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Abstract

In autonomous exploration a mobile agent must adapt to new
measurements to seek high reward, but disturbances cause a
probability of collision that must be traded off against ex-
pected reward. This paper considers an autonomous agent
tasked with maximizing measurements from a Gaussian Pro-
cess while subject to unbounded disturbances. We seek an
adaptive policy in which the maximum allowed probability
of failure is constrained as a function of the expected reward.
The policy is found using an extension to Monte Carlo Tree
Search (MCTS) which bounds probability of failure. We ap-
ply MCTS to a sequence of approximating problems, which
allows constraint satisfying actions to be found in an any-
time manner. Our innovation lies in defining the approximat-
ing problems and replanning strategy such that the probabil-
ity of failure constraint is guaranteed to be satisfied over the
true policy. The approach does not need to plan for all mea-
surements explicitly or constrain planning based only on the
measurements that were observed. To the best of our knowl-
edge, our approach is the first to enforce probability of fail-
ure constraints in adaptive sampling. Through experiments on
real bathymetric data and simulated measurements, we show
our algorithm allows an agent to take dangerous actions only
when the reward justifies the risk. We then verify through
Monte Carlo simulations that failure bounds are satisfied.

Introduction
A common mission in environment exploration is identifica-
tion and confirmation of high reward regions. In underwa-
ter exploration, for example, autonomous vehicles may be
tasked with locating regions with high temperatures, algal
and plankton blooms, or high concentrations of pollutants
or hydrocarbons for the purpose of identifying suitable lo-
cations for follow-up studies. When these follow-up studies
are expensive and time consuming, for example involving
the transportation and setup of expensive equipment, it is in-
sufficient to minimize global uncertainty because the costs
associated with performing the follow-up study at a location
falsely believed to be valuable may exceed the costs of the
initial autonomous sampling mission. Instead, samples must
be taken at potential sites to confirm their importance, with
a higher measurement being more valuable.
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Such missions are performed because the environment is
not well understood. New measurements contribute to an
improved understanding as they are received, and impact the
future of the mission. We require an adaptive system that is
capable of updating its plan in response to new measure-
ments to direct it towards high reward locations.

However, disturbances and noises acting on an agent
make safe autonomous exploration difficult. In underwa-
ter applications, the seafloor surface is often known rela-
tively well, but uncertainty in position accumulates due to
unknown currents and inaccuracy in on-board inertial navi-
gation. Navigating close to obstacles incurs some probabil-
ity of collision, leading to failure, but it is often impossible
to conduct a mission without accepting some level of risk.
There is therefore a tradeoff between allowed risk and ex-
pected reward over which the autonomous system should be
able to reason.

In this paper, we describe a method of planning an adap-
tive policy that maximizes the expected reward of samples,
while limiting the probability of failure of the policy. We
define a method of specifying tolerance for failure as a func-
tion of reward through a risk bounding function, and en-
force the chance constraint that the expected rate of failure
is bounded by the risk bounding function applied to the ex-
pected reward. Our method is based on Monte Carlo Tree
Search (MCTS), which allows a solution to be found in an
anytime manner, making it suitable for on-board autonomy
or missions with tight time constraints. Furthermore, we are
able to provably enforce the chance constraint without plan-
ning for all measurements explicitly, and without limiting
allowed probability of failure based only on observations.

Related Work
Adaptive sampling tasks an agent with exploring an environ-
ment that is unknown. The environment is either character-
ized by a known uncertainty field (Hollinger and Sukhatme
2014; Yilmaz et al. 2008), or described by a stochastic
process such as a Gaussian Process (GP) (Binney, Krause,
and Sukhatme 2010; Krause, Singh, and Guestrin 2008;
Low, Dolan, and Khosla 2009). It is typical to discretize
available actions and perform discrete space search, though
notable exceptions exist, including using Rapidly Exploring
Random Trees (Hollinger and Sukhatme 2014) or genetic al-
gorithms (Hitz et al. 2017). We will assume a GP model and
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a discrete space of actions.
When tasked with maximizing information measures in a

GP, the information depends only on the locations of sam-
ples and not their values (Binney, Krause, and Sukhatme
2010; Krause and Guestrin 2007). It follows that replanning
in response to new information is not necessary, and sam-
pling may be directed to regions where the GP is uncertain,
but nonetheless believed to be low. In contrast, we maximize
measurements of the GP, which depends explicitly on obser-
vations and requires an adaptive policy.

GP level set estimation is closer to our objective in that it
selects sample locations to determine where a GP lies above
or below a threshold (Bryan et al. 2006; Gotovos et al. 2013).
However, no preference is given towards identifying regions
above the threshold, nor is there consideration of the mag-
nitude of the GP in high value regions. Our goal to detect
locations with high values is similar to that of active search
(Garnett et al. 2012), though we consider reward to be a real
number instead of binary.

Even with discrete action and state spaces, the problem
quickly becomes intractable as the search tree branches in
both actions and the full history of observations. Fixed hori-
zon planning strategies that consider only the next few ac-
tions (Krause, Singh, and Guestrin 2008; Marchant et al.
2014; Singh, Nowak, and Ramanathan 2006) cannot guar-
antee chance constraints, as no actions may be possible that
satisfy failure bounds late in the policy, and setting a proba-
bility threshold for each action can lead to highly suboptimal
policies. An entire policy that branches on measurements is
found in the work by Low, Dolan, and Khosla (2009), though
their experimental results imply small action spaces and rel-
atively few measurements, whereas we consider on the order
of 20 actions.

An alternative approach used by Hitz et al. (2017) is to
plan and begin execution of a full policy that does not de-
pend on measurement outcomes but satisfies a cost con-
straint. The policy is updated by replanning in response to
new measurements. We adopt a similar approach, while the
key differences between this work and Hitz et al. in this re-
gard are that our chance constraint applies to the policy as a
whole and depends on measurement outcomes. To the best
of our knowledge, this is the first time chance constraints, or
generally constraints on an expectation over a policy, have
been applied to adaptive sampling.

Chance constrained planning has been examined for mo-
tion planning (Blackmore et al. 2010; Ono and Williams
2008), but bounds are applied to non-adaptive plans. While
chance constraint satisfaction is guaranteed if it is satis-
fied for every outcome, the result can be highly suboptimal,
and may not even be possible after repeatedly low rewards.
RAO* applies chance constraints over policies for Partially
Observable Markov Decision Processes (Santana, Thiébaux,
and Williams 2016), but requires well informed heuristics to
converge on a policy quickly. Our approach differs in that
we reason over a more general notion of a chance constraint
through a risk bounding function, do not explicitly branch
on measurements, and use MCTS to produce a policy under
limited planning time without heuristics.

A different approach for chance constrained planning is to

maximize a sum of reward and a weighted penalty for fail-
ure in an unconstrained problem. There is no known method
of selecting weights to guarantee chance constraint satis-
faction, so the unconstrained problem is solved repeatedly
with different weights until the solution is observed to sat-
isfy the chance constraint (Geibel and Wysotzki 2005). We
consider large problems for which it is intractable to produce
a full policy and calculate the probability of failure. Instead,
we define sequential approximating problems that guarantee
chance constraint satisfaction without needing to explicitly
compute reward or probability of failure for the full policy.

Chance Constrained Markov Decision Process
Formulation

We consider a mobile agent with uncertain position taking
measurements in a Gaussian Process with known mean and
covariance kernel. The vehicle is tasked with maximizing
the expected sum of n measurements, while bounding the
probability it collides with the environment. We frame this
problem as a Chance Constrained Markov Decision Process
(CCMDP) with a risk bounding function (Rossman 1977;
Ayton and Williams 2018), and we summarize the construc-
tion in this section.

CCMDP Definition
A CCMDP with a risk bounding function is defined as a
tuple 〈S, C,A, T,R, s0, n,∆〉, where S is a set of states,
C ⊆ S is a set of safe states, A is a set of actions avail-
able from each state, T : S × A × S → [0, 1] gives the
probability of transitioning from a state to another by taking
an action, R : S × A × S → [0,∞) gives the reward of
entering a state from another by taking an action, s0 ∈ C is
a starting state, n is the number of actions that can be taken,
and ∆ [0,∞) → [0, 1] is a risk bounding function which
specifies the allowable probability of failure as a function
of expected reward. Define a state history as an ordered se-
quence of states and actions,

h0:t = 〈s0, a0, s1, a1, . . . , st〉 . (1)

The objective is to find a policy π∗ : S → A defined by

π∗ = argmax
π

E [g(H0:n)|s0, π]

s.t. p

(
n∨
k=1

Sk /∈ C

)
≤ ∆ (E [g(H0:n)|s0, π]) ,

(2)

where

g(h0:n) =

n−1∑
k=0

R(sk, ak, sk+1). (3)

Our use of capital letters emphasizes where variables are
considered random.

State Formulation
The agent is unable to detect its position exactly, but mod-
els its location at the time of measurement t by a Gaussian
distribution with known parameters, Xt ∼ N (µt,Σt). Af-
ter each measurement, an action at ∈ A is chosen which
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moves the agent a fixed amount d(at), while it is subject
to unbounded noise Wk ∼ N (0,Σw). We assume ac-
tions apply identically to each location, so that Xt+1 ∼
N (µt + d(at),Σt + Σw). After movement, a measurement
yt+1 ∈ R is taken.

Since the agent is never aware of or capable of respond-
ing to its true position history, a state st includes a history
of position distributions. These are characterized by vectors
of mean positions µ0:t and covariances Σ0:t. In addition,
the agent responds to its entire history of observations y0:t,
and whether a failure has occurred is indicated with a binary
variable Ft that is zero when no failure has occurred and one
otherwise,

st = 〈µ0:t,Σ0:t,y0:t, Ft〉 . (4)

The initial state defines the initial mean, covariance, and
prior measurements, and is assumed to be safe. C is the set
of all states where Ft = 0.

Reward Function
Our problem tasks an agent with maximizing the sum of its
measurements. This objective directs the agent to confirm
the presence of high value measurements, where value in-
creases with the magnitude of the measurement.

We model the agent as receiving reward immediately after
measurement. Upon collision with the environment, which
is described by a forbidden region F , it is unable to perform
the measurement, but previous rewards are not lost. For an
underwater vehicle, this case occurs when collision triggers
a mission abort and surface sequence, which takes the ve-
hicle out the field until a diagnostic can be run and parts
can be replaced, but previous measurements are recoverable.
Successful abort sequences after a collision are common for
slow vehicles with line of sight to the surface, and we leave
the less common case where data is lost in collision to future
research.

Since arbitrarily low measurements are possible, we spec-
ify a minimum reward Rmin for each action. We then scale
the problem such that the minimum reward is 0, and provide
0 reward for failure. Intuitively, this specifies that all mea-
surements below a certain threshold are uninteresting.

We are interested in sampling high reward locations for
the purpose of confirming where high measurement values
reside, and there is little benefit to repeatedly measuring a
global maximum. We therefore define a threshold distance
lmin and impose that a measurement within lmin of a previ-
ous measurement is worth zero reward.

Altogether, this specifies a reward for measurements yi:t
with mean location history µ0:t of

R̃(µ0:t,yi:t,Fi:t) =

t∑
k=i

max(0, yk −Rmin) 1(µ0:k, Fk),

(5)
where

1(µ0:t, Ft) =

{
1 Ft = 0 and

∧t−1
k=0 ‖µt − µk‖ ≥ lmin

0 otherwise
.

(6)

R̃ is introduced for later convenience, while the CCMDP
reward function is

R(st−1, at−1, st) = R̃(µ0:t, yt, Ft). (7)

State Transitions
We model the environment which the agent measures as a
Gaussian Process. Gaussian Processes have been frequently
applied for informative planning because they can be fully
specified with intuitive mean and covariance models, and
due to their capability to model a large class of func-
tions, output probability distributions over measurements,
and support exact inference in polynomial time (Williams
and Rasmussen 2006).

A GP is fully specified by a mean function m(x) and a
covariance kernel k(x, x′), which specify the mean value at
a point and the covariance between two points respectively.
Let x0:t be the vector of past locations with corresponding
measurements y0:t, and x∗ be a vector of prediction loca-
tions. Define M(x) as the vector [M(x)]i = m(xi) and
K(x,x′) as the matrix [K(x,x′)]ij = k(xi,x

′
j). Then the

posterior probability distribution of the predicted measure-
ments is a Gaussian,

y∗|y0:t,x0:t,x∗ ∼ N
(
θt∗, κ

t
∗
)
, (8)

where

θt∗ = M(x∗) +K(x∗,x0:t)K
−1
yy (y0:t −M(x0:t)) , (9)

κt∗ = K(x∗,x∗)−K(x∗,x0:t)K
−1
yy K(x0:t,x∗) + σ2I,

(10)
Kyy = K(x0:t,x0:t) + σ2I, (11)

and σ2 is the variance in measurements (Williams and Ras-
mussen 2006). We draw attention to our use of a superscript
t to denote predictions based on measurements y0:t.

Though measurement predictions can be done exactly, it
is difficult to compute the true probability of collision from
an action. Xt is described by a Gaussian distribution, but
when conditioned on the safety of previous states it is not
Gaussian in general, since this suggests that Xk /∈ F for
all k ≤ t. In our approximating CCMDPs, we will instead
conservatively overestimate the value.

For appropriate mean and covariances, and from a safe
state to another it follows that

T (st, at, st+1) = p (Ft+1 = 0|st, at)×∫
p(yt+1|y0:t,x0:t+1) p(x0:t+1|F0:t+1 = 0) dx0:t+1.

(12)

It is useful to think of failure states as being terminal, with
no actions available from them. Formally, we define a sin-
gle action as available which always leads back to the same
state, netting zero reward.

Constraining Failure Probability
An unconstrained MDP considers failure in the sense that
the expected reward decreases as failure probability in-
creases. However, the optimal unconstrained policy may re-
sult in a probability of failure that is arbitrarily close to 1,
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Figure 1: An agent (white) close to an obstacle (black) with
(a) high reward close to the obstacle and (b) uniform reward.

while simultaneously placing no constraint on how large the
reward must be in this case. This behavior is undesirable for
a mission designer, for whom the expense of collecting and
repairing the vehicle may not be worth the data obtained.

We encode the tolerance for risk of a mission designer
through the risk bounding function, which specifies the al-
lowable probability of failure of a policy as a function of the
expected reward. We require that ∆ is a non-decreasing con-
cave function, which encodes that we will not allow less risk
for higher reward, and that progressively additional reward
is worth less additional risk.

Risk bounding functions generalize the notion of a single
risk bound that appears in the chance constrained planning
literature (Ono and Williams 2008). The idea of a functional
representation of failure tolerance is particularly important
in exploration, where the increase in reward with risk is un-
known. This idea is illustrated in Figure 1, where in (a) a
small increase in risk allows the agent to move closer to the
obstacle and leads to a large increase in reward, while in (b)
it has no effect. A mission designer may prefer a slightly
higher risk bound in (a), but a lower risk bound in (b). A risk
bounding function encodes this tolerance without the need to
know the relationship between risk and reward in the envi-
ronment, only the price in failure probability that the mission
designer is willing to pay for reward.

It is important to note that the chance constraint uses ex-
pectations of failure and reward over the entire policy. Dan-
gerous actions with low reward are permitted if high reward
is achieved on other measurement histories. This is impor-
tant, beause an unlikely environment may result in minimum
rewards for all actions, but it may not be possible to execute
actions for which the probability of failure is below ∆(0).

Problem Statement

The chance constrained measurement maximizing adaptive
sampling problem is summarized in Problem 1.

Problem 1. Chance Constrained Measurement Maximizing

Adaptive Sampling
π∗ = argmax

π
E [g(H0:n)|π]

s.t. p

(
n∨
k=1

Xk ∈ F

)
≤ ∆ (E [g(H0:n)|π])

Y ∼ GP (m, k)

X0 ∼ N (µ0,Σ0)

Xt+1 ∼ N (µt + d(at),Σt + Σw)

g(h0:n) = R̃(µ0:n,y1:n,F1:n)

Our approach to Problem 1 is to formulate a sequence
of approximating CCMDPs. We show how a policy guar-
anteed to satisfy the failure probability constraints of Prob-
lem 1 may be constructed by placing constraints on the ap-
proximating CCMDPs, and we use Monte Carlo Tree Search
methods to ensure a policy is available at any time.

Enforcing Chance Constraints Using Vulcan
Problem 1 is intractable even if the measurements are dis-
cretized because the state space grows exponentially in the
number of actions and measurements and the transition
probabilities in (12) are expensive to compute. Instead, our
strategy is to use Monte Carlo Tree Search (MCTS) tech-
niques on approximating CCMDPs so (12) does not need to
be computed exactly and an approximately optimal policy is
found in an anytime manner. In order to use MCTS to guar-
antee a policy satisfies a risk bounding function, we use the
Vulcan algorithm (Ayton and Williams 2018).

The Vulcan Algorithm
Vulcan is based on the Upper Confidence Bound applied
to Trees (UCT) algorithm for MDPs, which uses previous
samples of the search tree to guide future samples towards
promising solutions (Kocsis and Szepesvári 2006). In UCT,
random sampling is performed to build a search tree. At each
sampled state, each action is sampled once, and on subse-
quent samples the action is chosen according to

at = argmax
a

Q(st, a) +

√
2 logNst
Nst,a

. (13)

Q(st, at) is an estimate of the maximum expected reward to
go by taking action at based on samples, Nst is the number
of samples taken at state st, and Nst,at is the number of
samples of at from st.

To apply UCT to CCMDPs, Vulcan defines the se-
quence execution risk ser of a state history h0:t =
〈s0, a0, s1, a1, . . . , st〉 as

ser(h0:n) =


p(

∨n
k=1 Sk /∈C|s0,a0:n−1)

1−p(
∨n

k=1 Sk /∈C|s0,a0:n−1)
no failures

0 otherwise

.

(14)
UCT proceeds as in the work of Kocsis and Szepesvári

(2006), but upon reaching a safe state at the planning horizon
n, the entire state history to that state is checked to satisfy

ser(h0:n) ≤ ∆ (f(h0:n)) , (15)
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where f is any function that satisfies E [f(H0:n)|s0, π] ≤
E [g(H0:n)|s0, π]. By the definition of ser, (15) is satisfied
for any histories ending in failure states, which is desirable
so that risks with low immediate rewards are allowed if they
lead to high rewards later. Consequently, it is not necessary
to consider failure state histories explicitly. If (15) is not sat-
isfied or no actions remain from a state, then the last action
is deleted from the search tree and a new sample is taken
from s0.

Theorem 1 of Ayton and Williams (2018) shows that any
policy found under this strategy is guaranteed to satisfy the
chance constraint. The proof follows from the fact that the
expectation of ser across all state histories in a policy equals
the total probability of failure, so that

p

(
n∨
k=1

Sk /∈ C

∣∣∣∣∣s0, π
)

= E [ser (H0:n)|s0, π]

≤ E [∆ (f(H0:n))|s0, π]

≤ ∆ (E [f(H0:n)|s0, π])

≤ ∆ (E [g(H0:n)|s0, π])

(16)

by Jensen’s inequality for non-decreasing concave ∆.
The resultant policy is suboptimal, but the advantage in

this context is that (15) can be applied to each state history
without knowledge of the others. A policy is guaranteed to
satisfy the chance constraint if a state history satisfying (15)
can be computed after any set of observations, even if they
are not computed explicitly.

Risk Approximations
Since probability of failure is difficult to compute exactly,
we follow Ono and Williams (2008) to develop a conserva-
tive bound using Boole’s inequality.

p

(
n∨
k=1

Sk /∈ C|s0,a0:n−1

)
= p

(
n∨
k=1

Xk ∈ F|µk,Σk

)

≤
n∑
k=1

p (Xk ∈ F|µk,Σk) ,

(17)

where

p(Xk ∈ F|µk,Σk) =

∫
F
N (µk,Σk) dxk. (18)

(18) remains computationally intensive for arbitrary ob-
stacles, and sampling based approximations can underesti-
mate the risk. Instead, we use an estimation that is guaran-
teed to be conservative by enclosing F with a union of NF
convex polytopes,

F ⊆
NF⋃
i=1

Fi, (19)

where polytope Fi may be described as an intersection of
half-spaces based on each of its Ei edges,

Fi =

x
∣∣∣∣∣∣
Ei∧
j=1

hTijx ≥ gij

 , (20)

Figure 2: Probability of collision with a convex obstacle is
less than the minimum probability of crossing a line defined
by its edges.

for vector hij and scalar gij .
Using Boole’s inequality again, we have

p(Xk ∈ F|µk,Σk) ≤
NF∑
i=1

p(Xk ∈ Fi|µk,Σk). (21)

Let Ei(µk) be the set of half-space indices of Fi for which
the mean state lies outside,

Ei(µk) =
{
j
∣∣ hTijµk < gij

}
. (22)

Then we bound the probability of collision by the minimum
probability of entering one of the half-spaces in Ei(µk):

p(Xk ∈ Fi|µk,Σk) ≤ min
j∈Ei(µk)

p(hTijXk ≥ gij), (23)

p(hTijXk ≥ gij) =
1

2
+

1

2
erf

 hTijµk − gij√
2hTijΣkhij

 . (24)

The intuition for (23) is given in Figure 2, while (24) fol-
lows from a Gaussian CDF. A convex decomposition of the
forbidden regions can be computed prior to the start of plan-
ning.

For convenience, we define

pf (sk) =

NF∑
i=1

min
j∈Ei(µk)

p(hTijXk ≥ gij) (25)

Then it follows from (14), (17), and (21) that

ser(h0:n) ≤
∑n
k=1 pf (sk)

1−
∑n
k=1 pf (sk)

. (26)

Our approach is then to sample over potential trajectories,
and verify that each potential trajectory satisfies∑n

k=1 pf (sk)

1−
∑n
k=1 pf (sk)

≤ ∆ (f(h0:n)) . (27)
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Solution Procedure
Even using Vulcan, Problem 1 is too large to find a reason-
able solution, as Vulcan requires every outcome of the policy
to be sampled in order to guarantee the chance constraint is
satisfied. Instead, when planning from state st, we construct
an approximating CCMDP starting at st. Action ak results
in failure with probability pf (sk+1) or a single success state,
and provides reward

Rap(sk−1, ak−1, sk) = R̃(µ0:k, θ
t
k, Fk). (28)

θtk is computed using (8) through (11) as if all observa-
tions are taken at µ0:k. This approximation produces a small
amount of error under the reasonable assumption that posi-
tion distribution length scales are small compared to GP ker-
nel length scales. Since there is one safe outcome for each
action, a single state history constitutes a valid policy which
does not depend on measurement outcomes. The first action
of the policy is executed, then replanning is performed from
the true st+1.

Chance Constraint Satisfaction
The key to enforcing the chance constraint is viewing the
strategy above as being applied to every possible sequence
of states in the true CCMDP. After t actions, an approximat-
ing CCMDP exists for each st, and a policy is defined by the
actions that were selected up to st and the actions found by
the approximating CCMDPs. By requiring that all approx-
imating CCMDP solutions would result in state histories
that satisfy (27), we guarantee the chance constraint without
needing to explicitly solve all the approximating problems.

When solving the approximating CCMDPs, we require
that safe state histories satisfy∑n

k=1 pf (sk)

1−
∑n
k=1 pf (sk)

≤∆

( t∑
k=1

R̃(µ0:k, θ
k−1
k , Fk)

+ R̃(µ0:n,θ
t
t+1:n,Ft+1:n)

)
.

(29)

The true observations y0:t are used in the computation of the
means θ, but their values do not enter the constraint directly.
This is a method to ensure that a policy exists satisfying the
above even if all measurements are consistently low.

By finding a policy satisfying (29) from every reachable
state st, (27) is satisfied with

f(h0:n) =

t∑
k=1

R̃ (µ0:k,E [Yk|y0:k−1] , Fk)

+ R̃ (µ0:n,E [Yt+1:n|y0:t] ,Ft+1:n) .

(30)

It follows from Jensen’s inequality and the convexity of the
max function that

R̃(µ0:k, θ
t
k, Fk) = R̃(µ0:k,E [Yk|y0:t] , Fk)

≤ E
[
R̃(µ0:k, Yk, Fk)

∣∣∣y0:t

]
,

(31)

so E [f(H0:n)|s0, π] ≤ E [g(H0:n)|s0, π] and the chance
constraint is satisfied. It is not necessarily true that the prob-
ability of failure is bounded by the risk bounding function
applied to the observations that actually occur, as desired.

Guarantees on Existence of Policy
The above strategy guarantees that a policy can be can be
found that follows the risk bounding function, assuming that
a policy that satisfies (29) can be computed in response to all
measurements. This is a non-trivial assertion, and in this sec-
tion we introduce an additional condition that ensures this is
always possible.

Consider planning from state st, with a potential pol-
icy that satisfies (29) and includes at. Define a worst case
state history w(at) as any safe state history w(at) =〈
s
w(at)
0 , a

w(at)
0 , s

w(at)
1 , . . . , s

w(at)
n

〉
that satisfies sw(at)

0:t =

s0:t, a
w(at)
0:t = a0:t, and∑n
k=1 pf (s

w(at)
k )

1−
∑n
k=1 pf (s

w(at)
k )

≤ ∆

(
t+1∑
k=1

R̃(µ0:k, θ
k−1
k , Fk)

)
.

(32)
By requiring that any worst case state history exists for the
chosen a0, the capability to replan according to the stategy
in this paper is guaranteed.

To see this, assume that when planning from state st that
a policy is found that satisfies (29) and w(at) exists. When
replanning from any possible st+1, following the actions
a
w(at)
t+1:n−1 will always satisfy (29) as well, even if all mea-

surements result in predicted means below the minimum re-
ward. Following a

w(at)
t+1:n−1 from any st+1 also produces a

worst case state history for aw(at)
t+1 , which means that the

worst case state history is a policy that can be followed un-
til the end of execution, guaranteeing that (29) and (32) can
always be satisfied regardless of measurements.

When replanning from st+1, usually at+1 6= a
w(at)
t+1 . In

this case, at+1 is only permitted if w(at+1) can be found,
which guarantees the risk bounding function can be satisfied
regardless of future measurements by the same argument.

To summarize, the worst case state history is typically
not executed, but one must exist. This is a weaker condi-
tion than enforcing that the solution to the approximating
CCMDP must be a worst case state history, or imposing a
probability of failure constraint on every path based on its
measurements. Furthermore, the existence of a worst case
state history implies a worst case state history exists when
replanning from the next state.

Practically, the existence of a worst case state history can
be checked after sampling at when planning from st. If one
cannot be found, the action is immediately deleted from the
search space. Worst case state histories can often be found
by greedily selecting the minimum risk action from the ac-
tion space. In our implementation, if this is not a valid worst
case state history, none is assumed to exist.

Algorithm Description
Our strategy requires solving n approximating CCMDPs,
which we describe in Algorithm 1. Each approximating
CCMDP is solved by repeatedly sampling from the current
state history up to a time limit of τ . At the time bound, the
agent executes the first action of the best found policy so far.
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Algorithm 1: ExecuteRiskBoundedPolicy
Input: Initial state s0, planning time limit τ

1 h0 ← s0
2 for t from 0 to n− 1 do
3 while sample time < τ do
4 Sample(h0:t)
5 execute at = argmaxaQ(st, a)
6 st+1 ← next state with measurement yt+1

7 reset search tree

Algorithm 2 describes the sampling strategy for the ap-
proximating CCMDPs. A search tree is built from st accord-
ing to the action selection rules of the UCT algorithm. Vul-
can guarantees that it is only ever necessary to sample from
safe states, so each action leads to a single state determinis-
tically.

Upon reaching the planning horizon, (29) is verified on
line 2. After selecting action at, w(at) is found on line 7
and (32) is verified. If either of these conditions fail, or no
actions exist at a non-terminal state at line 4, the immedi-
ately preceding action is deleted, and sampling restarts from
the root node. This ensures that the highest reward policy
found satisfies the chance constraint.

Algorithm 2: Sample
Input: State history h0:t

1 for k from t to n− 1 do
2 if k = n and (29) not satisfied then
3 delete an−1 and return
4 if no actions at sk then
5 delete ak−1 and return
6 if k = t+ 1 then
7 w ← greedily found sequence of min risk states
8 if (32) not satisfied then
9 delete at and return

10 if unsampled action at sk then
11 ak ← unsampled action
12 else

13 ak ← argmaxaQ(sk, a) +

√
2 log(Nsk

)

Nsk,ak

14 sk+1 ← next state with measurement θtk+1

15 for k from n− 1 to t do
16 Q(sk, ak)← (1− pf (sk+1)) (Rap(sk, ak, sk+1)

+ maxaQ(sk+1, a))
17 increment Nsk , Nsk,ak

Experiments
We examine our algorithm in two different ways. First, we
run the algorithm on real bathymetry data and a simulated
measurement field. We show our algorithm is able to move
towards high reward locations based on the data it gathers,

and take dangerous actions when they are expected to yield
high reward. We then verify that the risk bounding function
is satisfied through Monte Carlo simulations over randomly
instantiated Gaussian Processes. To the best of our knowl-
edge, no other algorithm is capable of performing chance
constrained adaptive sampling on the scale we consider.

Tests on Controlled Environments
To test the performance of our algorithm in realistic scenar-
ios, we convexify true bathymetric data to produce forbid-
den regions, and simulate measurement fields. The location
was East of Boston Harbor, from -70.890 to -70.876 de-
grees longitude, and 42.344 to 42.355 degrees latitude, pro-
vided by NOAA survey H10992 (National Oceanic and At-
mospheric Administration 2001). The mission simulated an
autonomous underwater vehicle operating at a constant 15
meters depth and maximizing temperature measurements,
so 15 meter depth contours were used as obstacle bound-
aries. In each case, the agent started at a location -70.8816
degrees longitude and 42.3505 degrees latitude with zero
position uncertainty. The Gaussian Process covariance ker-
nel and the vehicle position covariance were chosen to be
indicative of a true temperature measurement mission. The
true value of the measured field was 16 at the starting lo-
cation, and increased by 1 for each km West or South.
Each action moved the vehicle 50 meters in one of the
eight compass directions. We used the following parameters:
n = 20, τ = 60 sec, Σ0 = 0I m2, Σw = 12I m2, Rmin =
12.5, lmin = 12.5 m, m(x) = 16, k(x, x′) =

1.25 exp
(
−‖x− x′‖2 /(2× (200 m)2)

)
, σ = 0.

In Figure 3 we test this scenario using three different risk
bounding functions. The risk bounding functions were se-
lected primarily to show differences in behavior, but we note
that they lead to realistic acceptable failure rates on the order
of tenths of a percent. Figure 3 (a) shows a trajectory result-
ing from a risk bounding function ∆(x) = 0.0003x. The
measurements are high enough to warrant movement into
the South-West of the map by the most direct route possible,
which requires passing between multiple obstacles. In Fig-
ure 3 (b) a lower risk bounding function of ∆(x) = 0.0002x
does not allow movement close to obstacles until there is
enough certainty that high measurements lie to the South-
West. In addition, the route taken uses a thicker channel,
with less overall probability of failure. Finally, in Figure 3
(c), the risk bounding function ∆(x) = 0.0001x is too strict
to allow the vehicle to pass close to obstacles, and instead
it moves up and down the border of the obstacles without
moving in too close.

Monte Carlo Tests
In order to experimentally verify that the risk bounding func-
tion is satisfied across a policy, we ran Monte Carlo simula-
tions with random measurements following a known Gaus-
sian Process, and verified that the failure rate was less than
the risk bounding function applied to the average reward. In
the simulations, true (disturbed) locations were generated,
and measurements were drawn from a Gaussian Process at
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Figure 3: Output trajectories with a single true environment
and multiple risk bounding functions.

the true locations, while the algorithm reasoned over mea-
surements at mean locations. The environment was the same
as the previous test.

The low probability of failure in the previous test meant
that uncertainty in a Monte Carlo derived failure rate would
be comparable to the true failure rate. To increase certainty
in the simulation results, we increased the covariance of
the agent, leading to a higher probability of failure. In or-
der to speed up simulations and emphasize risk, we also
decreased the planning horizon and planning time, and al-
lowed the agent to move further with every action. The fol-
lowing parameters were changed: n = 8, τ = 2 sec, Σw =
60I m2, lmin = 25 m. The distance traveled by every action
was changed to 100 m. Failure was evaluated with respect to
the convexified obstacles, so the failure rate does not account
for conservatism due to convexification. 10,000 simulations
were run with a risk bounding function of ∆(x) = 0.001x.
The mean function was the true environment of the previous
experiment so that measurements would typically be biased
towards dangerous actions.

The expected cumulative reward was 64.9, which permit-
ted a failure rate of 0.0649 under the risk bounding func-
tion, while the measured failure rate was 0.0208. There was
conservatism in the policy, as only 32% of permitted risk
was used. The conservatism can be attributed to three major
sources. First and most importantly, our strategy averages
reward and risk across outcomes, but does not move all al-
lowed probability of failure from low risk to high risk out-
comes. In particular, some environments resulting from the

GP have high reward to the East where there are few obsta-
cles. Our approach is not fully capable of moving all allowed
risk to cases where high rewards are near obstacles. The ad-
ditional sources of conservatism are the use of Boole’s in-
equality to overestimate the probability of failure and the
underestimation of the reward function.

To confirm that conservatism was reduced when dan-
ger exists in all directions, we reran the experiment with
Σw = 100I m2 and additional obstacles introduced to the
North and East. In this case the expected cumulative reward
was 26.4, which permitted a failure rate of 0.0264, while the
measured failure rate was 0.0165. In this case, 63% of avail-
able risk was used.

Summary
In this paper, we developed a method of finding an adap-
tive policy where the probability of failure is bounded as a
convex function of expected reward. We derived constraints
that enforce the chance constraint without the need to plan
over all outcomes and which guarantee replanning is possi-
ble. By applying Monte Carlo Tree Search to a series of eas-
ily computable approximating problems, we ensure that an
action is found in an anytime manner. Simulation results on
true bathymetry show our algorithm trades off risk against
reward intuitively, taking dangerous actions only when jus-
tified by the reward, while Monte Carlo simulations verify
that the chance constraint is satisfied.
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