that our methods lead to competitive
parsing accuracy and our method based on dynamic oracle
consistently achieves the best performance.

Introduction
Dependency parsing is a task with a long history in natu-
ral language processing. The goal of dependency parsing is
to discover syntactic relations among words in a sentence.
Dependency trees have been shown to provide effective syn-
tactic information in many semantic tasks, such as semantic
role labeling (Lei et al. 2015), machine translation (Chen
et al. 2017) and sentence classification (Ma et al. 2015).
Generally speaking, there are two types of models for de-
pendency parsing, graph-based models (McDonald 2006)
and transition-based models (Yamada and Matsumoto 2003;
Nivre 2003). Known for its efficiency in training and decod-
ing, transition-based parsing has been very popular for many
languages. A transition-based parser processes the input sen-
tence in a sequential manner and outputs a series of ac-
tions to incrementally construct a parse tree. During this pro-
cess, each action is typically predicted using a discriminative
classifier, such as a SVM (Yamada and Matsumoto 2003;
Nivre, Hall, and Nilsson 2006), a stack LSTM (Dyer et al.
2015) or a BiLSTM (Kiperwasser and Goldberg 2016).

Traditionally, transition-based dependency parsing pro-
cesses the sentence in a left-to-right manner. During this pro-
cess, a prediction mistake, especially one in the early stage,
may negatively impact many subsequent predictions. Mo-
tivated by bidirectional neural machine translation (Liu et
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al. 2016), we propose to alleviate this problem and improve
parsing accuracy with a simple framework of bidirectional
transition-based parsing. During training, in addition to the
traditional left-to-right parser, we also learn a right-to-left
parser by reversing the word order of all the training sen-
tences. For parsing, we propose three joint decoding algo-
rithms that can be used to parse a new sentence based on
both of the learned parsers. The first algorithm runs the two
parsers and then selects one of the two parse trees that has
a higher summed score given by the two parsers. The sec-
ond algorithm is based on the dual decomposition technique
(Rush and Collins 2012) which is an iterative algorithm that
encourages the two parsers to gradually reach consensus.
The last algorithm follows the same idea, but during each
iteration it guides the two parsers with dynamical oracles
(Goldberg and Nivre 2012). To the best of our knowledge,
we are the first to employ the dynamical oracle mechanism
in the decoding period rather than the training period.

Our framework is quite general and can be applied to
any transition-based dependency parsing model with well-
defined dynamic oracles. In our experiments, we apply our
framework to the transition-based parser of Kiperwasser and
Goldberg (2016). We evaluate our model on two popular
treebanks (PTB and CTB) as well as eight additional tree-
banks from the Universal Dependency dataset. Experimental
results show that our proposed algorithms significantly out-
perform the unidirectional baselines and our third algorithm
based on dynamic oracles has the highest accuracy.

Related Work
Transition-based Dependency Parsing
A transition-based dependency parser incrementally builds a
dependency tree by a sequence of actions. Some of the early
transition-based parsers are list-based (Covington 2001), but
more recently stack-based parsers (Nivre 2003), also known
as shift-reduced parsers, are more widely used. There are
two basic transition systems: the arc-standard system (Nivre
2004) and the arc-eager system (Nivre 2003), which can
be combined to form the arc-hybrid system (Kuhlmann,
Gómez-Rodrı́guez, and Satta 2011; Kiperwasser and Gold-
berg 2016).

Many traditional machine learning methods can be used
to train a transition-based parser, such as SVM (Yamada
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and Matsumoto 2003), maximum entropy classification (At-
tardi 2006), memory based learning (Attardi 2006), multi-
class averaged perceptron (Attardi et al. 2007) and so on.
With the rise of deep learning, neural networks have recently
been used to train dependency parsers (Stenetorp 2013;
Chen and Manning 2014; Dyer et al. 2015; Kiperwasser
and Goldberg 2016), which leads to state-of-the-art depen-
dency parsing accuracies. For decoding, the simplest way
is Athe greedy algorithm that always performs the action
with the highest local score given each parsing configura-
tion, but there also exist other methods such as beam search
(Zhang and Clark 2008) and dynamic programming (Huang
and Sagae 2010).

Parser Ensemble
Our work is related to parser ensemble, which aims at com-
bining multiple different parses of the same sentence. Sagae
and Tsujii (2007) combine the parse trees produced by a
left-to-right parser and a right-to-left parser with a maxi-
mum spanning tree voting scheme in the CoNLL Shared
Task 2007 (Nivre et al. 2007). Zhang and Clark (2008)
trained a graph-based parser and a transition-based parser,
combined the scoring of the two parsers, and then used the
transition-based parser for decoding. Surdeanu and Manning
(2010) systematically studied different ensemble methods
based on seven different parsers from MSTParser (McDon-
ald et al. 2005) and Malt Parser (Nivre, Hall, and Nilsson
2006). While our framework can be seen as combining two
unidirectional parsers, most of the ensemble methods cannot
be directly applied to our setting.

Oracles in Dependency Parsing
To effectively train a dependency parser, one key compo-
nent is an oracle, which is employed to generate optimal ac-
tion sequences from gold trees. The oracle is used to gener-
ate training targets to learn a classifier or used to determine
whether to perform updates in training a beam search clas-
sifier.

There are two kinds of oracles: static oracles and dynamic
oracles. Static oracles refer to producing a single static se-
quence of transitions that is supposed to be followed in its
entirety. However, at test time, the parser’s classifier may
be faced with configurations which were not observed in
training. This phenomenon may lead to error propagation
and significantly decrease the parsing accuracy. Rather than
defining a deterministic transition sequence, dynamic ora-
cles permit configurations which are not a part of a gold
derivation. While dynamic oracles have been widely em-
ployed for training transition-based models (Goldberg and
Nivre 2012; 2013; Goldberg, Sartorio, and Satta 2014), they
have never been used in the decoding period.

Transition-Based Dependency Parsing
Given a sentence x that consists of a word sequence, a
transition-based parser produces a sequence of actions that
gradually construct an output parse tree y. We choose the
parser of Kiperwasser and Goldberg (2016) as our baseline.

Algorithm 1 Greedy Transition-Based Parsing
Input: a sentence x
Output: a dependency parse tree y

1: c← Initial(x)
2: while not Terminal(c) do
3: â← argmaxa∈Legal(c) f(c, a)

4: c← â(c)

5: y← c.T
6: return y

Model
The transition system uses an abstract machine that gener-
ates an action given a parsing configuration. Each config-
uration c consists of a stack σ, a buffer β and an arc set T .
The initial configuration c0 contains an empty stack, a buffer
containing a special index ROOT followed by all the words
of the sentence, and an empty arc set.

We use the arc-hybrid transition system (Kuhlmann,
Gómez-Rodrı́guez, and Satta 2011), which defines three
types of actions named SHIFT, LEFT and RIGHT. The
SHIFT action pushes the first item b0 of the buffer to the
stack. The LEFTl action (l is a dependency label) pops the
stack, let the modifier of the poped item s0 be the first item of
the buffer b0, and add the arc with label l to the arc set. The
RIGHTl action pops the stack, let the modifier of the poped
item s0 be the new top item of the stack s1, and add the arc
with label l to the arc set. We use σ|s1|s0 to denote the stack
σ with top items s0 and s1, b0|β to denote the buffer β with
the first item b0.

SHIFT[(σ, b0|β, T )] = (σ|b0, β, T )
LEFTl[(σ|s1|s0, b0|β, T )] = (σ|s1, b0|β, T ∪ {(b0, s0, l)})
RIGHTl[(σ|s1|s0, β, T )] = (σ|s1, β, T ∪ {(s1, s0, l)})
We use the greedy algorithm to parse sentences. Algo-

rithm 1 shows the procedure. The abstract machine starts
with the initial configuration c0. For each configuration c,
one needs to choose an action a to transfer to the next con-
figuration. We define a score function f for actions and se-
lect the action â that leads to the largest score f(c, â). The
transition ends when the buffer of c becomes empty. The arc
set T then contains all the dependency arcs that constitute
the output parse tree y.

The action score for each configuration f(c, a) is com-
puted as follows. We run a BiLSTM on the input sentence
and produce a vector vi for each word xi in the sentence.

vi = BiLSTM(x1:n, i)

The vector representation of a configuration c = (σ, β, T )
is the concatenation of the vectors of the top three items of
σ and the first item of β.

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0

The score function f(c, a) is computed by a multi-layer
perceptron. The input to the multi-layer perceptron is the
vector representation of configuration c, and the output is
the scores of all the valid actions under configuration c.

f(c, a) =MLP (φ(c))[a]
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C
(
SHIFT; c = (σ|s1|s0, b|β, T ), Tg

)
=

∣∣∣{(k, b, l) ∈ Tg|k ∈ s1 ∪ σ} ∪ {(b, k, l) ∈ Tg|k ∈ s0 ∪ s1 ∪ σ}∣∣∣
C
(
LEFTl; c = (σ|s1|s0, b|β, T ), Tg

)
=

∣∣∣{(k, s0, l) ∈ Tg|k ∈ s1 ∪ β} ∪ {(s0, k, l) ∈ Tg|k ∈ b ∪ β}∣∣∣
C
(
RIGHTl; c = (σ|s1|s0, b|β, T ), Tg

)
=

∣∣∣{(k, s0, l) ∈ Tg|k ∈ b ∪ β} ∪ {(s0, k, l) ∈ Tg|k ∈ b ∪ β}∣∣∣
Table 1: Transition costs for the arc-hybrid system

Training
Our training algorithm follows Kiperwasser and Goldberg
(2016). Given a training sentence, we convert its gold de-
pendency tree into a set1 of sequences of transition actions.
For each action, we use the following hinge loss.

max(0, 1−max
a∈G

MLP (φ(c))[a] + max
a∈A\G

MLP (φ(c))[a])

where A is the set of all possible actions and G is the set of
gold (correct) actions. The total loss is the summation of the
loss for each action.

Bidirectional Transition-Based Parsing
A traditional transition-based parser processes a sentence
from left to right. During this process, prediction mistakes
in the early stage can negatively impact future predictions,
leading to a series of subsequent mistakes. We get inspira-
tion from bidirectional neural machine translation (Liu et
al. 2016) and propose bidirectional transition-based parsing.
Specifically, we train a left-to-right parser as well as a right-
to-left parser. The right-to-left parser is trained by reversing
the word order of all the training sentences. During pars-
ing, we perform joint decoding using both parsers. Below
we discuss three algorithms for joint decoding.

Vanilla Joint Scoring
The simplest method is to design a joint scoring function of
parse trees s(t), based on which we select from the parse
trees {y, z} produced by the two unidirectional parsers, i.e.,
we output argmaxt∈{y,z} s(t). Here we simply use a scor-
ing function that is the summation of the scores computed
by the two unidirectional parsers:

s(t) = F (t) +G(t)

where t is a parse tree, F and G are the parse tree scoring
functions of the two parsers.

Joint Decoding with Dual Decomposition
The joint scoring method is rather limited in that it cannot
produce any new parse trees. A better method would be to
encourage each unidirectional parser to gradually modify its
parse tree in order to satisfy the other parser, in hope that the
two parsers would eventually reach agreement on a single
new parse tree. Here we use the dual decomposition tech-
nique (Dantzig and Wolfe 1960; Rush and Collins 2012) for
this purpose.

1The gold action at a configuration may not be unique in some
transition systems.

We use Y,Z to denote the sets of all possible parse trees
produced by the two unidirectional parsers. Typically we
have Y = Z . We represent a parse tree y by a matrix: if the
modifier of the i-th word of the sentence is the j-th word,
then y(i, j) = 1; otherwise y(i, j) = 0. Our goal is to maxi-
mize F (y)+G(z) under the constraint that y = z. By using
Lagrangian relaxation, we can optimize the two parsers y
and z respectively by adding and subtracting the same term
to F (y) and G(z). The summation of the two parts is called
the Lagrangian dual L(u).

L(u) =max
y∈Y

(F (y) +
∑
i,j

u(i, j)y(i, j))+

max
z∈Z

(G(z)−
∑
i,j

u(i, j)z(i, j))

It can be proved that L(u) is an upper bound of our goal,
and we can iteratively update u trying to reach the tightest
bound. In the case where the two parsers cannot reach agree-
ment after the maximal iterations, we simply return one of
them. Note that the greedy decoding algorithm (Algorithm
1) cannot solve the argmax exactly and therefore we can
only approximately optimize the dual decomposition objec-
tive using Algorithm 2.

Joint Decoding Guided by Dynamic Oracle
Dynamic oracles (DO) (Goldberg and Nivre 2012) are a use-
ful technique in training a transition-based parser. When the
current configuration of the parser deviates from a given
gold parse, the dynamic oracle suggests one or more actions
that help the parser return to the gold parse in the fastest
possible way.

Goldberg and Nivre (2012) derived the dynamic oracle
function for the arc-eager transition system. Here we briefly
describe the dynamic oracle function proposed by Kiper-
wasser and Goldberg (2016) for the arc-hybrid system.

o(a; c, T ) =

{
true, if C(a; c, T ) = 0
false, otherwise

The oracle function o is a Boolean function, whose value
is true if and only if the cost function C is equal to 0. C is a
function of the input configuration c, action a and gold tree
Tg as shown in Table 1.

During joint decoding, we hope to encourage the two uni-
directional parsers to reach an agreement. We follow an it-
erative procedure similar to the dual decomposition method
during which the two parsers produce increasingly similar
parse trees. In each iteration, our idea is to regard the parse
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Algorithm 2 Decoding with Dual Decomposition
Input: a sentence x, the number of iteration K
Output: a dependency parse tree y

1: u← 0
2: y(0) ← 0
3: z(0) ← 0
4: for k = 1 to K do
5: y(k) ← DECODE(x,u,y(k−1), 1)
6: z(k) ← DECODE(x,u, z(k−1),−1)
7: if y(k) = z(k) then
8: return y(k)

9: else
10: u← u− αk(y

(k) − z(k))

11: return y(K)

12:
13: function DECODE(x,u,y, sgn)
14: c← Initial(x)
15: while not Terminal(c) do
16: v← 0
17: for a in Legal(c) do
18: if a is not SHIFT then
19: arc← a(c).T\c.T
20: v(a)← sgn · u(arc)y(arc)
21: â← argmaxa∈Legal(c) f(c, a) + v(a)

22: c← â(c)

23: y← c.T
24: return y

tree produced by one parser as the gold parse and use a dy-
namic oracle to bias the other parser so that it produces a
parse tree closer to the gold parse than it would without
the dynamic oracle. More concretely, at each step of pars-
ing with the second parser, we add a reward to the scores of
the actions suggested by the dynamic oracle so as to bias the
action choice.

The algorithm is shown in Algorithm 3. First, we obtain
two parse trees y(0) and z(0) from the two unidirectional
parsers. Then, at the k-th iteration, we regard z(k−1) as the
gold tree to guide the first parser to produce y(k), and like-
wise we regard y(k−1) as the gold tree to guide the second
parser to produce z(k). With a proper reward value (cdo), the
parse trees produced by the two parsers would become in-
creasingly similar.

While Algorithms 2 and 3 have very similar forms, they
differ in the set of actions whose scores are modified in the
decoding subroutine. In the dual decomposition algorithm,
only the LEFT and RIGHT actions that produce arcs upon
which the two parsers disagree may have their scores modi-
fied. In the algorithm guided by dynamic oracles, at least one
action in each valid configuration would have its score mod-
ified. Therefore, dynamic oracles lead to significantly more
change to the scoring function, which potentially leads to
much faster convergence of the parses produced by the two
parsers.

Finally, because Algorithms 2 and 3 have similar forms,

Algorithm 3 Decoding Guided by Dynamic Oracle
Input: a sentence x, a constant reward cdo, the number of

iteration K
Output: a dependency parse tree y

1: y(0) = None
2: z(0) = None
3: for k = 1 to K do
4: y(k) ← DECODE(x, z(k−1), cdo)
5: z(k) ← DECODE(x, y(k−1), cdo)
6: if y(k) = z(k) then
7: return y(k)

8: return y(K)

9:
10: function DECODE(x,yg, cdo)
11: c← Initial(x)
12: while not Terminal(c) do
13: v← 0
14: if yg is not None then
15: for a ∈ Legal(c) and o(a, c,yg) do
16: v(a) = cdo
17: â← argmaxa∈Legal(c) f(c, a) + v(a)

18: c← â(c)

19: y← c.T
20: return y

Dataset #Train #Dev #Test
PTB 39832 1700 2416
CTB 16091 803 1910
UD-de 13814 799 977
UD-en 12543 2002 2077
UD-es 14187 1400 426
UD-fr 14554 1478 416
UD-it 13121 564 482
UD-nl 12269 718 596
UD-pl 13774 1745 1727
UD-zh 3997 500 500

Table 2: Statistics of the ten treebank datasets

we can combine these two methods by adding up their mod-
ifications to the scoring functions.

Experiments
Data
We evaluate our framework on the Wall Street Journal cor-
pus of Penn Treebank (PTB), Chinese Treebank 5 (CTB),
and eight additional treebanks of different languages from
Universal Dependencies 2.2 (UD)2.

For PTB, we use Stanford Dependencies (Silveira et al.
2014) to convert the original treebank to the dependency
version and use the standard 2-21/22/23 split for training,
development and testing.

For CTB, we use Penn2Malt3 to convert the original tree-
2http://universaldependencies.org/
3http://stp.lingfil.uu.se/ñivre/research/Penn2Malt.html
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Method PTB CTB
UAS LAS UAS LAS

L2R 93.54± 0.12 92.22± 0.17 86.21± 0.14 85.02± 0.13
R2L 93.56± 0.18 93.27± 0.25 86.44± 0.07 85.22± 0.07
Vanilla 94.35± 0.05 92.91± 0.11 87.36± 0.07 86.07± 0.06
DD 94.35± 0.05 93.01± 0.09 87.41± 0.09 86.18± 0.09
DO 94.60± 0.04 94.02± 0.13 88.07± 0.07 87.54± 0.14
DD + DO 94.60± 0.04 94.02± 0.13 88.09± 0.08 87.52± 0.10
C&M14 91.80 89.60 83.90 82.40
Dyer15 93.10 90.90 87.20 85.70
Weiss15 93.99 92.05 - -
Andor16 94.61 92.79 - -
Ballesteros16 93.56 91.42 87.65 86.21
K&G16 93.90 91.90 87.60 86.10
Zhang16 94.10 91.90 87.84 86.15
Shi17 94.53± 0.05 - 88.62± 0.09 -

Table 3: Results on PTB and CTB

Method DE EN ES FR
UAS LAS UAS LAS UAS LAS UAS LAS

L2R 81.62 76.14 88.87 86.79 86.52 82.90 87.33 83.17
R2L 81.54 76.03 89.13 87.10 86.78 83.05 87.63 83.57
Vanilla 82.62 76.90 90.20 88.02 87.49 83.60 88.25 84.04
DD 82.64 77.12 90.23 88.24 87.52 83.78 88.30 84.77
DO 83.02 79.58 90.56 89.48 87.83 85.69 88.81 87.82

Method IT NL PL ZH
UAS LAS UAS LAS UAS LAS UAS LAS

L2R 91.41 89.25 87.07 83.43 94.77 92.98 85.16 82.64
R2L 91.46 89.33 87.74 84.44 95.39 93.81 86.01 83.26
Vanilla 92.19 89.90 88.56 84.72 95.94 93.96 87.04 84.24
DD 92.22 90.61 88.58 85.04 95.96 94.47 87.06 84.38
DO 92.31 91.58 89.41 87.41 96.10 94.62 87.75 86.46

Table 4: Results on UD

Hyperparameter Value
Word embedding dimension 100
POS tag dimension 25
BiLSTM layers 2
LSTM dimensions 200/200
MLP units 100

Table 5: Hyperparameters used in the experiments

bank to the dependency version with the heading rules of
(Zhang and Clark 2008). We use the training, development
and testing split of the dataset following (Zhang and Clark
2008).

We choose eight additional treebanks from UD, including
Chinese (zh-GSD), Dutch (nl-Alpino), English (en-EWT),
French (fr-GSD), German (de-GSD), Italian (it-ISDT), Pol-
ish (pl-LFG) and Spanish (es-GSD). See Table 2 for statis-
tics of the datasets.

For PTB, we use predicted POS tags generated by Stand-
ford Tagger (Toutanova et al. 2003) with an accuracy of

98.0%. For CTB and UD, we use the gold POS tags.
We use pretrained word embeddings from GloVe4 (Pen-

nington, Socher, and Manning 2014) in our experiments on
PTB and pretrained word embeddings from fastText5 (Bo-
janowski et al. 2017) in our experiments on UD. We use
word2vec (Mikolov et al. 2013) to train Chinese word em-
beddings on Wikipedia for our experiments on CTB.

Setup
For dual decomposition, we decrease the update rate αk over
time as recommended by (Rush and Collins 2012). Specifi-
cally, we set αk = cdd

t+1 where t is the number of times the
dual value increases and cdd is a hyperparameter. For our
method based on dynamic oracle, we also decrease the re-
ward cdo over time in a similar way to make the decoding
process stabler.

Since convergence is not guaranteed for both dual decom-
position and our method based on dynamic oracle, we set a
maximum iteration K = 100. If no agreement is reached

4https://nlp.stanford.edu/projects/glove/
5https://fasttext.cc/docs/en/crawl-vectors.html
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sults from the two bidirectional mod-
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Figure 2: Comparisons between re-
sults from the left-to-right model and
the DO method
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Figure 3: Comparisons between re-
sults from the right-to-left model and
the DO method

after K iterations, we collect all the 2K parse trees pro-
duced during decoding and select the best parse following
joint scoring.

We compare six methods: the left-to-right parser (L2R),
the right-to-left parser (R2L), vanilla joint scoring (Vanilla),
joint decoding with dual decomposition (DD), joint decod-
ing guided by dynamic oracles (DO), and the combination
of DD and DO (DD+DO).

For each dataset, we train each unidirectional parser for
20 epochs, collect all the models after each of the 20 epochs,
and choose the best model based on the UAS metric on the
development set. We then fix the unidirectional parsers and
tune the hyperparameters of our joint decoding algorithms
(cdd ∈ {0, 0.005, 0.01} and cdo ∈ {0, 1, 2, 3, 4}) based on
the UAS on the development set. We repeat the process for
five times with different random seeds and report the average
accuracy and the standard deviation on the test set.

Table 5 shows all the other hyperparameters used in our
experiments.

Figure 4: Accuracy vs. iteration for DD (corresponding to
do=0), DO (corresponding to dd=0), and DD+DO

Results
We compare our methods with the following neural
transition-based parsers on PTB and CTB: C&M14 (Chen
and Manning 2014), Dyer15 (Dyer et al. 2015), Weiss15
(Weiss et al. 2015), Ballesteros16 (Ballesteros et al. 2016),
Andor16 (Andor et al. 2016), K&G16(Kiperwasser and
Goldberg 2016), Zhang16 (Zhang, Cheng, and Lapata
2017), and Shi17 (Shi, Huang, and Lee 2017). As can be
seen from Table 3, our methods are very competitive com-
pared with previous methods and our DO-based algorithm
produces the highest accuracies on PTB.

It can also be seen that DD only slightly outperforms
Vanilla, while DO achieves significant improvement over
both Vanilla and DD. Combining DD with DO does not lead
to any improvement over DO.

We also run our methods without hyperparameter tuning
on the eight UD datasets. As can be seen from Table 4, our
three joint decoding algorithms consistently outperform the
unidirectional baselines and the DO-based algorithm consis-
tently achieves the highest accuracy.

Figure 4 plots the change of accuracy during our itera-
tive joint decoding algorithms (DD, DO and DD+DO) on
the WSJ development set. It can be seen that the DO-based
method not only leads to higher accuracy, but also converges
very fast (within 4 iterations). In comparison, DD does not
converge within 100 iterations. It can also be seen that when
cdo is small, combining DD into the DO-based method is
helpful; but when cdo is large, adding DD to the DO-based
method has little impact on the accuracy.

Analysis
For the two unidirectional parsers, we also analyze the dis-
tribution of erroneous actions with respect to the relative po-
sition (normalized to the range between 0 and 1) of the ac-
tion in the complete action sequence produced by the parser
(Figure 1). For the right-to-left parser, we reverse the di-
rection of the x-axis to align the histogram with that of the
left-to-right parser. It can be seen that both parsers are more
likely to make mistakes at the later stage of parsing: the
left-to-right parser makes significantly more mistakes in the
range of [0.6, 0.9], while the right-to-left parser makes sig-

Figure 1: Left: Comparisons between results from the two bidirectional models; Middle: Comparisons between results from the
left-to-right model and the DO method; Right: Comparisons between results from the right-to-left model and the DO method
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of DD and DO (DD+DO).

For each dataset, we train each unidirectional parser for
20 epochs, collect all the models after each of the 20 epochs,
and choose the best model based on the UAS metric on the
development set. We then fix the unidirectional parsers and
tune the hyperparameters of our joint decoding algorithms
(cdd ∈ {0, 0.005, 0.01} and cdo ∈ {0, 1, 2, 3, 4}) based on
the UAS on the development set. We repeat the process for
five times with different random seeds and report the average
accuracy and the standard deviation on the test set.

Table 5 shows all the other hyperparameters used in our
experiments.

Figure 2: Accuracy vs. iteration for DD (corresponding to
do=0), DO (corresponding to dd=0), and DD+DO

Results
We compare our methods with the following neural
transition-based parsers on PTB and CTB: C&M14 (Chen

and Manning 2014), Dyer15 (Dyer et al. 2015), Weiss15
(Weiss et al. 2015), Ballesteros16 (Ballesteros et al. 2016),
Andor16 (Andor et al. 2016), K&G16(Kiperwasser and
Goldberg 2016), Zhang16 (Zhang, Cheng, and Lapata
2017), and Shi17 (Shi, Huang, and Lee 2017). As can be
seen from Table 3, our methods are very competitive com-
pared with previous methods and our DO-based algorithm
produces the highest accuracies on PTB.

It can also be seen that DD only slightly outperforms
Vanilla, while DO achieves significant improvement over
both Vanilla and DD. Combining DD with DO does not lead
to any improvement over DO.

We also run our methods without hyperparameter tuning
on the eight UD datasets. As can be seen from Table 4, our
three joint decoding algorithms consistently outperform the
unidirectional baselines and the DO-based algorithm consis-
tently achieves the highest accuracy.

Figure 2 plots the change of accuracy during our itera-
tive joint decoding algorithms (DD, DO and DD+DO) on
the WSJ development set. It can be seen that the DO-based
method not only leads to higher accuracy, but also converges
very fast (within 4 iterations). In comparison, DD does not
converge within 100 iterations. It can also be seen that when
cdo is small, combining DD into the DO-based method is
helpful; but when cdo is large, adding DD to the DO-based
method has little impact on the accuracy.

Analysis
For the two unidirectional parsers, we also analyze the dis-
tribution of erroneous actions with respect to the relative po-
sition (normalized to the range between 0 and 1) of the ac-
tion in the complete action sequence produced by the parser
(Figure Left). For the right-to-left parser, we reverse the
direction of the x-axis to align the histogram with that of
the left-to-right parser. It can be seen that both parsers are
more likely to make mistakes at the later stage of parsing:
the left-to-right parser makes significantly more mistakes in
the range of [0.6, 0.9], while the right-to-left parser makes
significantly more mistakes in the range of roughly [0.1, 0.4]
(i.e., [0.6, 0.9] in the right-to-left order). This phenomenon
suggests that error propagation exists in transition-based de-
pendency parsers.

We then analyze the error distribution of the DO-based
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Gold
ROOT Ah , yes , something called a Star Chamber .

# Left-to-right Parser Right-to-left Parser

0
ROOT Ah , yes , something called a Star Chamber . ROOT Ah , yes , something called a Star Chamber .

1
ROOT Ah , yes , something called a Star Chamber . ROOT Ah , yes , something called a Star Chamber .

2
ROOT Ah , yes , something called a Star Chamber . ROOT Ah , yes , something called a Star Chamber .

Figure 3: Example of joint decoding guided by dynamic oracles. The red arcs denote correct dependency arcs.

method. The comparisons of the error distributions of the
two unidirectional parsers and the DO-based method are
shown in the middle and right of Figure . We can see that
overall the DO-based method makes less errors than the two
unidirectional parsers and its errors are also more evenly dis-
tributed.

Case Study

Figure 3 shows the the intermediate parsing results during
the iterative process of the DO-based method on the input
sentence Ah, yes, something called a Star Chamber.

At the beginning of the algorithm, we use the left-to-right
parser and the right-to-left parser to produce two parse trees,
which have 5 and 6 correct arcs respectively. After the first
iteration, we get two new parse trees using the left-to-right
parser and the right-to-left parser, which have 7 and 9 correct
arcs respectively. After the second iteration, the two parse
trees have 10 and 9 correct arcs respectively. From this ex-
ample we can see that with more iterations, the parse trees
produced by the two parsers become increasingly similar as
well as increasingly close to the gold tree.

Conclusion
In this paper, we propose a framework for bidirectional tran-
sition based dependency parsing. During training, we learn
two unidirectional parsers separately. During parsing, we
perform joint decoding using the two parsers with three al-
gorithms based on joint scoring, dual decomposition, and
dynamic oracles respectively. We evaluate our methods on
ten datasets and observe that our methods lead to competi-
tive parsing accuracy and our method based on dynamic ora-
cles consistently achieves the best performance. Our code is
based on Kiperwasser and Goldberg (2016) and is available
at https://github.com/yuanyunzhe/bi-trans-parser.
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