
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Operator Mutexes and Symmetries for Simplifying Planning Tasks

Daniel Fišer
Czech Technical University in Prague,

Faculty of Electrical Engineering,
Prague, Czech Republic

danfis@danfis.cz

Álvaro Torralba
Saarland University,

Saarland Informatics Campus,
Saarbrücken, Germany

torralba@cs.uni-saarland.de

Alexander Shleyfman
Technion

Haifa, Israel
shleyfman.alexander@gmail.com

Abstract

Simplifying classical planning tasks by removing operators
while preserving at least one optimal solution can signifi-
cantly enhance the performance of planners. In this paper,
we introduce the notion of operator mutex, which is a set
of operators that cannot all be part of the same (strongly)
optimal plan. We propose four different methods for infer-
ence of operator mutexes and experimentally verify that they
can be found in a sizable number of planning tasks. We show
how operator mutexes can be used in combination with struc-
tural symmetries to safely remove operators from the plan-
ning task.

Introduction
The solution to a classical planning problem is a sequence
of operators leading from the initial state to one of the goal
states. Since classical planning problems are described in a
domain-independent manner, automatic extraction of struc-
tural information can provide useful guidance for planners.

In this paper, we focus on identifying mutually exclusive
operators, in the sense that applying one forbids to apply
the others in the shortest optimal plan. For example, in a
task with non-replenishable resources, at most one operator
depleting a resource can be applied in any optimal plan. In
general, we say that a set of operators is a strong operator
mutex (op-mutex) if no strongly optimal plan contains all
of them. We introduce several methods to infer op-mutexes
automatically from the description of the task, and show that
they can be found in a sizable number of domains.

We combine op-mutexes with structural symmetries in or-
der to identify operators that can be safely removed from
the planning tasks. The notion of symmetries is not new to
classical planning (Fox and Long 1999). They can be used
to reduce the size of the search space in heuristic search
planners (Pochter, Zohar, and Rosenschein 2011; Domsh-
lak, Katz, and Shleyfman 2012), obtain more compact en-
codings in SAT-based planners (Rintanen 2003), compute
better heuristics (Domshlak, Katz, and Shleyfman 2013;
Sievers et al. 2015; 2017), transform the task (Riddle et al.
2015), or ground the task (Röger, Sievers, and Katz 2018).
Here, we use symmetries to prove that certain operators can

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be removed from the planning task. We show that at least one
optimal plan is preserved when removing some operators if
they are all op-mutex with other symmetric operators. In or-
der to find out whether more operators can be removed, we
then analyze which symmetries are preserved after remov-
ing a set of operators in this way. This leads to a fixpoint
computation method that can remove a sizable number of
operators in some domains.

Background
A STRIPS planning task Π is specified by a tuple Π =
〈F ,O, I, G〉, where F = {f1, . . . , fn} is a set of facts,
and O = {o1, . . . , om} is a set of grounded operators. A
state s ⊆ F is a set of facts, I ⊆ F is an initial state
and G ⊆ F is a goal specification. An operator o is a tu-
ple o = 〈pre(o), add(o), del(o), c(o)〉, where pre(o) ⊆ F is
a set of preconditions of the operator o, and add(o) ⊆ F
and del(o) ⊆ F are sets of add and delete effects, re-
spectively, and c(o) ∈ R+

0 is a cost of the operator. All
operators are well-formed, i.e., add(o) ∩ del(o) = ∅ and
pre(o)∩ add(o) = ∅. An operator o is applicable in a state s
if pre(o) ⊆ s. The resulting state of applying an applicable
operator o in a state s is the state o[s] = (s\del(o))∪add(o).
A state s is a goal state iff G ⊆ s.

A sequence of operators π = 〈o1, . . . , on〉 is applicable
in a state s0 if there are states s1, . . . , sn such that oi is
applicable in si−1 and si = oi[si−1] for i ∈ {1, . . . , n}.
The resulting state of this application is π[s0] = sn and
c(π) =

∑
o∈π c(o) denotes the cost of this sequence of op-

erators. By |π| we denote the length of the sequence. π is
called a plan iff π[I] ⊇ G, π is called an optimal plan if its
cost is minimal among all plans, and π is called a strongly
optimal plan if it is an optimal plan and it contains the min-
imum number of operators among optimal plans. We denote
the set of strongly optimal plans by PΠ.

A state s is reachable if there exists an applicable opera-
tor sequence π such that π[I] = s. The set of all reachable
states is denoted by RΠ. An operator o is reachable iff it is
applicable in some reachable state. A state s is a dead-end
state iff G 6⊆ s and there is no applicable operator sequence
π such thatG ⊆ π[s]. A mutexM ⊆ F is a set of facts such
that for every reachable state s ∈ RΠ it holds thatM 6⊆ s. A
mutex groupM ⊆ F is a set of facts such that |M ∩ s| ≤ 1
for every reachable state s ∈ RΠ.

7586

A labeled transition system (LTS) is a tuple Θ =
〈S, L, T, sI , S?〉, where S is a finite set of states, L is a
finite set of labels with associated cost c(l) ∈ R+

0 to each
label l ∈ L, T ⊆ S×L×S is a set of transitions, sI ∈ S is
the initial state, and S? ⊆ S is a set of goal states. We write
s1

l−→ s2 to refer to a transition from s1 to s2 with the label
l. A sequence of labels 〈l1, . . . , ln〉 is a path from s0 to sn
in Θ if there exist si−1

li−→ si ∈ T for every i ∈ {1, . . . , n}.
We say that s′ is reachable from s if there is a path from s
to s′.

The state space of a planning task Π is the LTS ΘΠ where
S := RΠ, sI := I , s ∈ S? iff G ⊆ s, the labels L are the
operators O with the given costs, and s o−→ s′ is a transition
in T if pre(o) ⊆ s and o[s] = s′.

An abstraction α for a transition system Θ is a
function mapping states S into a set of abstract states
Sα. The abstract transition system Θα is defined as
〈Sα, L, Tα, sαI , Sα? 〉, where α(s)

o−→ α(s′) ∈ Tα iff s o−→
s′ ∈ T , sαI = α(sI), and Sα? = {α(s) | s ∈ S?}.

A projection of the state space ΘΠ to the set of facts F ⊆
F is an abstract transition system ΘαF

Π with the abstraction
αF (s) = s ∩ F .

For notational convenience, we will sometimes abuse the
notation for sequences by referring to a sequence as a set.
For a set of operators O ⊆ O, we denote Π \O the planning
task resulting from removing operators O, Π \O = 〈F ,O \
O, I,G〉.

Operator Mutexes and Redundancy
Our goal in this paper is to eliminate operators from a
planning task, if they can be proven unnecessary to find a
strongly optimal plan. We say that a set of operators is re-
dundant if removing them from the task preserves at least
one strongly optimal plan.
Definition 1. Given the planning task Π, a set of operators
O ⊆ O is redundant if PΠ 6= ∅ implies PΠ\O ∩ PΠ 6= ∅.

The union of two redundant sets is not necessarily also a
redundant set. However, we can merge two sets of redundant
operators, if one is shown to be redundant in the task where
the other has already been removed.
Proposition 2. Let Π denote a planning task with a set of
operators O and let R1, R2 ⊆ O, R1 ∩ R2 = ∅. If R1 is
redundant in Π andR2 is redundant in Π\R1, thenR1∪R2

is redundant in Π.

Proof. PΠ 6= ∅ implies PΠ\R1
∩ PΠ 6= ∅, because R1 is

redundant in Π. And PΠ\R1
6= ∅ implies PΠ\(R1∪R2) ∩

PΠ\R1
6= ∅, because R1 is redundant in Π \ R1. Therefore

PΠ\(R1∪R2) ⊆ PΠ\R1
⊆ PΠ and PΠ\(R1∪R2) 6= ∅.

The notion of mutually exclusive facts that cannot be to-
gether in any reachable state has proven to be very useful to
improve different types of planning algorithms. Here, we de-
fine strong operator mutexes as sets of operators that cannot
be part of the same strongly optimal plan.
Definition 3. A strong operator mutex (op-mutex)O ⊆ O
is a nonempty set of operators s.t. O 6⊆ π for every π ∈ PΠ.

The mutual exclusion between operators with respect to
strongly optimal plans means that every op-mutex always
contains at least one operator that is redundant.

Proposition 4. In every op-mutex O ⊆ O, there is an oper-
ator o ∈ O such that {o} is redundant.

Proof. Given π ∈ PΠ, O 6⊆ π by Definition 3, thus there is
an operator o ∈ O s.t. o /∈ π, therefore π ∈ PΠ\{o}.

From now on, we will concentrate on the special case of
op-mutexes that are formed by pairs of operators, since, as
shown by Proposition 5, they can be used to identify redun-
dant sets consisting of more than one operator.

Proposition 5. Let Π denote a planning task, let O1, O2 ⊆
O s.t. O1 ∩ O2 = ∅ and {o1, o2} is an op-mutex for every
o1 ∈ O1 and every o2 ∈ O2, then O1 or O2 is redundant.

Proof Sketch. If o 6∈ π for every o ∈ O1 and every π ∈ PΠ,
then PΠ\O1

= PΠ. Otherwise there exists o ∈ O1 s.t. o ∈ π,
for some π ∈ PΠ, and since {o, o′} is an op-mutex for each
o′ ∈ O2, o′ /∈ π. Thus, O2 is redundant.

Op-mutexes are useful for obtaining candidate sets of op-
erators that may be redundant. However, op-mutexes are not
sufficient to prove any such set redundant. Later, we will
show how to combine op-mutexes with symmetries to iden-
tify which set of operators is actually redundant.

Inference of Operator Mutexes
In this section, we describe several methods for inference of
op-mutexes based on well-known planning techniques.

Abstractions
Abstraction heuristics map the state space of a planning task
into a smaller abstract state space and use the distance in
the abstract state space as an admissible estimation. Abstrac-
tions can also be used to infer op-mutexes.

Theorem 6. Let Π denote a planning task, and let o1, o2 ∈
O, o1 6= o2, denote operators in Π. If there exists an abstract
transition system Θα

Π such that for every transition s1
o1−→ s′1

and every transition s2
o2−→ s′2, s2 is not reachable from

s′1 and s1 is not reachable from s′2, then {o1, o2} is an op-
mutex.

Proof Sketch. The theorem clearly holds for ΘΠ, since o2 is
never reachable from o1 and vice versa. This means that o1

and o2 are never part of the same path, and therefore they
cannot coexist in the same plan.

In their work, Helmert, Haslum, and Hoffmann (2007)
showed that abstractions preserve all paths in the state space,
thus if o1 and o2 are not reachable from one another in Θα

Π,
then the same holds for ΘΠ.

Theorem 6 shows how we can infer strong operator mu-
texes using any known method for computing abstractions
of planning tasks, including pattern databases (Culberson
and Schaeffer 1996; Edelkamp 2001), merge-and-shrink
(Helmert et al. 2014; Sievers, Wehrle, and Helmert 2014), or
Cartesian abstractions (Seipp and Helmert 2018). Analyzing

7587

what abstraction methods are best suited to find op-mutexes
is out of the scope of this work, so we will focus our evalu-
ation only on projections to individual mutex groups.

To compute op-mutexes with this method one needs to
check reachability between every pair of states in the ab-
stract state space Θα

Π. However, this can be done more effi-
ciently by considering instead a smaller abstract state space
Θγ

Π, where γ(s) = γ(s′) if α(s) and α(s′) belong to the
same strongly connected component in Θα

Π. In other words,
given an abstract LTS in which we want to look for op-
mutexes, one can always apply a condensation of its strongly
connected components. The set of inferred op-mutexes will
not be affected because if α(s) and α(s′) belong to the same
strongly connected component, then they have the same set
of reachable abstract states.

Operators-as-Facts Compilation
Mutually exclusive facts have been well studied in the plan-
ning literature and there is a number of methods to auto-
matically infer them (Gerevini and Schubert 1998; Rintanen
2000; Haslum and Geffner 2000; Fišer and Komenda 2018).
We devise a compilation that allows us to use methods for
inferring mutexes to infer op-mutexes. The idea is to trans-
form the task by adding one artificial fact per operator, so
that two operators are op-mutex if their corresponding arti-
ficial facts are mutex.
Definition 7. Given the planning task Π = 〈F ,O, I, G〉, the
op-fact compilation of Π is another planning task Πop =
〈F ∪ Fop,Oop, I, G〉, where Fop = {fo | o ∈ O}, and
Oop = {o� | o ∈ O} where each operator o� is defined as
o� = 〈pre(o), add(o) ∪ {fo}, del(o), c(o)〉.
Theorem 8. Let Πop denote the op-fact compilation of the
planning task Π, and let F = {fo1 , . . . , fon} ⊆ Fop. If F is
a mutex in Πop, then {o1, . . . , on} is an op-mutex in Π.

Proof Sketch. Every fo ∈ Fop appears only in the add ef-
fect of the operator o� and otherwise the operators o� and
o are identical. Therefore a sequence of operators π� =
〈o�1, . . . , o�n〉 in Πop is applicable in I iff the sequence π =
〈o1, . . . , on〉 of the original task Π is applicable in I . More-
over, it holds that π�[I] = π[I] ∪ {fo | o� ∈ π�}. Assume,
for contradiction, that F = {fo1 , . . . , fon} is a mutex in Πop

and there is a path π in the task Π s.t. {o1, . . . , on} ⊆ π. This
immediately leads to a contradiction, because F ⊆ π�[I].

The op-fact compilation allows us to infer op-mutexes by
using known methods for inference of mutexes, including
the well known hm family of heuristics (Haslum and Geffner
2000). However, we should stress that not every inference
method is suitable for this type of compilation. For exam-
ple, the inference of fact-alternating mutex groups (Fišer and
Komenda 2018) would fail to produce any mutex group (and
thus any mutex) containing any fact from Fop, because they
appear only in add effects.

Critical-Path Heuristics
The alternative characterization of the hm family of heuris-
tics introduced by Haslum (2009) can also be adapted to

compute op-mutexes directly, without considering artificial
facts for every operator. Definition 9 differs from the defini-
tion provided by Haslum only in that the goal specification
is empty, because we are only interested in computing the
set of operators reachable from the initial state.
Definition 9. Let Π = 〈F ,O, I, G〉 denote a planning task.
The planning task Πm = 〈Fm,Om, Im, ∅〉 consists of a set
of facts Fm = {φc | c ⊆ F , |c| ≤ m}, a set of opera-
tors Om, an initial state Im = {φc | c ⊆ I, |c| ≤ m},
and an empty goal specification. For each operator o ∈ O
and for each subset of facts F ⊆ F such that |F | < m
and F is disjoint with add(o) and del(o), the planning task
Πm contains an operator ωo,F ∈ Om with: pre(ωo,F) =
{φc | c ⊆ (pre(o) ∪ F), |c| ≤ m}, add(ωo,F) = {φc | c ⊆
(add(o) ∪ F), c ∩ add(o) 6= ∅, |c| ≤ m}, del(ωo,F) = ∅.

To compute op-mutexes, we consider the compiled plan-
ning task for every operator o, that approximates which op-
erators are reachable from the result of applying o in any
reachable state.
Definition 10. Given the planning task Π = 〈F ,O, I, G〉,
a set of mutexesM ⊆ 2F for Π, an operator o ∈ O, and a
natural number m ≥ 1, the m-M-compilation of Π for o is
another planning task Πm

M,o = 〈Fm,Om, ImM,o, ∅〉, where
Fm and Om are the same as in Πm, and ImM,o = {φc | c ⊆
(o[pre(o)] ∪ EM,o), |c| ≤ m, c 6∈ M}, where EM,o = {f |
f ∈ (F \del(o)), ({f}∪pre(o)) 6∈ M?, ({f}∪o[pre(o)]) 6∈
M?} andM? = {M ∪N |M ∈M, N ⊆ F}.

Note thatM? is also a set of mutexes, because every su-
perset of a mutex is also a mutex.

Them-M-compilation for an operator o differs from Def-
inition 9 only in the construction of the initial state. The
initial state is constructed as an over-approximation of the
union of all possible states resulting from the application of
the operator o on some reachable state while taking into ac-
count given mutexes M. So, for an empty M, the initial
state ImM,o will contain all facts except those from the delete
effect of o, because they can never be part of the state result-
ing from the application of o. But if we are given additional
information in the form of mutexes, we can apply it to ex-
clude from ImM,o the facts that cannot be part of any state
resulting from the application of o.
Theorem 11. Let Π denote a planning task,M⊆ 2F a set
of mutexes for Π, and o1, o2 ∈ O, o1 6= o2, two reachable
operators with corresponding m-M-compilations Πm

M,o1
and Πm

M,o2
. If ωo2,∅ is not reachable in Πm

M,o1
and ωo1,∅

is not reachable in Πm
M,o2

, then {o1, o2} is an op-mutex.

Proof Sketch. Haslum (2009) showed that if ωo,∅ is not
reachable in Πm, then o is not reachable in Π. So we need
to show that for every reachable state s ∈ RΠ such that
o1 is applicable in s it holds that {φc | c ⊆ o1[s], |c| ≤
m} ⊆ ImM,o1

, because Πm
M,o1

is a delete-free problem and
if o2 is not reachable from the superset of all possible reach-
able states resulting from the application of the operator o1,
then o2 cannot be reachable after any application of o1 in Π
(and the same for the reachability of o1 from o2). The rest
follows directly from Theorem 6 with the identity abstrac-
tion α(s) = s.

7588

Let s ∈ RΠ denote a reachable state such that pre(o1) ⊆
s, and let S = {c | c ⊆ o1[s], |c| ≤ m}. Since s is reachable,
o1[s] is reachable, therefore S ∩M = ∅. Now it is enough
to show that o1[s] ⊆ (o1[pre(o1)] ∪ EM,o1). Since o1[s] ∩
del(o1) = ∅ by definition and both s and o1[s] are reachable,
it follows that for every f ∈ (o1[s]\o1[pre(o1)]) it holds that
f ∪ pre(o1) 6∈ M? and f ∪ o1[pre(o1)] 6∈ M?.

Operators with Irreversible Add Effect
The last method is based on the observation that some do-
mains contain facts that once added to a state, they cannot
be subsequently deleted by any operator—they are in this
sense irreversible. Any fact that does not appear in any delete
effect is irreversible and operators that add the same irre-
versible facts (and nothing else) form pairwise an op-mutex.

Theorem 12. LetO ∈ O be a set of operators with the same
add effects, denoted add(O). If for all o ∈ O, it holds that
add(O) ∩ del(o) = ∅ then for every o1, o2 ∈ O, o1 6= o2, it
holds that {o1, o2} is an op-mutex.

Proof Sketch. (By contradiction) Let o1, o2 ∈ O, o1 6= o2,
and let π ∈ PΠ s.t. o1, o2 ∈ π. Assume WLOG, that o1

occurs before o2 in π. There is a state s in the plan π where
o2 is applied. Note that since no operator deletes any fact
f ∈ add(o1) = add(o2) and o1 has already occurred, then
add(o2) ⊆ s. This means that o2[s] ⊆ s, in contradiction to
the strong optimality of the plan.

The previous op-mutex inference methods produce op-
mutexes that are not part of any plan. Theorem 12 can, how-
ever, provide op-mutexes that can be a part of some plan (or
even an optimal plan), but cannot be part of any strongly
optimal plan.

Symmetries
We adopt the definition of symmetry by Shleyfman et al.
(2015) with additional stabilizer for the initial state as was
proposed by Pochter, Zohar, and Rosenschein (2011).

Definition 13. A plan preserving symmetry (or symmetry
for short) of the transition system Θ = 〈S, L, T, sI , S?〉 is a
permutation σ of S ∪ L mapping states to states and labels
to labels such that

• s o−→ s′ ∈ T iff σ(s)
σ(o)−−−→ σ(s′) ∈ T ,

• c(o) = c(σ(o)),
• s ∈ S? iff σ(s) ∈ S?, and
• σ(sI) = sI

for all states s, s′ ∈ S and all labels o ∈ L. For
notational convenience, we extend permutations σ to se-
quences σ(〈x1, . . . , xn〉) = 〈σ(x1), . . . , σ(xn)〉 and sets
σ({x1, . . . , xn}) = {σ(x1), . . . , σ(xn)}.

Symmetries are closed under composition and inverse,
and therefore form the automorphism group Aut(Θ) of the
transition system.

The reason for stabilizing both the initial state and goals
(i.e., mapping goals to goals and the initial state to itself) is
that under this type of symmetry, symmetries preserve plans

in the sense that for any plan, every symmetric sequence of
actions is also a plan of the same length and cost.
Theorem 14. Let Π denote a planning task and let σ be a
symmetry for ΘΠ. For every plan π it holds that σ(π) is also
a plan, moreover |π| = |σ(π)| and c(π) = c(σ(π)).

Theorem 14 is adopted to our notation and definition of
symmetry from the work of Shleyfman et al. (2015, Theo-
rem 1). As a direct corollary of this Theorem we have that
σ(PΠ) = PΠ. This means that op-mutexes are invariant un-
der symmetry.
Proposition 15. Let Π denote a planning task, and let σ be
a symmetry for ΘΠ. If O is an op-mutex so is σ(O).

Proof. (By contradiction) Suppose that σ(O) is not an op-
mutex, than there exist π ∈ PΠ s.t. σ(O) ∈ π. By the pre-
vious Theorem 14 we have that σ−1(π) ∈ PΠ. Therefore,
O = σ−1(σ(O)) ∈ σ−1(π), contradicting the fact that O is
an op-mutex.

Proposition 15 shows that we can use symmetries to gen-
erate more op-mutexes. However, this makes sense only if
the input set of op-mutexes was obtained by some method
that does not already explore the symmetric op-mutexes.
As the work of Röger, Sievers, and Katz (2018) suggests,
Proposition 15 would not be useful for hm heuristics with
op-fact compilation, or our methods based on critical-path
heuristics (Theorem 11). The same happens for op-mutexes
obtained from searching over all (symmetric) operators with
irreversible add effects (Theorem 12), for which further in-
ference of op-mutexes using symmetries is not possible.

Abstractions, on the other hand, focus on a subset of the
facts of the problem and the results can be extrapolated to
other symmetric projections of the problem, e.g., if several
mutex groups are symmetric, it may suffice to compute the
set of op-mutexes for one of them and then extend the set of
op-mutexes with symmetries.

In Proposition 5, we have shown how to find candidates
for redundant sets of operators using op-mutex pairs. Sym-
metries allow us to identify which sets of operators are actu-
ally redundant.
Theorem 16. Let Π denote a planning task, O1, O2 ⊆ O
s.t. O1 ∩ O2 = ∅, and {o1, o2} is an op-mutex for every
o1 ∈ O1 and every o2 ∈ O2. If for every o2 ∈ O2 there
exists σ ∈ Aut(ΘΠ) s.t. σ(o2) ∈ O1, then O2 is redundant.

Proof. This follows directly from the fact that if there is o ∈
O2 and π ∈ PΠ s.t. o ∈ π, then σ(o) ∈ σ(π) ∈ PΠ. Hence,
since σ(o) ∈ O1, O2 is redundant by Proposition 5.

In its simplest form, if two operators form an op-mutex
and there exists a symmetry between these two operators,
then one of them can be safely removed. Note that Theo-
rem 16 is not restricted to a single symmetry. So, if we find
a single operator o and a set of operators that are all sym-
metric to o and op-mutex with o, then we can safely remove
such a set of operators. We can also choose to apply Theo-
rem 16 to a single symmetry. If we find a symmetry σ and a
set of operators O such that σ(O) ∩ O = ∅ and op-mutexes
form a complete bipartite graph between O and σ(O), then
we can safely remove either O or σ(O).

7589

a1 b1

a2 b2a3 b3

σ1σ2

(a)

a1 b1

a2 a3 b3 b2

σ1σ2

(b)

Figure 1: (a) Emergence of a new symmetry; (b) Preserving
a symmetry by merging two redundant sets.

Destroying and Preserving Symmetries
In this section, we describe the effect of removing opera-
tors on destroying and preserving symmetries. We say that
a symmetry is destroyed by removing a certain set of oper-
ators if this symmetry is not valid for the reduced planning
task. Conversely, a preserved symmetry is the one that still
holds in the reduced planning task.

Definition 17. Given an LTS Θ = 〈S, L, T, sI , S?〉 and a set
of labels K ⊆ L, Θ \K = 〈S, L \K,TK , sI , S?〉 denotes
Θ reduced by K, where s l−→ t ∈ TK iff s l−→ t ∈ T and
l 6∈ K.

Suppose that there is a label l1 ∈ L \K and a transition

s
l1−→ t ∈ T , and for some symmetry σ it holds that σ(l1) ∈

K. Then σ is not a symmetry for Θ \ K, since then there

must exist s′
σ(l1)−−−→ t′ = σ(s

l1−→ t), but Θ \ K does not
contain any such a transition. This is exactly the case for any
redundant set obtained according to Theorem 16, because
for any such redundant set K there is a symmetry that maps
K to L \K. Therefore removing K always destroys at least
one symmetry.

We can, however, preserve a symmetry if we find a redun-
dant set consisting of operators covering both sides of the
symmetry mapping.

Definition 18. Given an LTS Θ and a set of labels K ⊆ L,
we say that σ ∈ Aut(Θ) is preserved for K if σ(K) = K.

Let us show that the term is well defined.

Theorem 19. Let σ ∈ Aut(Θ) be preserved for K, as de-
scribed above. Then σ is also a symmetry for Θ \K.

Proof. Note that the transition system Θ \K differs from Θ
only on the sets of transitions TK and labels L \ K. Thus,
it suffices to show that σ preserves the structure on these
sets. Since σ is a permutation of S ∪ L, and by definition it
holds that σ(S) = S, then σ(L) = L. Thus, σ(L \ K) =
σ(L)\σ(K) = L\K. This, in turn, implies that σ preserves
the transitions in TK , by definition of the reduced LTS.

Removal of a redundant set of operators can also result in
emergence of new symmetries that were not in the original
task. This is illustrated in Fig. 1a: σ2 is not a symmetry in the
LTS, but after removing operators bi (which are redundant
because all {ai, bi} are symmetric and pairwise op-mutex),
σ2 becomes a symmetry for the resulting reduced LTS.

Fig. 1b shows that a symmetry destroyed by removing
redundant operators can be salvaged after subsequently re-
moving another set of redundant operators. If we use sym-
metry σ1 to remove b3 (because {a3, b3} is an op-mutex),
σ1 is destroyed. If we use afterwards the symmetry σ2 to re-
move a3 ({a2, a3} is an op-mutex), then σ1 becomes, again,
a symmetry for the reduced planning task.

These observations motivate us to infer redundant opera-
tors using a fixpoint computation.

Inference of Redundant Operators
The algorithm for the inference of a redundant set of opera-
tors should aim at finding the largest set possible, because,
ultimately, we want to use the redundant set for the simplifi-
cation of the planning task. Redundant sets cannot be auto-
matically merged, but as proven in Proposition 2, a fixpoint
computation is possible.

Theorem 16 provides a way to identify redundant sets of
operators, but we also already explained that the removal of
such operators always destroys at least one symmetry that
could be helpful for further inference steps. We propose an
algorithm that is based on the assumption that as many sym-
metries as possible should be preserved in each step in or-
der to increase the chance of finding more redundant oper-
ators in the following steps. Moreover, in a fixpoint com-
putation, it can happen that a symmetry that is destroyed in
one step can re-emerge again in one of the next steps (The-
orem 19), so after removing a set of redundant operators we
check which symmetries of the original planning task are
preserved under the current set of redundant operators.

Since Theorem 16 requires to find a complete bipartite
subgraph of op-mutexes and determining the maximal one
is already NP-Hard (Garey and Johnson 1979), we propose
a greedy algorithm that gradually increases the size of the
resulting redundant set in each step.

The pseudo-code in Algorithm 1 contains two selection
steps that can use any rule and the algorithm will still remain

Algorithm 1: Fixpoint computation of a redundant set.
Input: Set of symmetries Σ, set of operators O, set of

op-mutex pairsM
Output: Redundant set of operators R

1 R← ∅;
2 do
3 Σ+ ← {σ ∈ Σ | σ(R) = R};
4 R← {RedundantSet(σ, R)| σ ∈ Σ+};
5 R′ ← SelectRedundantSet (R);
6 R← R ∪R′;
7 while |R′| > 0;
8 function RedundantSet(σ, R)
9 S ← ∅;

10 C ← {o | o ∈ O \R, o 6= σ(o), {o, σ(o)} ∈ M};
11 while |C| > 0 do
12 o′ ← SelectCandidate(C, R ∪ S);
13 S ← S ∪ {o′};
14 C ← {o | o ∈ C \ {o′}, {o, σ(o′)} ∈ M};
15 return S;

7590

domain #ps op-mutex pairs in 5 min. avg. time [s] op-mutex pairs all finished in 30 min.
fam Π2

op 2-h2 iadd fam Π2
op 2-h2 #ps fam Π2

op 2-h2 iadd
agricola18 20 (15) 59 862.8 (18) 425 278.3 (0) 0.0 0.0 29.1 86.0 0.0 4 3 478.2 21 065.9 32 855.5 0.0
barman11 20 19.8 19.8 19.8 0.0 0.2 0.0 0.7 20 19.8 19.8 19.8 0.0
barman14 14 20.2 20.2 20.2 0.0 0.2 0.0 1.0 14 20.2 20.2 20.2 0.0
caldera18 20 0.0 235.6 397.1 0.0 41.7 0.3 31.2 20 0.0 235.6 397.1 0.0
cavediving14 20 938.4 8 331.7 (16) 1 068.1 140.8 7.8 9.1 49.8 16 214.6 847.9 1 068.1 18.3
childsnack14 20 14 562.0 14 562.0 14 562.0 213.7 0.4 0.8 37.5 20 14 562.0 14 562.0 14 562.0 213.7
floortile11 20 2.0 3.1 3.1 1.1 0.4 0.0 0.9 20 2.0 3.1 3.1 1.1
floortile14 20 0.9 1.5 1.5 0.4 0.2 0.0 0.2 20 0.9 1.5 1.5 0.4
hiking14 20 0.1 0.1 0.1 0.0 0.1 0.4 13.7 20 0.1 0.1 0.1 0.0
nomystery11 20 20 741.0 20 916.5 (19) 47 163.1 0.0 9.4 3.2 56.8 20 20 741.0 20 916.5 57 411.9 0.0
nurikabe18 14 14 747.2 19 313.1 (11) 4 584.5 0.0 18.7 4.6 16.1 14 14 747.2 19 313.1 32 476.7 0.0
openstacks06 30 3 957.6 (27) 1 530.5 (23) 457.0 0.0 11.9 6.7 24.9 25 448.8 704.7 958.8 0.0
openstacks08 30 340.3 340.3 340.3 0.0 0.5 0.1 5.5 30 340.3 340.3 340.3 0.0
openstacks11 20 178.9 178.9 178.9 0.0 0.4 0.1 3.5 20 178.9 178.9 178.9 0.0
openstacks14 20 1 078.0 1 078.0 1 078.0 0.0 3.0 0.8 62.3 20 1 078.0 1 078.0 1 078.0 0.0
organic-synthesis18 18 (10) 0.3 (14) 27.0 (13) 209.6 0.0 4.0 0.0 5.9 11 0.3 3.6 108.1 0.0
parcprinter08 30 3.2 3.2 3.2 0.0 0.9 0.0 0.1 30 3.2 3.2 3.2 0.0
parcprinter11 20 2.2 2.2 2.2 0.0 0.7 0.0 0.1 20 2.2 2.2 2.2 0.0
pathways06 30 1 184.7 1 184.7 1 184.7 1.1 1.0 0.3 16.3 30 1 184.7 1 184.7 1 184.7 1.1
pegsol08 30 1.7 1.7 2.3 0.0 0.2 0.0 0.1 30 1.7 1.7 2.3 0.0
pegsol11 20 0.5 0.5 0.8 0.0 0.3 0.0 0.1 20 0.5 0.5 0.8 0.0
petri-net-alignment18 20 (0) 0.0 276.7 276.7 0.0 0.0 1.6 133.1 0 0.0 0.0 0.0 0.0
pipesworld06 50 (33) 21.3 (41) 23.4 (19) 18.4 0.0 59.8 35.3 54.2 26 20.7 20.8 20.8 0.0
rovers06 40 1 260.4 1 260.4 (27) 90.5 3 928.4 6.4 10.5 41.2 31 185.9 185.9 185.9 477.5
snake18 20 (13) 254.6 1 096.2 (0) 0.0 0.0 129.6 36.1 0.0 10 198.9 245.0 255.6 0.0
sokoban08 30 59.2 60.7 61.5 0.0 1.7 0.1 7.8 30 59.2 60.7 61.5 0.0
sokoban11 20 30.9 31.5 32.0 0.0 2.4 0.1 5.9 20 30.9 31.5 32.0 0.0
spider18 20 (12) 12 660.1 (19) 75 457.6 (3) 187.8 0.0 66.3 73.2 126.5 6 567.4 601.9 636.0 0.0
tidybot11 20 1 234.9 2 205.5 (9) 12.2 0.0 5.4 19.9 30.3 12 0.0 0.0 35.0 0.0
tidybot14 20 2 428.7 4 267.9 (0) 0.0 0.0 10.7 38.2 0.0 8 82.7 144.3 244.9 0.0
tpp06 30 (27) 1 901.1 3 782.2 (20) 180.1 0.0 31.0 4.3 21.8 25 1 056.1 1 056.1 1 117.4 0.0
trucks06 30 1 684.4 1 693.3 2 127.2 1 498.9 0.6 0.4 28.6 30 1 684.4 1 693.3 2 127.2 1 498.9
woodworking08 30 48.9 49.7 49.8 0.0 0.5 0.0 1.2 30 48.9 49.7 49.8 0.0
woodworking11 20 29.3 30.0 30.1 0.0 0.5 0.0 1.0 20 29.3 30.0 30.1 0.0
overall 806 (738) 139 255.6 (787) 583 264.2 (644) 74 342.9 5 784.5 11.5 9.4 21.0 672 60 988.9 84 602.7 147 469.5 2 211.0

Table 1: Left: Number of inferred op-mutex pairs (in thousands) with a time limit of 5 minutes. If the method did not terminate
in time, the number of successfully processed tasks is shown in parentheses. Middle: Average time per instance in seconds.
Right: Number of inferred op-mutex pairs (in thousands) in commonly solved problems with a time limit of 30 minutes.

sound. SelectRedundantSet on line 5 selects one of
the redundant sets found on the previous line. In our imple-
mentation, we select the largest of those sets that preserves
the most symmetries. SelectCandidate on line 12 se-
lects one operator from the set of candidates C. We select
the operator o′ ∈ C for which the set R∪S∪{o′} preserves
the most symmetries.
Proposition 20. Algorithm 1 always returns a redundant set
of operators.

Proof Sketch. The main cycle (lines 2–7) computes a union
of sets found by RedundantSet function in consecutively
reduced planning tasks. Therefore what remains to show
is that these sets are redundant (Proposition 2). To prove
that RedundantSet always returns a redundant set, it is
enough to show that in every cycle (a) {o, σ(o)} is op-mutex
for every o ∈ C; (b) {o, o′} is op-mutex for every o ∈ S and
every o′ ∈ C; (c) S ∪ {o′} is redundant for any o′ ∈ C. (a)
follows from line 10. (b) follows from line 14 and the sym-
metry of op-mutexes (Proposition 15). (c) follows from (a),
(b), and Theorem 16 with setsO1 := σ(S) andO2 := S and
a single symmetry σ.

Experimental Results
The proposed methods were implemented in C and the
source code is publicly available1. Symmetries are com-

1https://gitlab.com/danfis/cplan.git, branch aaai19

puted using the BLISS library (Junttila and Kaski 2007) on
the Problem Description Graph (PDG) of the task (Pochter,
Zohar, and Rosenschein 2011; Shleyfman et al. 2015). We
used all IPC benchmarks 2006–2018 from the optimal track.
Since our methods are described for STRIPS planning tasks
without conditional effects, we compile them away (Nebel
2000). We exclude all instances where the compilation of
conditional effects or grounding of the task exceeded the
time or memory limits. The experiments were performed on
a cluster with Intel E5-2670 2.6 GHz processor with 8 GB
memory limit for each task.

We evaluated four methods for inference of op-mutexes:
fam refers to the method based on abstractions (Theorem 6)
used on projections to individual maximal fact-alternating
mutex groups (fam-groups) (Fišer and Komenda 2018); Π2

op

refers to h2 reachability analysis of the op-fact compilation
(Theorem 8); 2-h2 refers to running reachability on the 2-
M compilation (Definition 10) with mutexes M obtained
from the h2 reachability with all operators (Theorem 11);
and iadd refers to looking for operators with a single irre-
versible add effect (Theorem 12).

Table 1 summarizes the results on the number of inferred
op-mutex pairs (in thousands). We list only the domains in
which at least one op-mutex pair was found. The results
show that it is possible to infer a significant number of op-
mutex pairs in many different domains (34 out of 83) even
with a time limit of 5 minutes which is suitable for a pre-

7591

domain #ps h2+de combined with
h2+de fam Π2

op 2-h2 fam Π2
op 2-h2

barman11 20 52.11 4.71 24.48 20.65 +3.60 +3.60 +3.60
barman14 14 53.43 4.94 25.28 21.25 +4.01 +4.01 +4.01
caldera18 19 39.34 0.73 13.25 12.64 0.00 +1.45 +0.72
cavediving14 5 0.66 1.15 1.44 0.55 +1.15 +1.15 +0.55
childsnack14 20 0.00 39.58 39.58 39.58 +39.58 +39.58 +39.62
hiking14 11 0.00 0.07 0.07 0.07 +0.07 +0.07 +0.07
parcprinter08 24 70.68 28.61 28.61 28.61 0.00 0.00 0.00
parcprinter11 17 70.15 25.75 25.75 25.75 0.00 0.00 0.00
pathways06 30 3.94 2.22 2.26 2.26 +3.73 +3.73 +3.73
pegsol08 9 13.57 0.00 1.92 1.92 +0.36 +0.36 +0.36
pegsol11 8 9.53 1.08 3.51 3.45 +0.20 +0.20 +0.20
pipesworld06 17 11.46 0.04 4.04 4.04 +0.04 +0.04 +0.04
scanalyzer08 11 3.19 0.00 2.10 2.10 0.00 0.00 0.00
scanalyzer11 8 3.17 0.00 2.12 2.12 0.00 0.00 0.00
sokoban08 6 0.24 1.54 1.71 1.65 +1.54 +1.60 +1.60
sokoban11 4 0.35 1.86 2.12 2.04 +1.86 +1.95 +1.95
tpp06 15 37.96 1.49 19.97 18.97 +1.79 +1.79 +1.49
trucks06 12 75.02 0.00 0.71 0.71 +7.87 +7.87 +7.87
woodworking08 24 53.47 2.83 10.79 10.79 +1.60 +1.60 +1.60
woodworking11 18 53.72 2.73 10.17 10.17 +1.83 +1.83 +1.83
overall 292 53.72 7.99 13.73 13.17 +4.29 +4.39 +4.32

Table 2: Average percentage of removed operators in each
domain. The column #ps shows the number of instances
in which all methods successfully terminated before the 15
minutes time limit and at least one operator was pruned by at
least one method; the left part shows the average percentage
of removed operators in those instances; and the right part
shows the increase when h2+de is combined with the meth-
ods using op-mutexes. The last row (overall) shows averages
over all instances. Maximums are highlighted in bold.

processing step. The average time of iadd is omitted be-
cause in all cases it was a fraction of a second. The most
successful method was Π2

op mainly because it offers a good
trade-off between op-mutex pairs found and computational
effort. The reason why fam was slower than Π2

op on average
is that in some cases the inference of fam-groups is slow. As
expected, the slowest of all methods was 2-h2, because it
requires to compute h2 reachability for every operator.

We also directly compare the op-mutexes found by all
methods on commonly solved instances under 30 minutes
(see right part of Table 1). In every case, the set of op-
mutexes found by fam was a subset of those found by
Π2

op, and Π2
op found a subset of 2-h2. Therefore there is

a promising potential in 2-h2, if the computation can be
sped-up (e.g. by using symmetries in the computation of
h2 (Röger, Sievers, and Katz 2018)).

The implementation of Algorithm 1 was experimentally
evaluated as a standalone preprocessing step and in combi-
nation with the pruning using forward/backward h2 (Alcázar
and Torralba 2015) and the detection of dead-end operators
(Fišer and Komenda 2018) (we will refer to the combination
of the last two as h2+de). Table 2 shows the average per-
centage of removed operators within each domain and over
all evaluated instances. Only the instances in which all meth-
ods successfully finished within the 15 minutes time limit
are listed. In all domains except cavediving, childsnack, hik-
ing, and sokoban, h2+de prunes more operators than any of
our methods, but combining h2+de with our methods fur-
ther increases the number of removed operators as shown in
the right part of the table.

Table 3 encapsulates the results from combining h2+de
with our pruning methods in absolute numbers. We set the
baseline (the column base) as the number of operators after

domain #ps base fam Π2
op 2-h2

agricola18 17 251306 (15) −5 108 (12) −3 242 (0) 0
barman11 20 7408 −554 −554 −554
barman14 14 6010 −522 −522 −522
caldera18 20 24178 0 −492 −220
cavediving14 20 91832 −74 −74 (16) −37
childsnack14 20 53698 −21 660 −21 660 −21 624
hiking14 20 35822 −11 −11 −11
organic-synthesis18 13 47614 (12) −27 −432 (12) −1 095
pathways06 30 40595 −731 −731 −731
pegsol08 30 4392 −6 −6 −6
pegsol11 20 3320 −3 −3 −3
pipesworld06 42 1122448 (37) −69 −121 (22) −27
sokoban08 30 12637 −73 −74 −74
sokoban11 20 7139 −45 −46 −46
tpp06 30 107409 (25) −1 147 −2 167 (22) −429
trucks06 21 22769 −4 673 −4 673 −4 679
woodworking08 30 12535 −400 −400 −400
woodworking11 20 8159 −307 −307 −307
Σ 417 1859271 −35 410 −35 515 −30 765

(404) (412) (367)

Table 3: Number of operators pruned over the baseline
h2+de within a time limit of 15 minutes. The column #ps
shows the number of instances in which at least one method
successfully finished within the time limit. For methods that
finished in less instances, their number of successfully fin-
ished instances is indicated in parenthesis.

the grounding and h2+de pruning. The remaining columns
contain the number of additionally removed operators after a
subsequent application of Algorithm 1 using the op-mutexes
found by our methods and h2+de pruning until a fixpoint
is reached. We do not combine fam, Π2

op, and 2-h2 meth-
ods because of the observed dominance between them. We
also exclude iadd, because by itself it managed to prune
only a third of the operators of that of the remaining three
methods, and if combined with any of the remaining three,
the results were, surprisingly, worse, probably because of
the greedy selection steps in Algorithm 1. The results show
that op-mutexes can be combined with symmetries to sim-
plify planning tasks in several domains. In some domains,
the reduction in the number of operators is quite significant,
especially in childsnack, agricola, trucks, and barman. Find-
ing op-mutexes with Π2

op achieves the best results in most
cases.

We also tried the most promising Π2
op pruning technique

with the Fast Downward planner (Helmert 2006). We used
A? with the LM-Cut (lmc) heuristic (Helmert and Domsh-
lak 2009), the merge-and-shrink (m&s) heuristic with SCC-
DFP merge strategy and non-greedy bisimulation shrink
strategy (Helmert et al. 2014; Sievers, Wehrle, and Helmert
2016), and the potential (pot) heuristic optimized for all
syntactic states (Seipp, Pommerening, and Helmert 2015).
The time limit was set to 30 minutes for the whole planning
process.

When we set the Π2
op pruning phase to abstain from the

inference of op-mutexes if no symmetries were found, the
planners solved all problems that were solved without Π2

op
except of one problem in organic-synthesis for all three
heuristics, and one problem in scanalyzer for lmc. In these
cases, the inference of op-mutexes took too long (organic-
synthesis) or exceeded the memory (scanalyzer) limit. How-
ever, despite the size of many instances is reduced by the
pruning, this was not substantially reflected on the cover-

7592

age. Only in the agricola domain, pot with Π2
op was able to

solve two more problems, and m&s one more problem. The
reductions had also a negligible effect on the number of ex-
panded states in most instances. In childsnack, which is the
domain where more operators are pruned by our method, we
measured about twice as many expanded states per second
by lmc with Π2

op. However, no planner solved any instance
in this domain.

Conclusion
We introduced a new notion of strong operator mutexes (op-
mutexes) as sets of operators that cannot be part of the same
strongly optimal plan and proposed four different methods
for inference of op-mutexes. We proved that every op-mutex
contains at least one operator that can be safely removed
from the planning task and we have experimentally evalu-
ated that they can be found in a sizable amount of planning
domains. Combining op-mutexes with structural symmetries
provides further information about which operators can ac-
tually be removed, and we showed that there are some do-
mains where removing operators yields a significant reduc-
tion in the size of the planning tasks. Even though our exper-
iments show that this reduction does not translate into sig-
nificant gains for heuristic search planners, this opens new
avenues of research on how to leverage operator mutexes to
simplify planning tasks.

Acknowledgements
The work of Daniel Fišer was supported by the Czech Sci-
ence Foundation (grant no. 18-24965Y and 18-07252S).
The work of Alexander Shleyfman was supported by the
Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities. Computational resources were pro-
vided by the CESNET LM2015042 and the CERIT Sci-
entific Cloud LM2015085, provided under the programme
“Projects of Large Research, Development, and Innovations
Infrastructures”.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the impor-
tance of computing and exploiting invariants in planning. In Proc.
ICAPS’15, 2–6.
Culberson, J. C., and Schaeffer, J. 1996. Searching with pattern
databases. In Canadian Conference on AI, volume 1081 of Lecture
Notes in Computer Science, 402–416. Springer.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
symmetry breaking in cost-optimal planning as forward search. In
Proc. ICAPS’12, 343–347.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2013. Symmetry
breaking: Satisficing planning and landmark heuristics. In Proc.
ICAPS’13, 298–302.
Edelkamp, S. 2001. Planning with pattern databases. In Proc.
ECP’01, 13–24.
Fišer, D., and Komenda, A. 2018. Fact-alternating mutex groups
for classical planning. Journal of Artificial Intelligence Research
61:475–521.
Fox, M., and Long, D. 1999. The detection and exploitation of
symmetry in planning problems. In Proc. IJCAI’99, 956–961.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intracta-
bility—A Guide to the Theory of NP-Completeness. Freeman.
Gerevini, A., and Schubert, L. 1998. Inferring state-constraints for
domain independent planning. In Proc. AAAI’98, 905–912.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proc. AIPS’00, 140–149.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative characterisations
of the generalisation from hmax to hm. In Proc. ICAPS’09, 354–
357.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In Proc.
ICAPS’09, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & shrink abstraction: A method for generating lower bounds
in factored state spaces. Journal of the Association for Computing
Machinery 61(3):16.1–16.63.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible abstrac-
tion heuristics for optimal sequential planning. In Proc. ICAPS’07,
176–183.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Junttila, T., and Kaski, P. 2007. Engineering an efficient canonical
labeling tool for large and sparse graphs. In Proc. ALENEX’07,
135–149. SIAM.
Nebel, B. 2000. On the compilability and expressive power of
propositional planning formalisms. Journal of Artificial Intelli-
gence Research 12:271–315.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploiting
problem symmetries in state-based planners. In Proc. AAAI’11.
Riddle, P. J.; Barley, M. W.; Franco, S.; and Douglas, J. 2015.
Automated transformation of PDDL representations. In Proc.
SOCS’15, 214–215.
Rintanen, J. 2000. An iterative algorithm for synthesizing invari-
ants. In Proc. AAAI’00, 806–811.
Rintanen, J. 2003. Symmetry reduction for SAT representations of
transition systems. In Proc. ICAPS’03, 32–41.
Röger, G.; Sievers, S.; and Katz, M. 2018. Symmetry-based task re-
duction for relaxed reachability analysis. In Proc. ICAPS’18, 208–
217.
Seipp, J., and Helmert, M. 2018. Counterexample-guided Carte-
sian abstraction refinement for classical planning. Journal of Arti-
ficial Intelligence Research 62:535–577.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New optimiza-
tion functions for potential heuristics. In Proc. ICAPS’15, 193–
201.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and Wehrle, M.
2015. Heuristics and symmetries in classical planning. In Proc.
AAAI’15, 3371–3377.
Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and Katz, M.
2015. Factored symmetries for merge-and-shrink abstractions. In
Proc. AAAI’15, 3378–3385.
Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2017. Strength-
ening canonical pattern databases with structural symmetries. In
Proc. SOCS’17, 91–99.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized la-
bel reduction for merge-and-shrink heuristics. In Proc. AAAI’14,
2358–2366.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analy-
sis of merge strategies for merge-and-shrink heuristics. In Proc.
ICAPS’16, 294–298.

7593

