
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Improving Domain-Independent Planning via Critical Section Macro-Operators

Lukáš Chrpa
Faculty of Electrical Engineering

Czech Technical University in Prague &
Faculty of Mathematics and Physics

Charles University in Prague

Mauro Vallati
School of Computing and Engineering

University of Huddersfield

Abstract

Macro-operators, macros for short, are a well-known tech-
nique for enhancing performance of planning engines by pro-
viding “short-cuts” in the state space. Existing macro learn-
ing systems usually generate macros from most frequent se-
quences of actions in training plans. Such approach priorities
frequently used sequences of actions over meaningful activi-
ties to be performed for solving planning tasks.
This paper presents a technique that, inspired by resource
locking in critical sections in parallel computing, learns
macros capturing activities in which a limited resource (e.g.,
a robotic hand) is used. In particular, such macros capture
the whole activity in which the resource is “locked” (e.g., the
robotic hand is holding an object) and thus “bridge” states in
which the resource is locked and cannot be used. We also in-
troduce an “aggressive” variant of our technique that removes
original operators superseded by macros from the domain
model. Usefulness of macros is evaluated on several state-
of-the-art planners, and a wide range of benchmarks from the
learning tracks of the 2008 and 2011 editions of the Interna-
tional Planning Competition.

Introduction
Automated Planning, in a nutshell, is about finding a se-
quence of actions whose application in an initial state of the
environment leads to a desired goal state (Ghallab, Nau, and
Traverso 2004). Whereas a lot of effort has been traditionally
given to developing efficient planning engines, usually based
on heuristic search (Bonet and Geffner 2001), another line
of research focuses on increasing efficiency of the planning
process by reformulating the domain knowledge, to obtain
models that are more amenable for automated reasoners.

A very well-known reformulation approach is the gen-
eration of macro-operators, macros for short, that encap-
sulate sequences of (original) planning operators. Macros
are encoded as ordinary planning operators and, hence, they
can be added into domain models such that standard plan-
ning engines can straightforwardly take advantage of them.
Macros, informally speaking, provide “short-cuts” in the
state space and, consequently, planning engines can gen-
erate plans in less number of steps. This comes with the
cost of increased branching factor since macros often have

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

much more instances than ordinary operators and thus their
use might introduce additional overheads as well as larger
memory requirements. Although in theory the use of macros
might reduce complexity of planning (Korf 1985), in prac-
tice macros are considered if their use is frequent (Hof-
mann, Niemueller, and Lakemeyer 2017), their number of
instances is small (Chrpa, Vallati, and McCluskey 2014), or
they address weaknesses of a specific planner (Coles, Fox,
and Smith 2007).

In this paper, we introduce Critical Section Macros. Be-
ing inspired by resource locking in critical section in parallel
computing, these macros capture whole activities in which
a resource is used. For example, a robotic hand manipulates
with objects (e.g. blocks in BlocksWorld, or shaker in Bar-
man). When the robotic hand grasps an object it becomes
“locked”, i.e., no other object can be grasped by that hand,
until the hand releases the object it holds. Hence, Critical
Section Macros aim to capture sequences of operators such
that the first operator locks a resource (e.g. a robotic hand
grasps an object), the last operator releases the resource (e.g.
the robotic hand drops the object), and the intermediate oper-
ators, if any, uses the resource (e.g. shaking a cocktail). From
the technical perspective, Critical Section Macros “bridge”
states in which the resource is locked and cannot be used.
This is thought to be particularly beneficial for techniques
that exploit delete-relaxation (Hoffmann and Nebel 2001)
as they tend to incorrectly assume that a resource can be
used by multiple activities (e.g. a robotic hand holding mul-
tiple objects) and thus provide largely incorrect heuristic es-
timations. As additional contributions, we illustrate how the
proposed reformulation approach can be exploited in an “ag-
gressive” variant, that removes the elementary operators that
are included in the macros, and can be combined with more
traditional techniques for generating macros. The usefulness
of Critical Section Macros, in all the variants depicted above,
is evaluated on several state-of-the-art planners, and a wide
range of benchmarks from learning tracks of the Interna-
tional Planning Competition.

Related Work
Using macros dates back to 1970s and 1980s. RE-
FLECT (Dawson and Siklóssy 1977) builds macro-operators
from pairs of primitive operators that can be succes-
sively applied and share at least one argument. MOR-

7546



RIS (Minton 1988) learns macro-operators from parts of
plans appearing frequently (S-macros) or being potentially
useful despite having low priority (T-macros). Macro Prob-
lem Solver (Korf 1985) learns macros for particular non-
serializable sub-goals (e.g. in Rubik’s cube).

Recent planner-independent techniques aim at improving
performance of any standard planner. MacroFF (Botea et
al. 2005) generates macros according to several pre-defined
rules (e.g., the “locality rule”) that apply on adjacent ac-
tions in training plans. Wizard (Newton et al. 2007) learns
macros from training plans by exploiting genetic program-
ming. Alhossaini and Beck (2013) selects problem-specific
macros from a given pool of macros (hand-coded or gen-
erated by another technique). Dulac et al. (2013) exploits
n-gram algorithm to analyze training plans to learn macros.
DBMP/S (Hofmann, Niemueller, and Lakemeyer 2017) ap-
plies Map Reduce for learning macros from a larger set
of training plans. CAP (Asai and Fukunaga 2015) exploits
component abstraction (introduced by MacroFF) for gener-
ating sub-goal specific macros.

MUM (Chrpa, Vallati, and McCluskey 2014) exploits
“outer entanglements” (Chrpa and McCluskey 2012) as
a heuristics for generating macros with limited number
of instances. BloMa (Chrpa and Siddiqui 2015) exploits
block deordering (Siddiqui and Haslum 2012) for generat-
ing possibly longer macros. Our “critical section” macros
share some characteristics with “block” macros generated
by BloMa. BloMa, however, initially generates a large pool
of macros that is later reduced by applying (strict) frequency
requirements.

Classical Planning
The classical (STRIPS) representation considers static
and fully observable environment, and deterministic and
instantaneous action effects. The environment is de-
scribed by first-order logic predicates defined as p =
pred name(x1, . . . , xn), where pred name is a unique
predicate name and x1, . . . xn are variable symbols.
States are defined as sets of atoms (grounded predi-
cates whose variable symbols are substituted with con-
stants - problem-specific objects). We say that o =
(name(o), pre(o), del(o), add(o)) is a planning operator,
where name(o) = op name(x1, . . . , xk) (op name is an
unique operator name and x1, . . . xk are variable symbols
(arguments) appearing in the operator) and pre(o), del(o)
and add(o) are sets of (ungrounded) predicates with vari-
ables taken only from x1, . . . xk representing o’s precon-
dition, delete, and add effects respectively. Actions are
grounded instances of planning operators. An action a is ap-
plicable in a state s if and only if pre(a) ⊆ s. Application of
a in s (if possible) results in a state (s \ del(a)) ∪ add(a).

A planning domain model D = (P,O) is specified by
a set of predicates (P ) and a set of planning operators(O).
A planning task Π = (D, I,G) is specified via a domain
model (D), initial state (I) and set of goal atoms (G). Given
a planning problem, a plan is a sequence of actions such
that their consecutive application starting in the initial state
results in a state containing all the goal atoms.

Given a planning task Π, we say that a state s′ is reachable
from a state s if and only if there exists a sequence of actions
such that their consecutive application starting in s results in
s′. We say that an action ai is an achiever for an action aj if
an only if add(ai) ∩ pre(aj) 6= ∅. We also say that actions
ai and aj are independent if and only if del(ai)∩ (pre(aj)∪
add(aj)) = ∅ and del(aj) ∩ (pre(ai) ∪ add(ai)) = ∅.

Macro-operators
Macros represent sequences of (ordinary) planning opera-
tors. Advantageously, macros can be encoded in the same
form as planning operators (i.e., having a precondition, add
and delete effects). Hence, macros can be added into a do-
main model and thus can be exploited in a planner indepen-
dent way (e.g. encoded in PDDL).

Formally, a macro oi,j is constructed by assembling plan-
ning operators oi and oj (in that order) as follows. Let Φ
and Ψ be mappings between variable symbols (we need to
appropriately rename variable symbols of oi and oj to con-
struct oi,j).

• pre(oi,j) = pre(Φ(oi)) ∪ (pre(Ψ(oj)) \ add(Φ(oi)))

• del(oi,j) = (del(Φ(oi)) \ add(Ψ(oj))) ∪ del(Ψ(oj))

• add(oi,j) = (add(Φ(oi)) \ del(Ψ(oj))) ∪ add(Ψ(oj))

Longer macros, i.e., those encapsulating longer sequences
of original planning operators can be constructed iteratively
by the above approach.

For a macro to be sound, no instance of Φ(oi) can delete
an atom required by a corresponding instance of Ψ(oj), oth-
erwise they cannot be applied consecutively. Whereas it is
obvious that if a predicate deleted by Φ(oi) (and not added
back) is the same (both name and variable symbols) as a
predicate in the precondition of Ψ(oj) then the macro oi,j
is unsound, another source of macro unsoundness is often
not being even considered in literature. For example, in the
Blocks-World domain, a macro pickup-stack(?x ?y) that
has (clear ?x)(ontable ?x)(clear ?y)(handempty) in its
precondition can be instantiated into pickup-stack(A A) that
is applicable if (clear A)(ontable A)(handempty) is true in
some state. However, actions (pickup A) and stack(A A)
cannot be applied consecutively because (pickup A) deletes
(clear A) which is required by stack(A A). By generaliz-
ing this observation we can see that if some (different) vari-
able symbols are substituted by the same constants, a macro
might become unsound. To avoid such cases, a constraint
requiring different instantiation of affected variable symbols
is added into macro’s precondition (e.g. (not (= ?x ?y)) is
added into pickup-stack(?x ?y)’s precondition).

Critical Section Macros
In parallel computing, critical sections are used to regulate
the access to resources, to guarantee the integrity of the over-
all system by avoiding situations where many different pro-
cesses are concurrently modifying a resource. To prevent
other processes (or threads) to access the resource while it
is in use, the resource is locked at the beginning of the crit-
ical section, then the required operations are made with the
resource by the process that is locking it, and then –at the

7547



end of critical section– the resource is released and is there-
fore available for other processes.

In planning, we can observe that some subsequences of
actions in plans replicate the underlying structure of critical
section, i.e., locking a resource, using it, and releasing it. In
Blocks-World, the robotic hand can be seen as a resource.
When the robotic hand picks-up or unstacks a block it be-
comes “locked”, that is, no other block can be carried by
the robotic hand at that time. When the robotic hand stacks
or puts-down the block it is holding, then the hand is “re-
leased”, that is, it can be used to manipulate other blocks.
A more complicated example can be found in the Barman
domain, in which a robotic barman prepares cocktails. Here,
a critical section activity, for instance, involves grabbing a
shaker (locking robot’s hand), shaking a cocktail, putting the
cocktail to a shot, cleaning the shaker before putting it back
on the table (releasing robot’s hand).

Technically speaking, a free resource, as well as a locked
resource, is represented by corresponding predicates. For ex-
ample, (handfree) represents a free resource (robotic hand)
while (holding ?x) represents a locked resource (robotic
hand carrying a block). Also, corresponding instances of
these predicates must be mutually exclusive (mutex for
short), i.e., no resource can be both free and locked at the
same time.

Definition 1. Let Π be a planning task and p and q be pred-
icates defined in the domain model of Π. Let Φ,Ψ be substi-
tutions mapping variable symbols to variable symbols. We
say that p and q with respect to Φ and Ψ are mutex in Π if
and only if for all ground instances of Φ(p) and Ψ(q) it is
the case that they are not both true in all reachable states
from the initial state of Π.

Having mutex predicates p and q that represent a free
and locked resource respectively, is a necessary condition
for recognising “critical section” activities. Also, arguments
of q must be a superset of arguments of p (they can have
the same set of arguments). Arguably, since q represents a
locked resource, it might contain additional arguments re-
ferring to why the resource is locked (e.g. a hand holding an
object), however, it cannot contain less arguments (in order
to recover a corresponding instance of p after releasing the
resource).

Locking and releasing resources is done by specific plan-
ning operators. A planning operator that deletes p and adds a
corresponding variant of q, a locker, locks a given resource.
Analogously, a planning operator that deletes q and adds a
corresponding variant of p, a releaser, releases (unlocks) the
given resource. This idea is formalised as follows.

Definition 2. Let Π = (D, I,G) be a problem instance
and D = (P,O) be a domain model. Let p, q ∈ P be
predicates such that p and q with respect to substitutions
Φ,Ψ are mutex in Π and args(Φ(p)) ⊆ args(Ψ(q)). We
say that an operator o ∈ O is a p, q-locker if Φ(p) ∈
del(Θ(o)) and Ψ(q) ∈ add(Θ(o)) (Θ is a renaming sub-
stitution). We also say that o′ ∈ O is a p, q-releaser if
Φ(q) ∈ del(Θ′(o′)) and Ψ(p) ∈ add(Θ′(o′)) (Θ′ is a re-
naming substitution). We also say that o′′ ∈ O is a p, q-user
if Φ(q) ∈ pre(Θ′′(o′′)) \ (del(Θ′′(o′′))∪ add(Θ′′(o′′))) (Θ′′

Algorithm 1 Learning Critical Section Macros from training
plans

1: cs← {(p, q,Ol, Or) | ol ∈ Ol is a p, q-locker; or ∈ Or

is a p, q-releaser}
2: for each 〈a1, . . . , an〉 in Training Plans do
3: lr pairs ← {(al, ar, pg, qg) | (p, q,Ol, Or) ∈

cs; r > l; al, ar, pg, qg are instances of ol ∈ Ol, or ∈
Or, p, q respectively; pg ∈ del(al) ∩ add(ar); qg ∈
add(al) ∩ del(ar)}

4: for each (al, ar, pg, qg) ∈ lr pairs do
5: in ma ← {ak | l < k < r; qg ∈ pre(ak)} ∪
{al, ar}

6: out ma← {ak | l < k < r; ak 6∈ in ma}
7: ConsiderDependent(in ma,out ma)
8: if no “gluing” action added extra argument then
9: om ←CreateMacro(in ma)

10: ConsiderGoalAchieving(om)
11: AddMacro(mcr db,om)
12: end if
13: end for
14: end for
15: FilterUnderrepresentedMacros(mcr db)

16: function CONSIDERDEPENDENT(in ma,out ma)
17: while ∃k : {i | ai ∈ out ma; i < k} = ∅ and
{ai | ai ∈ in ma; i < k; ai is an achiever for ak or ai is
not independent with ak} = ∅ do

18: out ma← out ma \ {ak}
19: end while
20: while ∃k : {j | aj ∈ out ma; j > k} = ∅ and
{aj | aj ∈ in ma; j > k; ak is an achiever for aj or aj
is not independent with ak} = ∅ do

21: out ma← out ma \ {ak}
22: end while
23: in ma← in ma ∪ out ma
24: end function

is a renaming substitution).

The above definition considers one phase single locks.
That is, that resources are locked/released by one operator
(rather than their sequence) and only one lock (i.e., instance
of q) is acquired. The definition can be extended to con-
sider multiple-phase and multiple locks, however, for prac-
tical reasons (i.e., such situations are very uncommon if any
in standard benchmarks used in the international planning
competition) and for the sake of clarity we resort to the cases
covered by Definition 2.

Constructing Critical Section Macros
The rationale behind the Critical Section Macros is to bridge
resource use with a single macro. Delete-relaxation (Hoff-
mann and Nebel 2001) is a popular approach for many
state-of-the-art planning engines. Delete-relaxation, roughly
speaking, ignores delete effects of planning operators. Con-
sequently, mutex relations between grounded predicates are
also ignored. In situations of resource locking, the differ-
ence between delete-relaxed approximation and reality can

7548



be considerably large, hence undermining the usefulness of
the heuristic evaluation. For example, in delete-relaxation,
the robotic hand can hold all the blocks at the same time.
As it is apparent, such discrepancies can easily cause local
minima on landscape of heuristic functions based on delete-
relaxation (Hoffmann 2011).

Critical Section Macros encapsulate sequences of oper-
ators such that they start with p, q-lockers and end with
p, q-releasers. For longer sequences, p, q-users and “glu-
ing” operators are present in between. For example, a macro
pickup-stack is a Critical Section Macro consisting of only
a locker (pickup) and a releaser (stack). In Barman, for ex-
ample, a macro grasp-fillshot-leave is a Critical Section
Macro consisting of a locker (grasp), a releaser (leave) and
a user (fillshot). In Gripper, a macro pick-move-drop is a
Critical Section Macro consisting of a locker (pick), a re-
leaser (drop) and a gluing operator (move).

Algorithm 1 describes the method for learning Crit-
ical Section Macros from training plans. Quadruples
(p, q,Ol, Or) (Line 1) are determined by considering
whether each operator deleting p (or q) adding a correspond-
ing variant of q (or p), in other words, each operator having
p or q in its effects is either a p, q-locker or p, q releaser.
Also, if corresponding instances of p and q are not simulta-
neously present in initial states of training tasks (and testing
tasks), then p and q are mutex (with respect to correspond-
ing substitutions). For each training plan, we determine all
possible locker/releaser pairs (al, ar) with corresponding in-
stances of the involved predicates (pg, qg) (Line 3). Then, we
iterate through the locker/releaser pairs (Lines 4–13). Be-
sides al (pg, qg-locker) and ar (pg, qg-releaser) we consider
pg, qg-users into a possible macro (Line 5). Other actions
placed in between al and ar are checked whether they can
be moved away (either before al or after ar). This is done by
the ConsiderDependent function. The idea of how interme-
diate actions can be moved away is based on the observation
that: if for two adjacent actions a, a′ in a plan (in this or-
der), it is the case that a and a′ are independent and a is not
an achiever for a′, then a, a′ can be swapped without com-
promising the correctness of the plan (similar approach has
been used by MUM (Chrpa, Vallati, and McCluskey 2014)).
Those actions that cannot be moved away are gluing actions.
If none of the gluing actions introduces an extra argument,
in other words, does not have to reason with additional ob-
jects than the locker, releaser and the user actions (Line 8),
then the action sequence in consideration can be considered
as a macro (Line 9). After the macro is created, it is checked
whether it is goal achieving, i.e., whether some of its add
effects are goal atoms. Goal achieving macros, achieving in-
stances of p that are present in the goal, extend the ordinary
macros by introducing a supplementary static predicate pG,
added into macro’s precondition, that has the same variable
symbols as p in the macro’s add effects but a different name.
Also, a problem-instance is modified such that for each in-
stance of p ∈ G, a corresponding instance of pG is added
to I . Noteworthy, such a concept is analogous to the use of
outer entanglements (Chrpa and McCluskey 2012).

Macros that are “underrepresented”, i.e., their number in
the “macro database” is below a specified threshold are fil-

tered out. Underrepresented macros, in a Machine Learn-
ing terminology, are noise in training data. That are, for ex-
ample, problem-specific macros that do not generalize for
a class of planning problems, or macros capturing pecu-
liarities in training plans. Such macros are very unlikely
to be beneficial. Other macro learning techniques such as
MacroFF (Botea et al. 2005) or MUM (Chrpa, Vallati, and
McCluskey 2014) also eliminate underrepresented macros
from the same reason.

For macros that are assembled from the same operators
but differ by being goal achieving, the most restrictive macro
(achieving most goals) is only considered.

Aggressive Approach
Adding (sound) macros into a domain model does not com-
promise completeness. On the other hand, the size of the
(grounded) representation can considerably grow as macros
often have more instances than ordinary operators, due to the
larger number of arguments. Consequently, planners might
suffer with increased memory requirements and with extra
burden in pre-processing.

To mitigate such an issue, original operators that are ef-
fectively replaced by macros can be removed from the do-
main model. Critical Section Macros have a good potential
to replace original operators that operate with particular re-
sources because the activities these macros represent have to
be usually performed either as whole or not at all. For exam-
ple, in Gripper, a Critical Section Macro pick-move-drop
replaces original operators pick and drop (unless some robot
initially holds some ball or it is required that some robot
holds some ball in a goal state).

The aggressive version of our Critical Section Macro ap-
proach consists of the following steps:

1. Generate Critical Section Macros (Algorithm 1) and add
them into the domain model.

2. Remove lockers and releasers of each macro from the do-
main model.

3. Generate plans for the training tasks with the modified
domain model.

4. If some task cannot be solved, then fail (removed original
operators are necessary).

5. Otherwise analyse the plans and eventually remove also
those operators whose instances are never used in these
plans.

The aggressive approach can compromise completeness
as it can remove original operators that might be neces-
sary to solve some (non-training) tasks. On the other hand,
the aggressive approach by removing original operators can
(sometimes considerably) reduce the size of the representa-
tion. In the Gripper example, removing the pick and drop
operators prunes out states in which a ball is held by a
robotic gripper and thus considerably reduces the size of
(grounded) representation. The risk of making a task un-
solvable can be alleviated by incorporating aggressive ap-
proaches into portfolios containing conservative compo-
nents (e.g., the original model, a model with macros but con-
taining all original operators).

7549



Combination with other Approaches
Critical Section Macros focus on capturing activities in
which a resource is locked. Other approaches consider
different criteria for macro generation such as frequency
of operators’ “consecutivity” or the possible number of
macros’ instances. In particular, “chaining” approaches such
as MacroFF (Botea et al. 2005) or MUM (Chrpa, Vallati,
and McCluskey 2014), which construct macros iteratively,
have a good potential to complement our approach as they
can possibly chain the activities into longer and more useful
macros.

Combining Critical Section Macros with other ap-
proaches (e.g., MUM) can be done straightforwardly. Criti-
cal Section Macros can be generated, as described in the pre-
vious sections, and then added to the domain model. Such
enhanced domain model is then used for the training of a
different macro generation approach. In fact, for the other
macro learning approach, Critical Section Macros can be
considered as original operators, and will be treated as orig-
inal operators. On the other hand, as some macro learning
approaches perform filtering of unpromising macros it might
be useful to consider Critical Section Macros as macros in
certain occasions. In particular, MUM filters out macros that
are replaced by longer macros (e.g. a move-drop macro can
be replaced by the pick-move-drop macro). Also, MUM
uses “entanglements” to eliminate possibly unpromising in-
stances of macros. For such occasions, we consider Critical
Section Macros as macros. In all the remaining cases, Criti-
cal Section Macros are considered as ordinary operators, so
they cannot be filtered out from different reasons.

Experimental Results
The purpose of this experimental analysis is to i) evaluate
planners’ performance on Critical Section macros as well as
their combination with MUM (both conservative and aggres-
sive versions), ii) compare them against related state-of-the-
art techniques, MUM (Chrpa, Vallati, and McCluskey 2014)
and BloMa (Chrpa and Siddiqui 2015) and iii) analyse im-
pact of quality of training plans on generated macros utility .
We considered domains from the learning track of IPC 2008
and 2011.

We have selected 6 state-of-the-art planning engines, ac-
cording to their results in recent IPCs, and to the exploited
planning techniques, namely: LAMA (Richter and West-
phal 2010), Probe (Lipovetzky et al. 2014), MpC (Rintanen
2014), Yahsp3 (Vidal 2014), FDSS 2018 (Seipp and Röger
2018) and Dual BFWS (Lipovetzky et al. 2018).
Evaluation Metrics. Three metrics were used to evaluate
planners’ performance, namely coverage (number of solved
problems), PAR10 score and IPC quality score. For each
testing task time limit of 900 seconds and memory limit of
4 GB is applied (as in the learning tracks of IPCs). All the
experiments were conducted on Intel Xeon E5 2.0 Ghz, De-
bian 9.

Penalised Average Runtime (PAR10) score is a metric
usually exploited in machine learning and algorithm con-
figuration techniques. This metric trades off coverage and
runtime for solved problems: if a planner p solves a prob-

lem instance Π in time t ≤ T (T = 900s in our case),
then PAR10(p,Π) = t, otherwise PAR10(p,Π) = 10T (i.e.,
9000s in our case).

IPC quality score is defined as in the learning track of
IPC-7 (Coles et al. 2012) as follows. For an encoding e of
a problem instance Π, IPC(Π, e) is 0 if Π is unsolved in e,
and (m∗Π,e/mΠ)), where mΠ,e is the cost of the plan of Π
in e and m∗Π is the smallest cost of the plan of Π in any
considered encodings, otherwise.
Learning. We have considered two methodologies, one that
have been used by MUM (Chrpa, Vallati, and McCluskey
2014) and one that have been used by BloMa (Chrpa and
Siddiqui 2015). For both methodologies, we considered 6
training tasks per each domain such that their plan length
was mostly within 40-80 actions1. Both methodologies con-
sider one training plan per a training task.

The MUM methodology uses the same planner for gen-
erating training plans as for solving testing tasks. In other
words, planners learn macros for themselves (and not for
other planners). This methodology follows an intuition that
most promising knowledge for a given planner can be ex-
tracted by analysing its outputs (plans).

The BloMa methodology, in contrast, selects a planner
which generates, for a given domain, best quality training
plans (e.g. the shortest plans). This methodology follows
an intuition that good quality training plans yield to most
promising knowledge for all planners.

The threshold for “underrepresented” macros was set to 6
(as the number of training tasks). The learning process took
at most several seconds.
Results. The results for domains in which Critical Section
Macros were generated are summarised in Table 1 and 2
for the MUM learning methodology (i.e., a planner learns
for itself) and the BloMa learning methodology (i.e., con-
sidering best quality training plans), respectively. We can
observe that macros learnt by the BloMa methodology per-
form better across the considered domains and planners.
For example, in Parking, Critical Sequence Macros gener-
ated from poor quality training plans capture meaningless
activities (e.g. moveCarToCar-moveCarToCar) while no
macros were generated from the best quality training plans.
Intuitively, better quality training plans carry better informa-
tion that can be exploited by a range of planning engines.

The conservative variant of Critical Section Macros out-
performs BloMa (in PAR10) in about 72% of cases consid-
ering the MUM learning methodology while in about 63%
of cases considering the BloMa learning methodology. With
regards to MUM, the results are mixed, in about 50% of
cases the conservative variant of Critical Section Macros
outperforms MUM (in both methodologies). Combination
of Critical Section Macros and MUM (the conservative ver-
sion) outperforms both MUM and Critical Section Macros in
about 60% of cases (overall). The aggressive versions out-
perform the corresponding conservative versions in about
90% of cases in which the aggressive versions generated

1For the IPC 2011 domains, we used provided problem gener-
ators while for the IPC 2008 domains, we selected the tasks from
the provided sets of “bootstrap” tasks.

7550



Planner Coverage PAR10 IPC Quality
O M B C CM AC ACM O M B C CM AC ACM O M B C CM AC ACM

barman
lama 2 - 19 30 30 30 30 8428 - 3653 385 8.6 11 1.8 1.7 - 18.9 26.4 29.9 29.9 29.9
probe 2 - 7 2 3 24 23 8427 - 7022 8455 8136 2104 2379 1.4 - 4.8 1.7 2.6 23.9 22.8
MpC 0 - 0 0 0 0 0 9000 - 9000 9000 9000 9000 9000 0.0 - 0.0 0.0 0.0 0.0 0.0
yahsp 0 - - 0 0 0 0 9000 - - 9000 9000 9000 9000 0.0 - - 0.0 0.0 0.0 0.0
BFWS 0 - 0 3 0 12 30 9000 - 9000 8148 9000 5606 1.2 0.0 - 0.0 2.8 0.0 12.0 29.2
FDSS 20 - 24 30 30 30 30 3234 - 2164 330 166 16 2.1 17.5 - 23.9 29.3 29.3 29.3 29.3

bw
lama 28 29 0 28 29 28 28 681 411 9000 711 379 617 616 24.5 22.2 0.0 22.1 23.4 23.0 23.0
probe 25 - 30 30 30 30 30 1679 - 156 215 195 0.4 0.3 21.4 - 28.4 27.2 27.1 27.5 29.9
MpC 0 - 0 30 30 11 18 9000 - 9000 177 173 5700 3600 0.0 - 0.0 12.3 28.7 3.7 16.7
yahsp 27 24 22 26 26 30 30 948 1833 2437 1239 1227 0.1 0.1 5.9 19.6 16.4 22.4 20.3 27.1 27.2
BFWS 3 - 0 0 0 0 0 8106 - 9000 9000 9000 9000 9000 3.0 - 0.0 0.0 0.0 0.0 0.0
FDSS 22 20 21 19 22 30 30 2506 3104 2780 3387 2492 11 11 18.0 14.9 14.7 14.7 15.1 23.4 23.4

depots
lama 0 - 0 2 0 30 30 9000 - 9000 8417 9000 0.4 0.3 0.0 - 0.0 1.4 0.0 29.5 29.9
probe 30 30 30 30 30 30 30 39 40 21 88 42 0.3 0.1 26.1 26.4 27.0 25.8 27.4 28.0 29.4
MpC 17 25 0 15 24 30 30 3985 1635 9000 4589 1944 0.4 0.1 11.7 18.6 0.0 11.2 17.7 28.7 29.8
yahsp 21 - 12 5 5 30 30 2809 - 5558 7545 7555 1.4 0.1 2.3 - 1.8 0.7 0.7 27.4 30.0
BFWS 9 15 3 15 14 30 30 6383 4577 8108 4555 4892 0.1 0.2 5.9 7.6 1.3 9.1 6.4 28.1 28.1
FDSS 19 - 0 14 12 30 30 3838 - 9000 5024 5602 0.6 0.5 18.9 - 0.0 12.7 11.1 27.5 28.4

gripper
lama 6 30 17 30 30 30 30 7342 101 4242 160 105 4.8 4.2 5.6 29.9 16.9 29.9 29.9 25.7 25.7
probe 0 0 0 0 - 30 30 9000 9000 9000 9000 - 16 17 0.0 0.0 0.0 0.0 - 29.9 29.9
MpC 0 0 0 0 0 30 30 9000 9000 9000 9000 9000 48 1.3 0.0 0.0 0.0 0.0 0.0 29.7 29.8
yahsp 0 - 0 0 0 0 30 9000 - 9000 9000 9000 9000 0.2 0.0 - 0.0 0.0 0.0 0.0 30.0
BFWS 0 5 5 0 5 27 27 9000 7527 7539 9000 7527 1372 1382 0.0 4.9 4.9 0.0 4.9 26.9 26.9
FDSS 0 14 0 9 13 30 - 9000 5082 9000 6492 5361 7.3 - 0.0 13.9 0.0 8.9 12.9 29.9 -

matching-bw
lama 26 30 - 30 29 30 30 1202 2.8 - 2.5 301 0.1 0.1 18.3 21.9 - 20.4 20.9 23.4 29.5
probe 13 23 0 22 23 - - 5108 2123 9000 2434 2115 - - 9.7 19.2 0.0 20.3 20.5 - -
MpC 0 0 - 26 24 - - 9000 9000 - 1294 1885 - - 0.1 0.1 - 22.7 20.8 - -
yahsp 0 25 - 26 26 30 30 9000 1523 - 1201 1204 0.1 0.1 0.1 14.0 - 17.3 17.2 22.4 29.8
BFWS 11 15 0 27 29 30 30 5748 4604 9000 987 444 0.1 0.1 8.8 12.3 0.0 21.5 25.2 27.4 27.5
FDSS 30 30 30 30 30 30 30 2.2 2.0 1.8 2.3 1.7 0.2 0.2 22.4 21.4 21.8 20.4 21.0 24.6 29.4

parking
lama 21 - 0 - - - - 2896 - 9000 - - - - 20.0 - 0.0 - - - -
probe 2 - 0 0 0 0 0 8436 - 9000 9000 9000 9000 9000 2.0 - 0.0 0.0 0.0 0.0 0.0
MpC 5 - 0 0 - - - 7539 - 9000 9000 - - - 5.0 - 0.0 0.0 - - -
yahsp 0 - 0 0 - 0 0 9000 - 9000 9000 - 9000 9000 0.0 - 0.0 0.0 - 0.0 0.0
BFWS 20 - 0 - - - - 3087 - 9000 - - - - 19.9 - 0.0 - - - -
FDSS 10 - 0 - - - - 6155 - 9000 - - - - 9.4 - 0.0 - - - -

rovers
lama 30 30 30 30 30 30 30 153 134 129 136 116 101 81 27.0 26.7 26.7 28.4 28.7 29.3 29.5
probe 29 26 29 30 28 29 29 699 1541 640 400 954 624 620 28.1 25.4 28.3 28.9 27.2 28.0 28.3
MpC 9 3 5 7 4 8 4 6512 8181 7602 7060 7898 6783 7913 8.7 2.1 2.6 6.9 2.9 6.6 2.6
yahsp 30 30 30 30 30 30 30 19 19 21 18 18 18 19 26.7 26.6 26.5 29.6 28.1 29.2 29.5
BFWS 17 12 1 19 16 - - 4197 5596 8718 3590 4449 - - 16.7 11.7 0.9 18.2 15.4 - -
FDSS 30 30 24 30 30 30 30 372 306 2207 354 280 301 274 27.4 27.4 21.9 29.1 29.0 28.9 28.7

sokoban
lama 20 - 21 22 19 - - 3017 - 2731 2431 3326 - - 17.9 - 17.7 18.3 14.2 - -
probe 25 - 27 29 28 - - 1539 - 924 329 631 - - 21.0 - 23.2 23.5 23.0 - -
MpC 30 - 30 30 29 - - 1.3 - 1.0 2.7 303 - - 27.6 - 28.3 24.5 24.7 - -
yahsp 25 - 25 28 27 - - 1527 - 1577 724 966 - - 17.2 - 13.3 25.6 24.5 - -
BFWS 30 - 30 30 30 - - 1.2 - 3.0 1.9 2.3 - - 28.5 - 26.3 27.8 28.3 - -
FDSS 30 - 30 30 30 - - 22 - 13 37 30 - - 27.3 - 20.2 24.0 24.5 - -

Table 1: Coverage, average PAR10 score (in seconds), and IPC quality score of the (O)riginal, (M)UM, (B)LoMa, (C)ritical
Section Marcos, Aggressive Critical Section Macros (AC) and their combination with MUM (CM, ACM respectively) encod-
ings, using the MUM learning methodology. ”-” denotes that no macros have been generated. Gray indicates cases where C or
CM model allow the planner to outperform the Original, MUM, and BloMa models in terms of PAR10. Light gray is used for
cases where the improvement is achieved only by AC or ACM.

macros and successfully removed the replaced original op-
erators.

Interestingly, in 6 domains (Barman, BlocksWorld, De-
pots, Gripper, Matching-Bw, Rovers), the aggressive vari-
ant (the BloMA learning methodology) generates Critical
Section Macros that can replace all primitive operators op-

erating with a resource. Only in Sokoban, original opera-
tors cannot be removed as it renders training tasks unsolv-
able (a macro push-push cannot replace the push oper-
ator). Combination of aggressive Critical Section Macros
with MUM, especially when using the BloMa learning
methodology, leads to further performance boost. In Bar-

7551



Planner Coverage PAR10 IPC Quality
O M B C CM AC ACM O M B C CM AC ACM O M B C CM AC ACM

barman
lama 2 - 14 30 30 30 30 8428 - 5022 396 8.5 11 1.9 1.7 - 13.9 26.4 30.0 30.0 30.0
probe 2 - 24 0 30 30 30 8427 - 2044 9000 43 231 0.5 1.4 - 22.5 0.0 29.9 29.9 29.9
MpC 0 - 0 0 30 1 30 9000 - 9000 9000 11 8700 0.6 0.0 - 0.0 0.0 30.0 1.0 30.0
yahsp 0 - 29 30 30 30 30 9000 - 442 253 0.3 10 0.1 0.0 - 21.5 29.1 30.0 30.0 30.0
BFWS 0 - 30 20 30 30 30 9000 - 4.9 3007 2.2 1.8 0.1 0.0 - 30.0 18.7 28.2 28.2 28.2
FDSS 20 - 25 30 30 30 30 3234 - 1820 310 152 15 1.9 17.6 - 24.9 29.3 29.4 29.4 29.4

bw
lama 28 - 29 28 29 28 30 681 - 380 711 404 616 0.4 15.3 - 12.1 12.7 13.0 12.8 30.0
probe 25 - 29 30 30 30 30 1679 - 558 214 172 0.4 0.3 21.4 - 27.3 27.2 27.0 27.3 29.9
MpC 0 - 0 30 30 11 20 9000 - 9000 172 168 5700 3012 0.0 - 0.0 9.5 22.0 2.2 20.0
yahsp 27 - 24 26 27 30 30 948 - 1848 1235 950 0.1 0.2 4.4 - 13.7 18.1 18.5 20.5 30.0
BFWS 3 - 1 1 3 30 30 8106 - 8700 8709 8114 58 3.2 0.6 - 0.1 0.4 1.3 28.2 29.9
FDSS 22 - 22 21 21 30 30 2506 - 2493 2806 2794 11 0.6 14.2 - 10.4 12.0 11.2 16.3 30.0

depots
lama 0 0 0 2 0 30 30 9000 9000 9000 8417 9000 0.5 0.3 0.0 0.0 0.0 1.4 0.0 29.5 29.9
probe 30 30 30 30 30 30 30 39 38 43 87 37 0.3 0.1 26.2 26.8 26.7 25.8 27.6 28.0 29.4
MpC 17 25 23 14 24 30 30 3985 1649 2221 4883 1947 0.4 0.1 11.7 18.6 17.1 10.6 17.9 28.7 29.8
yahsp 21 20 20 5 20 30 30 2809 3050 3061 7550 3060 1.4 0.1 2.3 3.2 3.2 0.7 3.2 27.4 30.0
BFWS 9 13 14 15 15 30 30 6383 5180 4873 4550 4620 0.1 0.1 5.3 9.3 9.0 7.8 10.8 20.4 29.7
FDSS 19 12 13 12 12 30 30 3838 5597 5325 5592 5601 0.6 0.4 18.9 11.2 12.2 11.0 11.2 27.5 28.4

gripper
lama 6 30 30 24 27 30 30 7342 101 103 1926 985 4.8 4.1 5.6 30.0 30.0 24.0 27.0 25.8 25.8
probe 0 0 0 0 0 30 30 9000 9000 9000 9000 9000 17 17 0.0 0.0 0.0 0.0 0.0 29.9 29.9
MpC 0 0 0 0 0 30 30 9000 9000 9000 9000 9000 48 1.3 0.0 0.0 0.0 0.0 0.0 29.7 29.8
yahsp 0 0 0 0 0 0 30 9000 9000 9000 9000 9000 9000 0.2 0.0 0.0 0.0 0.0 0.0 0.0 30.0
BFWS 0 5 5 0 5 27 27 9000 7529 7526 9000 7525 1371 1381 0.0 4.9 4.9 0.0 4.9 26.9 26.9
FDSS 0 15 14 9 10 30 30 9000 4802 5081 6493 6202 7.2 6.4 0.0 14.9 13.9 8.9 9.9 29.9 29.9

matching-bw
lama 26 26 0 30 30 30 30 1202 1202 9000 2.6 2.2 0.1 0.1 21.2 20.7 0.0 25.3 25.8 27.4 27.4
probe 13 18 0 30 30 30 30 5108 3610 9000 0.7 1.5 0.1 0.1 7.1 11.2 0.0 29.0 28.3 28.8 28.9
MpC 0 0 0 25 17 15 20 9000 9000 9000 1582 3982 4500 3000 0.0 0.0 0.0 17.3 13.7 9.0 19.9
yahsp 0 28 0 25 25 30 30 9000 639 9000 1501 1512 0.1 0.1 0.0 20.9 0.0 21.9 20.3 27.7 27.7
BFWS 11 15 0 27 29 30 30 5748 4604 9000 985 442 0.1 0.1 8.8 12.3 0.0 21.5 25.2 27.4 27.5
FDSS 30 30 15 30 30 30 30 2.2 1.8 4505 2.4 1.9 0.1 0.1 24.2 24.6 10.0 22.5 23.4 25.9 25.9

rovers
lama 30 30 30 30 30 30 30 153 123 163 118 91 110 81 26.6 26.2 26.3 29.5 29.6 28.8 29.0
probe 29 23 22 29 30 28 29 699 2392 2789 675 361 907 634 28.1 22.5 20.8 28.0 29.3 27.0 28.1
MpC 9 6 8 7 7 8 8 6512 7333 6786 7060 7058 6787 6788 8.3 5.6 7.5 6.6 6.9 6.3 6.7
yahsp 30 30 30 30 30 30 30 19 18 17 18 18 18 18 26.2 26.6 26.1 29.1 29.8 28.6 29.3
BFWS 17 11 2 18 15 21 19 4197 5881 8441 3854 4734 3016 3615 16.7 10.8 1.9 17.3 14.4 19.9 17.9
FDSS 30 30 23 30 30 30 30 372 302 2477 354 258 348 248 27.4 27.3 20.8 29.1 28.9 28.6 28.7

sokoban
lama 20 - 12 22 19 - - 3017 - 5414 2431 3326 - - 18.5 - 9.8 18.8 14.6 - -
probe 25 - 27 29 28 - - 1539 - 918 329 631 - - 20.9 - 22.1 24.1 23.1 - -
MpC 30 - 30 30 30 - - 1.3 - 1.1 2.6 4.7 - - 27.6 - 28.3 24.5 25.3 - -
yahsp 25 - 26 28 27 - - 1527 - 1297 722 965 - - 17.2 - 13.8 25.6 24.5 - -
BFWS 30 - 30 30 30 - - 1.2 - 2.5 1.8 2.2 - - 28.5 - 26.3 27.8 28.3 - -
FDSS 30 - 30 26 29 - - 22 - 12 1220 329 - - 27.4 - 20.3 20.8 23.6 - -

Table 2: Coverage, average PAR10 score (in seconds), and IPC quality score of the (O)riginal, (M)UM, (B)LoMa, (C)ritical
Section Marcos, Aggressive Critical Section Macros (AC) and their combination with MUM (CM, ACM respectively) encod-
ings, using the BloMa learning methodology. ”-” denotes that no macros have been generated. Gray indicates cases where C or
CM model allow the planner to outperform the Original, MUM, and BloMa models in terms of PAR10. Light gray is used for
cases where the improvement is achieved only by AC or ACM.

man, BlocksWorld, Depots, Gripper, Matching-Bw, there
exists at least one planner that solves each “enhanced” test-
ing task within 1 second in average (that is considerably
better than for the original tasks). Critical Section Macros
are particularly useful in Barman, where we could learn
two “long” macros, one which puts two ingredients into the
shaker and cleans the shot used to fill the shaker, and the
other which shakes the cocktail, pours it into the required
shot and cleans the shaker afterwards. When combined with
MUM, a “supermacro” assembling these two macros to-
gether was generated (hence, a cocktail can be made in
one step). In Rovers, Critical Section Macros capture more

marginal activities (sampling and dropping rock or soil) and
thus the macros are improving performance marginally.

The IPC quality score indicates that the expectable plan
quality degradation by macro use is marginal (the score is
often close to the coverage). In Bw and Depots, plan quality
even increases when macros are used.

We can observe that if Critical Section Macros capture
more complex activities such as in Barman their impact on
performance tend to be larger. In contrast, if Critical Sec-
tion Macros capture non-frequent activities (i.e., macros are
used a few times in plans) their impact is marginal such as
in Rovers. Replacing all original operators dealing with a re-

7552



source in the aggressive variant usually results in a consider-
able performance improvement. In the conservative variant,
reasoning with such a resource is not completely eliminated
as the original operators remain in the domain model and
hence planning engines might not fully benefit from Critical
Section Macros. Finally, using better quality training plans
leads to more representative macros.

Conclusion
In this paper, we introduced Critical Section Macros that are
inspired by resource locking in critical sections in parallel
computing. Roughly speaking, these macros capture whole
activities in which a resource is locked (e.g., shaking a cock-
tail and cleaning the shaker afterwards). The results have
shown the usefulness of Critical Section Macros, especially
in domains where non-trivial activities can be captured (e.g.
Barman) or where original operators dealing with resources
can be removed (e.g. BlocksWorld, Gripper).

In future, we would like to extend the methods for tempo-
ral planning, since we believe that the nature Critical Section
Macros can capture useful activities also in partially ordered
action sequences common in temporal plans.

Acknowledgements
This research was funded by the Czech Science Foundation
(project no. 18-07252S). Access to computing and storage
facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum provided under
the programme ”Projects of Large Research, Development,
and Innovations Infrastructures” (CESNET LM2015042), is
greatly appreciated.

References
Alhossaini, M. A., and Beck, J. C. 2013. Instance-specific
remodelling of planning domains by adding macros and re-
moving operators. In Proceedings of SARA, 16–24.
Asai, M., and Fukunaga, A. 2015. Solving large-scale plan-
ning problems by decomposition and macro generation. In
ICAPS, 16–24.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of ECAI, 240–245.
Chrpa, L., and Siddiqui, F. H. 2015. Exploiting block de-
ordering for improving planners efficiency. In IJCAI, 1537–
1543.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2014. MUM: a
technique for maximising the utility of macro-operators by
constrained generation and use. In ICAPS, 65–73.
Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; Lòpez, C. L.;
Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33:83–88.

Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. In Proceedings of
ICAPS, 97–104.
Dawson, C., and Siklóssy, L. 1977. The role of preprocess-
ing in problem solving systems. In Proceedings of IJCAI,
465–471.
Dulac, A.; Pellier, D.; Fiorino, H.; and Janiszek, D. 2013.
Learning useful macro-actions for planning with n-grams.
In ICTAI, 803–810.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs
and h+. Journal Artificial Intelligence Research (JAIR)
41:155–229.
Hofmann, T.; Niemueller, T.; and Lakemeyer, G. 2017. Ini-
tial results on generating macro actions from a plan database
for planning on autonomous mobile robots. In ICAPS, 498–
503.
Korf, R. 1985. Macro-operators: A weak method for learn-
ing. Artificial Intelligence 26(1):35–77.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and inference based planners: Siw, bfs(f), and
probe. In The Eighth IPC. Description of Participant Plan-
ners of the Deterministic Track, 6–7.
Lipovetzky, N.; Ramirez, M.; Frances, G.; and Geffner, H.
2018. Best-first width search in the ipc2018: Complete, sim-
ulated, and polynomial variants. In The Ninth International
Planning Competition. Description of Participant Planners
of the Deterministic Track.
Minton, S. 1988. Quantitative results concerning the util-
ity of explanation-based learning. In Proceedings of AAAI,
564–569.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of ICAPS, 256–263.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal Artificial Intelligence Research (JAIR) 39:127–177.
Rintanen, J. 2014. Madagascar: Scalable planning with sat.
In The Eighth IPC. Description of Participant Planners of
the Deterministic Track, 66–70.
Seipp, J., and Röger, G. 2018. Fast downward stone soup
2018. In The Ninth International Planning Competition. De-
scription of Participant Planners of the Deterministic Track.
Siddiqui, F., and Haslum, P. 2012. Block-structured plan
deordering. In 25th Australasian Joint Conference, volume
7691 of LNAI, 803–814.
Vidal, V. 2014. Yahsp3 and yahsp3-mt in the 8th interna-
tional planning competition. In The Eighth IPC. Description
of Participant Planners of the Deterministic Track, 64–65.

7553


