
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficient Temporal Planning Using Metastates

Amanda Coles,∗ Andrew Coles,∗ J. Christopher Beck†
*Department of Informatics, King’s College London, UK.

†Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
email: {amanda,andrew}.coles@kcl.ac.uk, jcb@mie.utoronto.ca

Abstract

When performing temporal planning as forward state-space
search, effective state memoisation is challenging. Whereas
in classical planning, two states are equal if they have the
same facts and variable values, in temporal planning this is
not the case: as the plans that led to the two states are sub-
ject to temporal constraints, one might be extendable into at
temporally valid plan, while the other might not. In this pa-
per, we present an approach for reducing the state space ex-
plosion that arises due to having to keep many copies of the
same ‘classically’ equal state – states that are classically equal
are aggregated into metastates, and these are separated lazily
only in the case of temporal inconsistency. Our evaluation
shows that this approach, implemented in OPTIC and com-
pared to existing state-of-the-art memoisation techniques, im-
proves performance across a range of temporal domains.

1 Introduction
Planning is fundamental to intelligent autonomous behavior
and reasoning about time is essential to planning in many
real-world domains. One of the most popular paradigms for
planning is forward state-space search, and key to its suc-
cess is memoisation. In classical planning if a given state
(set of propositions and variable assignments) has been seen
before, then it need not be explored again if it is reached by
a different sequence of actions. This reasoning can easily be
extended to a setting where actions have costs, by keeping
only the lowest cost path to a given state.

Temporal planning brings with it further challenges for
memoisation (Coles and Coles 2016). Not only are the val-
ues of variables and propositions important, as in classical
planning, but also the path taken to reach a state can deter-
mine whether the partial plan can be extended into a tempo-
rally valid plan to reach the goal. For example, if we took a
longer path to reach a state, we might no longer be able to
meet a deadline. In the worst case in temporal planning, this
results in the need to keep different states for every possible
path to every classically equal state. Coles and Coles (2016)
made some progress on this issue with a technique to prune
isomorphic plans and to identify special cases where achiev-
ing facts earlier can always be proven to be better. However,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

there are many cases where states that are not likely to be
interestingly different still have to be considered as such.

In this paper we propose a radically different approach to
dealing with the need to explore classically identical states
in temporal planning. Our approach is based on the idea of
metastates. Instead of inserting multiple copies of a classi-
cally identical state (which are reached by different paths)
into the open list for search to explore, we maintain a sin-
gle metastate that aggregates these. Each time a new state is
generated, we either create a new metastate if it is classically
unique; or if we have previously seen a classically identical
state we add information to the existing metastate to record
that there is an alternative path to the state (which may lead
to different temporal constraints). Now, we search over the
space of metastates, nominally expanding only one member
from each. Since here we are interested in satisficing plan-
ning we need only consider expanding the other members of
a metastates, if its descendants are temporally inconsistent.

We empirically evaluate our approach on temporal plan-
ning domains and our results show a significant improve-
ment in performance over the state-of-the-art in memoisa-
tion for temporal planning.

2 Background
2.1 Problem Definition
A PDDL2.1 (Fox and Long 2003) planning problem is de-
fined over a collection of propositions P , and a vector of
numeric variables v. These are manipulated and referred to
by actions. The executability of actions is determined by
their preconditions, conjunctions of conditions. A condition
is either a single proposition p ∈ P , ¬p, or a numeric con-
straint over v. We assume all such constraints are linear, and
hence can be represented in the form w.v{>,≥, <,≤,=}c
where w is a vector of constants and c is a constant).

Each durative action A has three sets of preconditions:
pre`A, pre↔A, preaA. These represent the conditions that
must hold at its start, throughout its execution (invariants),
and at its end, respectively. Instantaneous effects can oc-
cur at the start or end of A: eff+`A (eff−`A) denote propo-
sitions added (resp. deleted) at the start; effnum` A denotes
numeric effects. Similarly, eff+aA, eff−a and effnuma record
effects at the end. We assume numeric effects are of the
form: v{+=, -=,=}w.v + c (v ∈ v). Semantically, the val-

7554

B

CA E
D

33

2 2

1

Figure 1: Example Driverlog Problem

ues instantaneous of effects become available small amount
of time, ε, after they occur.

Finally, the action has a duration constraint: a conjunction
of numeric constraints applied to a special variable durA de-
noting its duration. As a special case, instantaneous actions
have duration ε, and only one set of preconditions preA and
effects eff+A, eff−A, and effnumA. A durative action A
can be split into two instantaneous snap-actions,A` andAa,
representing the start and end of the action respectively, and
a set of constraints (invariant and duration constraints). Ac-
tion A` has precondition pre`A and effects eff+`A, eff−`A,
effnum` A. Aa is the analogous action for the end of A.

A solution to the problem is a plan: a timestamped se-
quence of actions with associated durations, that transforms
the initial state I into one that satisfies the goal G. All
pre/invariant conditions must satisfied at the time of/during
execution and actions that have started must have finished.

2.2 Memoisation in Temporal Planning
Forward search temporal planning begins from the initial
state: a set propositions that are known to be true and as-
signments to the numeric variables in v. At each state S
during search the planner generates successor states, each
S′ corresponding to the application of a logically applicable
snap action: one whose preconditions are satisfied in S, and
whose effects do not violate the invariant conditions pre↔A
of any action A that has started but not yet ended. Searching
in this way ensures all plans are logically valid (all precon-
ditions are satisfied), but does not ensure they are temporally
valid (respect the duration constraints of actions).

In this work we build on the planner OPTIC, which records
temporal constraints in each state in the form of a Sim-
ple Temporal Problem (STP) (Dechter, Meiri, and Pearl
1991) or Mixed Integer Program (MIP), and updates these
as search progresses. Because of these temporal constraints,
state memoisation – i.e. determining when two states are
equivalent, to avoid redundant search – is more difficult than
in classical planning. Suppose we have two states A and B,
with the same facts, variable values, and executing actions,
but different temporal constraints. While these may have the
same logically applicable actions, applying the same action
in each to yield A′ and B′ may yield different temporal con-
straints, such that those in A′ are satisfied while those in B′
are not. Thus, we cannot say that A and B are equal, as the
search tree reachable under each may be different.

To understand why this might be, consider the Driverlog
Shift problem depicted in Figure 1. The Driverlog Shift do-
main extends the Driverlog domain by adding a ‘shift’ ac-
tion, that adds a predicate (available ?driver); then, all ac-
tions involving the driver (boarding, disembarking and driv-

ing the truck) have this predicate as an invariant and so must
take place during the execution of shift. Let us assume that
the duration of the shift action is 6 time units and it takes a
nominal 0.1 time units to load and unload packages. This
means that the plan to deliver the package to E (the goal)
via B is not feasible as it will take too long; whereas going
via D is feasible. Suppose in forward-search to reach this
plan we encounter the state where the driver and package
are in the truck at C, having followed the plan that drives via
B, and memoise that we have seen the state with these facts
true. Now, if we later reach this state again, having taken the
path via D, classical memoisation would prune the state, as
it has the same facts as one that was seen before. In tempo-
ral planning this would render the problem unsolvable: the
state reached via D, has an STN whose temporal constraints
allow it to be extended into a solution plan; whereas the state
via B, the only one we kept does not. In general, in temporal
planning, we therefore cannot prune a state simply because
it has the same facts as one we have already seen.

Coles and Coles (2016) took a step towards address-
ing this issue by testing for equality based on the plan to
reach states by checking whether these plans are isomorphic.
When OPTIC adds a new snap action to a plan, it is ordered
only after other actions as required for logical soundness,
e.g. after the adders of its preconditions. Suppose in our
Driverlog example there are two packages p and q at A to be
loaded onto the truck. OPTIC will generate two states, one
resulting from applying load p, load q and the other, load q,
load p. However, since the two load actions are independent
they will not be ordered with respect to each other, so these
plans are isomorphic partial orders. In terms of the planning
problem, isomorphic partial orders are effectively identical
so by identifying such partial orders and keeping only one
such state, the search space can be reduced.

This was effective at reducing the number of nodes ex-
panded by search, but has the limitation that if the two plans
contain different actions, they cannot be isomorphic: it can
detect permutations of the same actions, but not interchang-
ing different but effectively equivalent actions. It is this
point we explore in this paper. For example, in our Driverlog
Shift problem, two plans that start ‘shift’ then go from A to
C – one going via B, the other via D – cannot be isomorphic
as the ‘move’ actions are different, even if the truck in both
is at C. We need to keep both for completeness when the du-
ration of ‘shift’ is tight enough to preclude one of the plans
from reaching a goal state; but if the duration of ‘shift’ is suf-
ficiently long, it would not matter for the purposes of solving
the problem which route was taken to C (although one might
admit a better quality plan). But, regardless of the duration
of ‘shift’, a temporal planner would have to keep both, and
expand them as different states, blowing up the search tree;
whereas a classical planner would keep only one.

While we implement our ideas in OPTIC, this is with-
out loss of generality. Our work is applicable to other
approaches to managing temporal constraints in forward
planning, such as the decision epoch approach (Cushing et
al. 2007) used in SAPA (Do and Kambhampati 2003) and
TFD (Eyerich, Mattmüller, and Röger 2009) as these must
still consider the queue of pending action ends when deter-

7555

mining whether states are equal; as, again, the search tree
reachable under two otherwise equal states may differ.

3 Metastate-Space Search
In this section we introduce the notion of metastates and ex-
plain the details of forward-search metastate space.

3.1 Preliminaries
A state is defined as follows:

Definition 3.1 — A state A state comprises:

• f – the facts that are true in the state.

• v̄ – the values of each state variable.

• P = [p0..pn] – a partial plan. Each pi represents an in-
stantaneous action, start snap action or end snap action.

• Q – a list of actions that started in P , but have not yet
finished. For each 〈a, i, dmin , dmax 〉 ∈ Q:
– a identifies the ground durative action;
– i is its step index in the plan P ;
– dmin , dmax are the minimum/maximum duration of a,

calculated based on the values of v̄ in the state at step i.

• T – temporal constraints over the steps in the plan P .

In classical forward-search planning, two states S and S′
can then be said to be equal if S.f = S′.f and S.v̄ = S′.v̄.
The other parts of the tuple are irrelevant: Q is always
empty, as all actions are instantaneous; T is unnecessary, as
steps in P are totally ordered. Even if P is different in S and
S′, this has no bearing on further state expansion: what de-
termines this is which preconditions are satisfied and since
f and v̄ are equal for each state the same preconditions must
be satisfied in both. Thus, as the reachable search spaces un-
der S and S′ are identical, S′ can be pruned if it is equal to
another state S that has already been seen.

In temporal forward-search planning, we have to make
three important distinctions:

• The list of actions Q matters: we can only end an action
a – i.e. apply the snap-action aa, if a ∈ Q.

• Whenever an action has been applied, all the invariant
conditions of the actions recorded inQmust be respected.

• T must be consistent. Otherwise, while the plan under
construction may be logically consistent (all precondi-
tions are satisfied), it may be temporally inconsistent –
for instance, if T constrains a long durative action to be
contained entirely within a shorter one.

The first two of these are logical in flavor: a straightfor-
ward inspection of Q will suitably restrict the applicable ac-
tions to respect invariant constraints and start–end planning
semantics, without reference to temporal information per se.
The last, however, poses an issue for state memoisation. If
two states S and S′ have the same facts, the same variable
values, and the same actions in Q, the same actions will be
logically consistent extensions of S and S′. But, they might
not be temporally consistent extensions of both S and S′,
due to their effect on the temporal constraints T . Thus, it is
not completeness preserving to keep only one of S or S′.

The current state of the art (Coles and Coles 2016) ad-
dresses the memoisation issue in two ways. First they prove
that, for states in which no actions are executing if Q is
empty (i.e. there are no open actions), and S and S′ are both
temporally consistent, it is completeness preserving to keep
only one of them. Because search proceeds in a forwards di-
rection, all subsequent plan steps will be ordered after those
already in the plan; and as these constraints w.r.t. the existing
plan steps are only ever minimum separation constraints (a
later step is ordered 0 or ε after some existing step), any tem-
porally consistent plan extension from S will also be consis-
tent from S′. Second, for all other states (with open actions),
this observation no longer applies, in which case S and S′
are both to be kept unless their plans are isomorphic; i.e. ex-
actly the same actions were applied in a different order, but
leading to identical temporal constraints. This was shown to
be effective compared to simpler alternative of keeping all
states with open actions, but the requirement that S and S′
must be reached by identical actions limits pruning that can
be achieved.

3.2 Strong and Weak Equality
The core limitation of standard memoisation is that to pre-
serve completeness, it must use strict state duplicate detec-
tion. As noted, this is particularly restrictive when com-
paring states with open actions. For instance, a state S is
reached by moving from A to B to C and then starting an
action a, is different to a state S′ moving from A to D to
C and then starting a – even if all the facts in the states are
the same, a is an open action, so plan isomorphism is used.
As the two plans contain different actions, they cannot be
isomorphic, so both S and S′ are kept.

In practice, we hypothesize that it is often sufficient to
only expand one of S or S′, as they are sufficiently similar,
but we want to maintain completeness in the case where ex-
panding the other was necessary. As a step towards this, we
first define notions of strong and weak state equality. Strong
equality is suitable for completeness-preserving memoisa-
tion; weak equality is not, but defines the concept of two
states being ‘sufficiently similar’.

Ancillary to this, we define two helper functions, the num-
ber of times action a is executing in the queue Q of a state:

num exec(Q, a) = |{i | 〈a, i, dmin, dmax〉 ∈ Q}|
and a set of pairs each comprising an action, and the number
of times that action is executing in a state:
exec(Q) = {〈a,num exec(Q, a)〉 | num exec(Q, a) > 0}

Recall that the semantics of PDDL 2.1 permit an action to
self-overlap (Rintanen 2007) (i.e. a new instance of a can
start before a previous instance of a has ended): this is why
action a may be executing more than once in the same state.

We now define strong equality as follows:

Definition 3.2 — Strong equality
States S = 〈f, v̄, P,Q, T 〉 and S′ = 〈f ′, v̄′, P ′, Q′, T ′〉,

where T and T ′ are temporally consistent, are strongly equal
iff f = f ′, v̄ = v̄′ and either (i) Q = Q′ = ∅; or (ii) the
partial plans P and P ′ are isomorphic.

The notation S = S′ denotes strong equality.

7556

Note that if S = S′, and S = S′′, then trivially, S′ = S′′:
in the first case all queues must necessarily be empty; and in
the second case, isomorphism is transitive.

Weak equality broadens this:

Definition 3.3 — Weak equality
States S = 〈f, v̄, P,Q, T 〉 and S′ = 〈f ′, v̄′, P ′, Q′, T ′〉,

where T and T ′ are temporally consistent, are weakly equal
iff f = f ′, v̄ = v̄′, exec(Q) = exec(Q′).

The notation S ≈ S′ denotes weak equality.
As with strong equality, weak equality is trivially transi-

tive. Additionally, it is a strict relaxation of strong equality:
(S = S′)⇒ (S ≈ S′). For the two cases of strong equality:

• The first case is a restriction of weak equality: if Q =
Q′ = ∅ then exec(Q) = exec(Q′) = ∅.

• In the second case, if P and P ′ are isomorphic they must
contain the same actions; so if P contains a` more times
than aa then so does P ′, so trivially exec(Q) = exec(Q′).

3.3 Metastates
We now make use of strong and weak equality to define a
metastate-space over which to search; and a search algo-
rithm to do this. We define a metastate as follows:

Definition 3.4 — Metastate
A metastate M is a tuple 〈Σ,Π,Γ, ρ, ex , re, c re〉, where:

• Σ is a list of member states [σ0..σn], that are pairwise
weakly equal.

• Π is a list of parent metastates, and the action applied to
reach M from the parent – [〈M0, a0〉..〈Mn, an〉].

• Γ, a list of child metastates and the action applied to reach
them – [〈M0, a0〉..〈Mn, an〉].

• q ∈ {⊥,>} is a boolean flag set to > iff the metastate is
queued for expansion.

• ex ∈ Z+
0 , a counter of how many of Σ have been explic-

itly expanded.

• re ∈ {⊥,>} is a boolean flag set to > iff either M has
not yet been expanded; or the most recent expansion of
M was partial due to one or more successors being incon-
sistent according to the temporal constraints.

• c re ∈ Z+
0 counts how many of the children of M could

in principle lead to a larger reachable search space if given
an additional member.

In this definition, Σ records the states in a metastate, and
Π and Γ define the structure of the metastate space: if there
is an edge in the metastate space between two metastates M
and M ′ labeled with the action a, then 〈M ′, a〉 ∈ M.Γ and
〈M,a〉 ∈ M ′.Π. The other entries in the tuple are book-
keeping information to support search, we will explain the
meaning of these and how they are used later.

3.4 Searching with Metastates: Overview
We begin with a high-level overview of search:

a) A search queue of metastates is initialized to the meta-
state containing the initial state.

A1

C2

E1

B1 D1

A1

C1

E1

B1 D1

Expanded=[A,B,D,C]
Open = [E]

Expanded=[A,B,C]
Open = [E,D]

(a) (b)

Figure 2: Example metastate spaces, with the order in which
metastates were expanded, and their open lists. The letter
denotes the truck location; the number is |M.Σ|.

b) At each iteration, a metastate is popped from the search
queue and expanded. The expansion of a metastate M
expands one of its member states; specifically, σM.ex , the
state in M.Σ with index M.ex .

c) Search aims to expand each metastate only once; how-
ever, to ensure completeness there are two cases in which
a metastate must be re-expanded:

i If there was an action that was logically applicable in the
last-expanded member of M , but which led to a tempo-
rally inconsistent child state (i.e. if M.re). It is neces-
sary to consider other member states of M as they have
different temporal constraints and hence may lead to a
temporally consistent child.

ii If one of the children of M , transitively, needs to be re-
expanded. In this case, we must consider other member
states ofM as expanding them will add new members to
the children of M , supporting their re-expansion.

d) Search attempts to avoid explicitly generating all the
member states of a metastate. New members are only
explicitly generated under one of two conditions:

i If search reaches a state S that is weakly equal to the
states in an existing metastate M , S is added to M .

ii If a metastate needs to be re-expanded, c (i), but all the
members of M have already been expanded, a traver-
sal back via the parents of M (M.Π) is used to generate
additional member states for M . If no new members
can be found the c re values of M ’s ancestors are in-
cremented, so that if they acquire new members they are
re-expanded as per c (ii).

To illustrate why re-expansion of metastates or generation
of new metastate members is sometimes necessary, two ex-
ample metastate spaces are depicted in Figure 2. These are
based on the Driverlog Shift example (Figure 1) and the task
is to reach location E and ‘unload’ a package. For simplicity
we assume that in Metastate A (where search begins in this
example) the package and driver are already in the truck and
the ‘shift’ action has started. Further, we only show states
reachable by applying move actions: the letter representing
each metastate corresponds to the location of the truck. Each
state-space demonstrates a different search scenario:

• In Figure 2(a), the metastate C has two members corre-
sponding to the states reached by plans ABC and ADC.

7557

Algorithm 1: Memoise
Data: memoised , a set of all metastates generated; S a

new state; 〈MP , a〉, the metastate parent of S
and action applied to reach it

Result: enqueue , a list of metastates to subsequently
enqueue

1 if ∃M ∈ memoised |M.σ0 ≈ S then
2 return AddMemberToMetaState(M,S, 〈MP , a〉)
3 else
4 M ← 〈[S], [〈MP , a〉], [],>, 0,>, 0〉;
5 memoised ← memoised ∪M ;
6 return [M]

Metastate E, however, only has one member as when C
was expanded, only its first member (reached via ABC)
was used, generating one state in E for the plan ABCE.
The metastate E is then popped from the open list and
expanded. The ‘unload’ action needed here cannot be
applied, due to the ‘shift’ action constraining how much
time can pass: this is because the long route to E, via B,
was taken. E must now be re-expanded (c (i)) but it has
no other member states. Thus, a traversal back via the
parents of E attempts to generate additional members for
E (d (ii)). This traversal finds the second member state of
C (reached via ADC); appends ‘move CE’ to the plan to
yield another state weakly equal to the existing member
of E; then enqueues E for re-expansion. This state will
then be expanded and successfully reach the goal in time.

• In Figure 2(b), B has been expanded, but D has not. Thus,
C has only one member, and when E is unsuccessfully
expanded, a traversal back via its parents (d (ii)) cannot
generate any additional members, as they all have only
one member state. Hence, the c re values in E’s ancestors
(C, B and A) are incremented to note that they have a
child that needs to be re-expanded. When D is popped
from the open list, the state generated (ADC) becomes an
additional member of C (d (i)). C will then be put on the
open list asC.c re>0 (c (ii)); C is re-expanded generating
a new member for E (ADCE), putting E on the open list as
E.re=> (c (i)); E is re-expanded, using this new member,
leading to successful application of ‘unload’.

3.5 Searching with Metastates: Algorithms
Algorithm 1 defines how state memoisation is performed
with reference to the metastate space. For each state S en-
countered in search, first a check is made at line 1 to see
if there is an existing metastate whose members are weakly
equal to S. If there is, AddMemberToMetaState is used to
update the metastate. In the simpler case, if there is no such
metastate, then a new one is created, containing just S.

Algorithm 2 deals with adding a new member S to a
metastate M . At line 1 we check whether an existing mem-
ber is strongly equal to S – if it is, S does not need to be kept.
Otherwise, it is added to the members of the metastate.

As our aim is to avoid redundant expansion of the search
space, when a new member has been added to a metastate,

Algorithm 2: AddMemberToMetaState
Data: M , a metastate; S, a new weakly-equal member

state; 〈MP , a〉, the metastate parent of S and
action applied to reach it

Result: enqueue , a list of zero or one metastates to
subsequently enqueue

1 if ∃S′ ∈M.Σ | S′ = S then return [];
2 M.Σ←M.Σ + [S];
3 if 〈MP , a〉 6∈M.Π then M.Π←M.Π + [〈MP , a〉];
4 if M.q then return [];
5 if M.re ∨M.c re > 0 then
6 M.ex ← |M.Σ| − 1; M.q ← >; return [M];
7 return []

M.q is then checked to see if M is already queued for ex-
pansion: if it is, it need not be queued again. Otherwise, if it
is not queued, then the metastate is returned to be enqueued
only if one of two conditions holds (e (i)/(ii) Section 3.4):

• if M.re, then the last expansion of M – i.e. an expan-
sion based on a pre-existing member state – did not lead
to a temporally consistent child for each logically appli-
cable action. In this case, expanding M again will derive
children from the new member state.

• if M.c re, then the last expansion of M did lead to a tem-
porally consistent child for each logically applicable ac-
tion, but one or more of these when expanded either did
not lead to a temporally consistent child for each logically
applicable action, or is the ancestor of such a metastate.
In this case, because there is a new member for M , ex-
panding it again will yield new members for its children.

Algorithm 3 presents search itself: a priority-queue-based
search, using a heuristic function. We use WA* with W=5;
and a temporal RPG heuristic, as in OPTIC.

At its core (lines 21– 26) is an ordinary forward-search
expansion loop, generating one successor per applicable ac-
tion; keeping it if it is returned by the Memoised function
(Algorithm 1). There are three possible reasons a metastate
M could be on the open list. First, if either M.re = > – i.e.
if the successors of the previous expansion ofM were not all
temporally consistent (Section 3.4 e (i)), or if M has not yet
been expanded. The aforementioned forward-search expan-
sion loop is used to expand the metastate in these first two
cases. The final case is when c re>0 (Section 3.4 f (ii)): one
or more of M ’s children needs to be re-expanded but needs
additional member states before this can occur; and by re-
expandingM we will generate an additional member for this
child. This is handled by a selective state-expansion, that
only generates member states for the child metastates that
need them (lines 9–18). IfM.re=⊥, this selective loop alone
is sufficient, as the re and c re values in the child metas-
tates record which need additional members: child metas-
tates reached by the other applicable actions can be ignored.

Following expanding the current member S of the cur-
rent metastate M , lines 27–30 determine whether M then
needs to be added to the open-list again for re-expansion.
This occurs either because when M was expanded some of

7558

Algorithm 3: Search
Data: The initial state I Result A solution plan

1 IM ← 〈[I], [], [],>, 0,>, 0〉;
2 memoised ← {IM };
3 Q← [IM];
4 while Q is not empty do
5 M ← pop the next metastate from Q;
6 S ←M.σM.ex ;
7 M.q ← ⊥; M.ex ←M.ex + 1;
8 enqueue ← [];
9 if M.c re > 0 then

10 foreach 〈Mi, ai〉 ∈M.Γ do
11 if Mi.q then continue;
12 if Mi.re ∨Mi.c re > 0 then
13 Si ← apply ai to S;
14 if S′.T is temporally consistent

∧ 6 ∃S′ ∈Mi.Σ | S′ = Si then
15 Mi.Σ←Mi.Σ + [Si];
16 Mi.q ← >;
17 enqueue ← enqueue + [Mi];
18 M.c re ←M.c re − 1;

19 if M.re then
20 M.re ← ⊥;
21 foreach a that is logically applicable in S do
22 S′ ← apply a in S;
23 if S′.T is temporally consistent then
24 if S′ is a goal state then return S′ ;
25 enqueue ←

enqueue + Memoise(memoised , S′, 〈M,a〉);
26 else M.re ← > ;

27 if M.re ∨ (M.c re > 0) then
28 if M.ex = |M.Σ| then

M.Σ←M.Σ + FindAnotherMember(M,M, [])
;

29 enqueue ← enqueue + [M];
30 M.q ← >;
31 foreach M ′ ∈ enqueue do
32 while M ′.ex < |M ′.Σ| do
33 hM ′ ← heuristic evaluation ofM ′.σM ′.ex ;
34 if hM ′ 6=∞ then
35 insert M ′ into Q with h-value hM ′;
36 break;
37 M ′.ex ←M ′.ex + 1;
38 if M ′.ex = |M ′.Σ| then M ′.σ ←

M ′.Σ + FindAnotherMember(M ′,M ′, []) ;
39 if M ′.ex = |M ′.Σ| then
40 M ′.q ← ⊥;
41 IncrementParentCREValues(M ′);

42 return problem unsolvable;

its successors were not temporally consistent (i.e. M.re was
changed back to true at line 26) (Section 3.4 e (i)) or be-
cause it has at least one child that still would benefit from

Algorithm 4: FindAnotherMember
Data: MC , a metastate; MT , a metastate; tail , the plan

from MC to MT
Result: enqueue , a list of 0 or 1 metastates to

subsequently enqueue
1 foreach 〈Mi, ai〉 ∈ MC .Π do
2 foreach S ∈Mi.Σ do
3 S′ ← apply ([ai]+tail) to S;
4 if S′.T is temporally consistent and

6 ∃S′′ ∈ MT .Σ | S′′ = S′ then
5 MT .Σ← MT .Σ + [S′];
6 MT .q ← >;
7 return [MT];

8 rc ← FindAnotherMember(Mi,MT , [ai]+tail);
9 if rc 6= ∅ then return r ;

10 return [];

an additional member state being generated (Section 3.4 e
(ii)). The complication here is what to do in the case where
there are no more members of M left for expansion, i.e. if
M.ex = |M.Σ| (Section 3.4 f (ii)). In this case, a helper
function traverses back from M to its parents, to generate
additional candidate members ofM from the members of its
parents. This is presented in Algorithm 4 – this recursively
generates candidate plans for reachingM from a parent, and
if one is found that is temporally consistent, and not strongly
equal to an existing member of M , then it is returned to be
added as a member to M . This corresponds to the case in
Figure 2(a): when the metastate E is expanded for the first
time, ‘unload’ could not be applied without violating the
temporal constraints; thus, FindAnotherMember would be
used to look for another member state for E. When travers-
ing back to its parent, C, and looping over its two members
(ABC and ADC), extending the first (to yield ABCE) would
duplicate the existing member of E, but extending the sec-
ond (to yield ADCE) would produce a new member for E,
supporting its re-expansion. Of course, FindAnotherMem-
ber cannot always generate a new member in which case it
returns an empty list.

The final loop in Algorithm 3 at lines 31–41 considers
each metastate M ′ that is to be enqueued on Q. In the nom-
inal case, a member state M ′.σM ′.ex is heuristically eval-
uated, and its heuristic value is used when placing M in
Q. There are two caveats though. First, if M ′.σM ′.ex is
a dead-end, one of the other members of M ′ (if there is
one) may not be; hence, M ′.ex is incremented, to allow
further heuristic evaluation. As this may exhaust the gen-
erated members of M ′, we see again a call to Algorithm 4
to attempt to generate another member state. Second, if no
additional members can be generated, it may be that search
later finds another plan that reaches one of the parents of
M ′, from which it is possible to generate another member
of M ′. To preserve completeness, it is important that this
can happen. This is achieved through the use of the c re
values, as updated by Algorithm 5: these count how many
of the immediate children of a metastate are awaiting an ad-

7559

Algorithm 5: IncrementParentCREValues
Data: M , a metastate

1 foreach 〈Mi, ai〉 ∈ M .Π do
2 if Mi .c re = 0 then

IncrementParentCREValues(Mi);
3 Mi.c re ←Mi.c re + 1;

ditional member. Referring back to earlier in Algorithm 3,
lines 9–18 then use these values to selectively push addi-
tional member states down to the appropriate children until,
in turn, the new member for M ′ is generated.

Finally, we sketch a proof for the completeness of our al-
gorithm. Trivially, any goal states generated are returned
(Algorithm 3 line 24). Thus, to be incomplete, there must
be a state S from which applying a sequence of snap-actions
tail = [a0..an] was the only way to reach a goal state; but
S was never expanded. In the simple case, S is the first
member of a metastate M , and all metastates are queued for
expansion at least once; so S would have been expanded.
Otherwise, S must have been added as a member of an ex-
isting metastate M . In this case, because applying tail to S
is posited as being the only way to reach a goal state, there
must be a subsequence tail sub = [a0..ai], i ≤ n of the tail
snap actions that when applied to any other S′ ∈M.Σ leads
to an inconsistent state. Then, either (i) S ∈M.Σ when this
occurred, so Algorithm 4 would be used to apply tail sub
to S; or (ii) S 6∈ M.Σ when this occurred, so Algorithm 5
would increment M.c re causing M (and hence S) to be
expanded later, as soon as S ∈ M.Σ (Algorithm 2 line 5).
Thus, regardless of when S was added to M.Σ, tail will be
applied to it and hence the goal would be reached. �

4 Evaluation
To evaluate our metastate search algorithm, we use as
a control the state memoisation techniques of Coles and
Coles (2016) also implemented in OPTIC. In both cases
we use WA* search (with W=5) guided by OPTIC’s TRPG
heuristic. For evaluation domains, we take International
Planning Competition benchmarks and temporally interest-
ing domains from the literature. We exclude any domains
where all actions are compression safe. In these domains,
during search there will never be any states with open ac-
tions; hence, as discussed in Coles and Coles (2016), memo-
ising based on the classical planning notion of state equality
is completeness preserving. Moreover, we would only have
one member per metastate, as states with no open actions
are strongly equal to other states with the same facts and
variables, so our search would behave exactly as the control.
This leaves 10 domains with required concurrency (Cush-
ing et al. 2007) – Cafe and Driverlog Shift (Coles et al.
2009); P2P (Huang et al. 2009); TMS and Turn and Open
(IPC2011); the compiled timewindows/deadlines variants of
Pipes No-Tankage, Satellite and UMTS (IPC2004) – and 5
other IPC domains Rovers (2002); Pipes Tankage (2004);
Transport, Elevators and Openstacks (2008).

An overview of the performance of our algorithm com-
pared to the control is shown in Figures 3 and 4: where

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

W
it
h

 M
e

ta
s
ta

te
s
,

N
o

d
e

s
 E

x
p

a
n

d
e

d

Without Metastates, Nodes Expanded

Cafe (99%)
Driverlog Shift (92%)
Match (98%)
TMS (99%)
P2P (99%)
Turn and Open (1%)
Pipes Deadlines Compiled (97%)
Satellite TW Compiled (21%)
UMTS TW Compiled (97%)
Elevators (64%)
Openstacks (51%)
Pipes Tankage (78%)
Rovers (7%)
Transport (45%)

Figure 3: Scatterplot comparing nodes expanded

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

W
it
h
 M

e
ta

s
ta

te
s
,
T

im
e
 (

s
)

Without Metastates, Time (s)

Cafe
Driverlog Shift
Match*
TMS
P2P*
Turn and Open*
Pipes Deadlines Compiled
Satellite TW Compiled
UMTS TW Compiled
Elevators
Openstacks*
Pipes Tankage
Rovers*
Transport*

Figure 4: Scatterplot comparing time taken

one configuration failed to solve a problem this is shown
as 100,000 nodes or 1800 seconds. Nodes below the plotted
line y=x indicate that using metastates improved the perfor-
mance of the planner; those above that it was worsened. In
total 194 problems were solved by at least one configura-
tion, in 73 of these the planner using metastates expanded
fewer nodes and only in 6 did it expand more. The only
reason the planner without metastates might expand fewer
nodes is because the expansion order of our search is not the
same as unmodified WA*, and perturbing expansion order
means that the control might happen to reach the goal first.
The results for time taken to solve problems closely mirror
those for nodes expanded, indicating the overheads of the
bookkeeping required for metastates is minimal. In terms
of coverage, using metastates we can solve 189 problem in-
stances; without we solve only 164. A two-tailed Wilcoxon
signed-rank test confirms statistical significance that using
metastates out-performs the control, both in terms of nodes
expanded and time taken to solve problems with P > 0.99.

Of our 14 domains we see a performance improvement in
9; while the performance in the other 5 remains stable. We

7560

can gain greater insights into this by examining the domains
more closely. The numbers in round brackets in Figure 3
show the percentage of states generated by the control plan-
ner that had open (currently executing) actions. Recall that
it suffices to use weak equality in states without open ac-
tions; both planners exploit this. Therefore, if there are few
states with open actions the potential of our technique to im-
prove search is limited. This explains why we see relatively
few gains in the Rovers and Turn And Open domains, but
again, we also see no significant performance degradation,
the number of states generated was identical to the control
and both planners produced the same plan.

Perhaps surprisingly performance also remains the same
on two of the domains with required concurrency, Match
and P2P. In each of these domains states with open actions
arise due to an envelope action (light match/serve file) inside
which actions (mend fuse/download) must be fit. However,
whilst the envelope action is open the heuristic easily guides
search to perform the relevant activities and therefore very
little search is required to solve these problems, and so po-
tential gains are limited. Another domain with similar re-
sults is openstacks, as the benchmark set for this problem is
trivial and requires very little to no search.

The remaining 9 domains where we see performance im-
provements are generally the more challenging domains and
those in which the planner without metastates expands a
large number of weakly equal states, when any one of these
would allow it to reach a goal state. Many of these prob-
lems are solved an order of magnitude faster with metastates,
thanks to the reduced size of the metastate search space. A
final note on solution quality, the planners found plans with
the same makespan in 154 of out of the 161 problems that
were mutually solved, in the remaining 7 the solutions pro-
duced using metastates were slightly longer.

5 Conclusions
In this paper, we presented a novel search framework based
on a notion of ‘weak equality’ between the states reached,
that allows them to be grouped together into metastates.
The motivation is that, typically, only one member of each
metastate needs to be expanded. As this is not always the
case, though, additional members are expanded on an as-
needed basis, where inconsistent states are reached.

In the context of temporal planning, where weak equal-
ity corresponds to states that differ only in terms of their
temporal constraints, our approach reduces the overheads of
searching with temporal models. In temporally simple prob-
lems, where there cannot be inconsistent states, metastate
re-expansion is never needed. In temporally complex prob-
lems, some – but not all – metastates need to be re-expanded,
doing this on an as-needed basis allows us to achieve signif-
icant performance improvements.

Our approach separates logical state information from
constraint-based temporal information. The latter represents
relationships that must hold among actions in the current
partial plan and hence implicitly defines a set of states and
a set of plans. Such a constraint representation need not be
limited to temporal relations. In the future, we hope to ap-
ply our approach to other expressive planning models in-

cluding hybrid numeric planning, PDDL3 preference mod-
els (Gerevini et al. 2009), and planning with richer temporal
relations such as interval constraints (Coles et al. 2019).

Acknowledgments
This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 730086 (ERGO); from EPSRC
grant EP/P008410/1 (AI Planning with Continuous Non-
Linear Change); and from the Natural Sciences and Engi-
neering Research Council of Canada.

References
Coles, A. J., and Coles, A. I. 2016. Have I Been Here
Before? State Memoisation in Temporal Planning. In Pro-
ceedings of ICAPS.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence 173(1).
Coles, A.; Coles, A.; Martinez, M.; Savas, E.; Delfa, J. M.;
de la Rosa, T.; E-Martı́nez, Y.; and Garcı́a-Olaya, A. 2019.
Efficiently Reasoning with Interval Constraints in Forward
Search Planning. In Proceedings of AAAI.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D.
2007. When is temporal planning really temporal planning?
In Proceedings of IJCAI.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49.
Do, M. B., and Kambhampati, S. 2003. Sapa: Multi-
objective Heuristic Metric Temporal Planner. Journal of Ar-
tificial Intelligence Research (JAIR) 20.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the Context-enhanced Additive Heuristic for Temporal and
Numeric Planning. In Proceedings of ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20.
Gerevini, A. E.; Long, D.; Haslum, P.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning in the Fifth In-
ternational Planning Competition: PDDL3 and Experimen-
tal Evaluation of the Planners. Artificial Intelligence.
Hoffmann, J., and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research (JAIR) 24.
Huang, R.; Chen, Y.; and Zhang, W. 2009. An Optimal Tem-
porally Expressive Planner: Initial Results and Application
to P2P Network Optimization. In Proceedings of ICAPS.
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015.
The deterministic part of the seventh international planning
competition. Artificial Intelligence 223.
Long, D., and Fox, M. 2003. The 3rd International Planning
Competition: Results and Analysis. Journal of Artificial In-
telligence Research (JAIR) 20.
Rintanen, J. 2007. Complexity of concurrent temporal plan-
ning. In Proceedings of ICAPS.

7561

