
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Solving Multiagent Planning Problems with Concurrent Conditional Effects

Daniel Furelos-Blanco∗

Department of Computing
Imperial College London

London, SW7 2AZ, United Kingdom
d.furelos-blanco18@imperial.ac.uk

Anders Jonsson
Dept. Information and Communication Technologies

Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain

anders.jonsson@upf.edu

Abstract

In this work we present a novel approach to solving concur-
rent multiagent planning problems in which several agents act
in parallel. Our approach relies on a compilation from con-
current multiagent planning to classical planning, allowing us
to use an off-the-shelf classical planner to solve the original
multiagent problem. The solution can be directly interpreted
as a concurrent plan that satisfies a given set of concurrency
constraints, while avoiding the exponential blowup associated
with concurrent actions. Our planner is the first to handle
action effects that are conditional on what other agents are
doing. Theoretically, we show that the compilation is sound
and complete. Empirically, we show that our compilation can
solve challenging multiagent planning problems that require
concurrent actions.

Introduction
Concurrent multiagent planning is a branch of multiagent
planning in which several agents collaborate to solve a given
problem. Collaboration takes the form of concurrent or joint
actions that are executed together by multiple agents. Con-
current multiagent planning is challenging for several rea-
sons: the number of concurrent actions is worst-case expo-
nential in the number of agents, and restrictions are needed
to ensure that concurrent actions are well-formed. Usu-
ally, these restrictions take the form of concurrency con-
straints (Boutilier and Brafman 2001; Crosby 2013), which
model both the case for which two actions must occur in
parallel, and for which they cannot occur in parallel.

In spite of recent progress in multiagent planning, there
are relatively few multiagent planners that can reliably han-
dle concurrency. CMAP (Borrajo 2013), MAPlan (Stolba,
Fiser, and Komenda 2016) and MH-FMAP (Torreño, On-
aindia, and Sapena 2014) can all produce concurrent plans,
but are not designed to handle more complex concurrency
constraints. Crosby, Jonsson, and Rovatsos (2014) associate
concurrency constraints with the objects of a multiagent
planning problem and transform the problem into a sequen-
tial, single-agent problem that can be solved using a clas-
sical planner. Shekhar and Brafman (2018) adapt this ap-
proach using collaborative actions, i.e. single actions that in-

∗The work was conducted while at Universitat Pompeu Fabra.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

volve the minimum number of agents necessary to perform a
given task. Brafman and Zoran (2014) extend the distributed
forward-search planner MAFS (Nissim and Brafman 2014)
to support concurrency constraints while preserving privacy.
Maliah, Brafman, and Shani (2017) propose MAFBS, which
extends MAFS to use forward and backward messages.

In this paper we describe a planner that can handle
arbitrary concurrency constraints, as originally proposed
by Boutilier and Brafman (2001) and later extended by Ko-
vacs (2012). Our approach is similar to previous approaches
in that we transform a multiagent planning problem into a
single-agent problem with much fewer actions, avoiding the
exponential blowup associated with concurrent actions. The
concurrency constraints of Boutilier and Brafman are sig-
nificantly more expressive than those of Crosby (2013), en-
abling us to solve multiagent problems with more complex
interactions (e.g. effects that depend on the concurrent ac-
tions of other agents). We show that our planner is sound and
complete, and perform experiments in several concurrent
multiagent planning domains to evaluate its performance.

The remainder of this paper is structured as follows.
We first introduce the planning formalisms that we need
to describe our planner. Next, we describe the compilation
from multiagent planning to single-agent planning. We then
present the results of experiments in several domains that re-
quire concurrency. Finally, we relate our planner to existing
work in the literature, and conclude with a discussion.

Background
In this section we describe the planning formalisms that we
use: classical planning and concurrent multiagent planning.

Classical Planning
We consider the fragment of classical planning with con-
ditional effects and negative conditions and goals. Given a
fluent set F , a literal l is a valuation of a fluent in F , where
l = f denotes that l assigns true to f ∈ F , and l = ¬f that l
assigns false to f . A literal set L is well-defined if it does not
assign conflicting values to any fluent f , i.e. does not contain
both f and ¬f . Let L(F) be the set of well-defined literal
sets on F , i.e. the set of all partial assignments of values to
fluents. Given a literal set L ∈ L(F), let ¬L = {¬l : l ∈ L}
be the complement of L. We also define the projection L|X
of a literal set L onto a subset of fluents X ⊆ F .

7594

A state s ∈ L(F) is a well-defined literal set such that
|s| = |F |, i.e. a total assignment of values to fluents. Explic-
itly including negative literals ¬f in states simplifies subse-
quent definitions, but we often abuse notation by defining a
state s only in terms of the fluents that are true in s, as is
common in classical planning.

A classical planning problem is a tuple Π = 〈F,A, I,G〉,
where F is a set of fluents, A a set of actions, I ∈ L(F) an
initial state, and G ∈ L(F) a goal condition (usually satis-
fied by multiple states). Each action a ∈ A has a precondi-
tion pre(a) ∈ L(F) and a set of conditional effects cond(a).
Each conditional effectCBE ∈ cond(a) has two literal sets
C ∈ L(F) (the condition) and E ∈ L(F) (the effect).

An action a ∈ A is applicable in state s if and only if
pre(a) ⊆ s, and the resulting (triggered) effect is given by

eff(s, a) =
⋃

CBE∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. We assume that
eff(s, a) is a well-defined literal set in L(F) for each state-
action pair (s, a). The result of applying a in s is a new state
θ(s, a) = (s \ ¬eff(s, a))∪ eff(s, a). It is straightforward to
show that if s and eff(s, a) are in L(F), then so is θ(s, a).

A plan for planning problem Π is an action sequence π =
〈a1, . . . , an〉 that induces a state sequence 〈s0, s1, . . . , sn〉
such that s0 = I and, for each i such that 1 ≤ i ≤ n, action
ai is applicable in si−1 and generates the successor state
si = θ(si−1, ai). Plan π solves Π if and only if G ⊆ sn,
i.e. if the goal condition holds after applying π in I .

Concurrent Multiagent Planning
The standard definition of multiagent planning problems
(MAPs) is due to Brafman and Domshlak (2008). Formally,
a MAP is a tuple Π = 〈N,F, {Ai}i∈N , I, G〉, where N =
{1, . . . , n} is a set of agents andA1, . . . , An are disjoint sets
of atomic actions of each agent. The fluent set F , initial state
I and goal condition G are defined as for classical (single-
agent) planning. The definition and semantics of a plan π are
also identical to those for classical planning, except that π is
a sequence of joint actions, which we proceed to define.

Let A = A1 ∪ · · · ∪ An be the set of all atomic actions.
A joint action a = {a1, . . . , ak} ⊆ A is a subset of atomic
actions such that |Ai∩a| ≤ 1 for each i ∈ N , i.e. each agent
contributes at most one action to a, implying k ≤ n. The
precondition and effect of a are defined as the union of the
preconditions and effects of the constituent atomic actions:

pre(a) =

k⋃
j=1

pre(aj), eff(s, a) =

k⋃
j=1

eff(s, aj).

A joint action a is well-defined if pre(a) and eff(s, a) are
well-defined literal sets in L(F) for each state s.

In general, nothing prevents two atomic actions a1 and
a2 of different agents from having conflicting preconditions
or effects. Hence any joint action that includes both a1 and
a2 is not well-defined. Moreover, some atomic actions may
only be applicable together. For example, in the BOXPUSH-
ING domain (Brafman and Zoran 2014), some boxes are too

heavy to push for a single agent, and a joint action is only
applicable if enough agents push a box concurrently.

To ensure that joint actions are applicable and well-
defined, researchers usually impose concurrency constraints
on joint actions, which can be either positive or negative:
• A positive concurrency constraint states that a subset of

atomic actions must be performed concurrently.
• A negative concurrency constraint states that a subset of

atomic actions cannot be performed concurrently.
In PDDL 2.1 (Fox and Long 2003), two actions a1 and a2

cannot be applied concurrently if a1 has an effect on a fluent
f and a2 has a precondition or effect on f . This concurrency
constraint requires no prior knowledge apart from the action
definitions, but can only model negative concurrency.

Crosby (2013) defines concurrency constraints in the form
of object affordances, i.e. integer intervals that determine
how many agents can interact with an object concurrently.
An object with affordance [1, 1] can only be manipulated by
one agent, while [2, 10] requires manipulation by at least two
and at most ten agents. This approach assumes that joint ac-
tions are well-defined whenever object affordances are sat-
isfied. Crosby, Jonsson, and Rovatsos (2014) extend the ap-
proach to affordances on object sets.

Boutilier and Brafman (2001) proposed an alternative def-
inition of concurrency constraints, later extended by Ko-
vacs (2012). The idea is to extend the preconditions of ac-
tions with other actions in addition to fluents. If an atomic
action a1 has precondition a2, then a2 must be applied con-
currently with a1, while a precondition ¬a2 implies that a2
cannot be applied concurrently with a1. A joint action is
only applicable if the concurrency constraints (i.e. precondi-
tions) of all constituent atomic actions hold, and applicable
joint actions are assumed to be well-defined.

As a side effect of the latter approach, we can also add
concurrency constraints to the conditional effects of atomic
actions. We illustrate this idea using the TABLEMOVER do-
main (Boutilier and Brafman 2001), in which two agents
move blocks between rooms using two alternative strategies:
1. Pick up blocks and carry them using their arms.
2. Put blocks on a table, carry the table together to another

room, and tip the table to make the blocks fall down.
Figure 1 shows the definition of the lift-side action in the

notation of Kovacs (2012), which is used by agent ?a to lift
side ?s of the table. The precondition is that the side must
be down (i.e. on the floor) and the agent cannot be hold-
ing anything. Moreover, the precondition also states that no
other agent ?a2 can lower side ?s2 at the same time. When
the action is applied, ?s is no longer down but up, and ?a is
busy lifting ?s. The action also has a conditional effect (rep-
resented by the when clause): if some side ?s2 is not lifted by
any agent ?a2, then all blocks on the table fall to the floor.
This conditional effect is what makes it possible to tip the
table in order to implement the second strategy above.

Note that the action lift-side is defined using forall quan-
tifiers. In practice, such quantifiers are compiled away, such
that the resulting actions have quantifier-free preconditions
and conditional effects, as in our definition of actions.

7595

(:action lift-side
:agent ?a - agent
:parameters (?s - side)
:precondition
(and (at-side ?a ?s)

(down ?s) (handempty ?a)
(forall (?a2 - agent ?s2 - side)
(not (lower-side ?a2 ?s2))))

:effect
(and (not (down ?s)) (lifting ?a ?s)

(up ?s) (not (handempty ?a ?s))
(forall
(?b - block ?r - room ?s2 - side)
(when
(and (inroom Table ?r)

(on-table ?b) (down ?s2)
(forall (?a2 - agent)
(not (lift-side ?a2 ?s2))))

(and (on-floor ?b) (inroom ?b ?r)
(not (on-table ?b)))))))

Figure 1: Definition of the TABLEMOVER action lift-side us-
ing the notation of Kovacs (concurrency constraints in bold).

Below we extend the notation for classical planning to in-
corporate the concurrency constraints of Boutilier and Braf-
man (2001). The idea is to view A, the full set of atomic
actions, as a set of fluents that can be true or false. We
can now use a set of literals on A to model a joint action
a = {a1, . . . , ak}: the fluents in A corresponding to actions
a1, . . . , ak are true, while all other fluents in A are false. Let
L(a) denote the literal set on A that encodes a.

The next step is to define an extended fluent set F ∪ A,
as well as a set L(F ∪ A) of well-defined literal sets on
F ∪ A. We can now encode a state s and a joint action a as
an extended state s ∪ L(a), i.e. a literal set in L(F ∪A).

To include concurrency constraints in the precondition
and conditional effects of an action aj , we simply define
the precondition pre(aj) ∈ L(F ∪ A) and condition C ∈
L(F ∪ A) of each conditional effect C B E ∈ cond(aj)
as well-defined literal sets on extended fluents. Each effect
E ∈ L(F) is defined exclusively on fluents as before.

We can now define the semantics of a joint action a =
{a1, . . . , ak}. Concretely, a satisfies the concurrency con-
straints if and only if the projected precondition pre(aj)|A
holds in L(a) for each j, 1 ≤ j ≤ k. If a is applicable,
its precondition and effect in a state s are the union of the
preconditions and effects of the constituent atomic actions:

pre(a) =

k⋃
j=1

pre(aj)|F ,

eff(s, a) =

k⋃
j=1

eff(s ∪ L(a), aj), ∀s.

Note that the effects of atomic actions are conditional on the
extended state s∪L(a). As before, we assume that eff(s, a)
is a well-defined literal set in L(F) for each pair of a state s
and an applicable joint action a.

We use a small example to illustrate the notation. Con-
sider a MAP with two agents and action sets A1 = {a1, a2}

andA2 = {a3, a4}. The full set of actions isA = A1∪A2 =
{a1, a2, a3, a4}. Assume that a1 and a3 are defined as

pre(a1) = {¬a4}, pre(a3) = ∅,
cond(a1) = {{¬a3}B {f}}, cond(a3) = {∅B {g}}.

The joint action a = {a1, a4} is not applicable since the
precondition ¬a4 of a1 does not hold in the extended state
L(a) = {a1,¬a2,¬a3, a4}. The joint action a′ = {a1, a3}
is applicable and results in the effect eff(s, a′) = {g} in any
state s. The joint action a′′ = {a1} is also applicable and
results in the effect eff(s, a′′) = {f} in any state s, since the
condition ¬a3 in the conditional effect {¬a3} B {f} of a1
holds in the extended state L(a′′) = {a1,¬a2,¬a3,¬a4}.

Compilations for MAPs
In this section we describe an approach to solving a MAP
Π = 〈N,F, {Ai}i∈N , I, G〉. The idea is to model each joint
action a = {a1, . . . , ak} using multiple atomic actions: one
set of actions for selecting a1, . . . , ak, one set of actions
for applying a1, . . . , ak, and one set of actions for reset-
ting a1, . . . , ak. The result is a classical planning problem
Π′ = 〈F ′, A′, I ′, G′〉 such that the size of the action set A′
is linear in |A|, the number of atomic actions of agents.

Simulating a joint action a using a sequence of atomic ac-
tions 〈a1, . . . , ak〉 is problematic for the following reason:
when applying an atomic action ai, we may not yet know
which atomic actions will be applied by other agents. Since
those other actions may be part of the precondition and con-
ditional effects of ai, it becomes difficult to ensure that the
concurrency constraints of ai are correctly enforced.

Our approach is to divide the simulation of a joint action a
into three phases: selection, application, and reset. In the se-
lection phase, we use an auxiliary fluent active-ai to model
that the atomic action ai has been selected. In the application
phase, since the selection of atomic actions is known, we can
substitute each action ai in preconditions and conditional ef-
fects with the auxiliary fluent active-ai. In the reset phase,
various auxiliary fluents are reset. Note that each agent can
apply at most one atomic action per time step, and agents
collaborate to form joint actions whose constituent atomic
actions are compatible and/or inapplicable on their own.

Fluents
We describe the fluents in PDDL format, i.e. each fluent is
instantiated by assigning objects to predicates.

The set of fluents F ′ ⊇ F includes all original fluents in
F , plus the following auxiliary fluents:

• Fluents free, select, apply and reset modeling the phase.

• For each agent i, fluents free-agent(i), busy-agent(i) and
done-agent(i) that model the agent state: free to select an
action, selected an action, and applied the action.

• For each action ai ∈ Ai in the action set of agent i, a
fluent active-ai which models that ai has been selected.
We use Fact to denote the subset of fluents of this type.

By simple inspection, the total number of fluents in F ′ is
given by |F ′| = |F |+4+3n+

∑
i∈N

∣∣Ai
∣∣ = O(|F |+ |A|).

7596

The initial state I ′ of the compilation Π′ is given by

I ′ = I ∪ {free} ∪ {free-agent(i) : i ∈ N},
i.e. the initial state on fluents in F is I , we are not simulating
any joint action, and all agents are free to select actions. The
goal condition is given byG′ = G∪{free}, i.e. the goal con-
dition G has to hold at the end of a joint action simulation.

Actions
For a literal set L ∈ L(F ∪ A), let L|A/Fact denote the
projection of L onto A, followed by a substitution of the
actions in A with the corresponding fluents in Fact. Note
that both L|F and L|A/Fact are literal sets on fluents in F ′,
i.e. the dependence on actions in A is removed.

The first four actions in the set A′ allow us to switch be-
tween simulation phases, and are defined as follows:

select-phase: pre = {free},
cond = {∅B {¬free, select}}.

apply-phase: pre = {select},
cond = {∅B {¬select, apply}}.

reset-phase: pre = {apply},
cond = {∅B {¬apply, reset}}.

finish: pre = {reset, free-agent(i) : i ∈ N},
cond = {∅B {¬reset, free}}.

For each action ai ∈ Ai in the action set of agent i, we
define three new actions in A′: select-ai, do-ai and end-ai.
These actions represent the three steps that an agent must
perform during the simulation of a joint action.

The action select-ai causes i to select action ai during the
selection phase, and is defined as follows:

pre = {select, free-agent(i)} ∪ pre(ai)|F ,

cond = {∅B {busy-agent(i),¬free-agent(i), active-ai}}.
The precondition ensures that we are in the selection phase,
that i is free to select an action, and that the precondition of
ai holds on fluents in F . The effect prevents i from selecting
another action, and marks ai as selected.

The action do-ai applies the effect of ai in the application
phase, and is defined as follows:

pre = {apply, busy-agent(i), active-ai} ∪ pre(ai)|A/Fact,

cond = {∅B {done-agent(i),¬busy-agent(i)}}
∪ {C|F ∪ C|A/Fact B E : C B E ∈ cond(ai)}.

The precondition ensures that we are in the application
phase, that ai was previously selected, and that all concur-
rency constraints in the precondition of ai hold. The effect is
to apply all conditional effects of ai, where each condition
C|F ∪C|A/Fact is generated fromC by substituting each ac-
tion aj ∈ A with active-aj . Agent i is also marked as done
to prevent ai from being applied a second time.

The action end-ai resets auxiliary fluents to their original
value, and is defined as follows:

pre = {reset, done-agent(i), active-ai},
cond = {∅B {free-agent(i),¬done-agent(i),¬active-ai}}.

a1

a2

b1

r1 r2

s1 s2Table

Figure 2: Initial state of a simple TABLEMOVER instance.

The precondition ensures that we are in the reset phase
and that ai was previously selected and applied (due to
done-agent(i)). The effect is to make agent i free to select
actions again, and to mark ai as no longer selected.

Again, by inspection we can see that the total number of
actions in A′ is given by |A′| = 4 + 3

∑
i |Ai| = O(|A|).

Properties
Figure 2 shows an example instance of TABLEMOVER in
which the goal is for agents a1 and a2 to move block b1
from room r1 to room r2. An example of concurrent plan
that solves this instance is defined as follows:
1 (to-table a1 r1 s2)(pickup-floor a2 b1 r1)
2 (putdown-table a2 b1 r1)
3 (to-table a2 r1 s1)
4 (lift-side a1 s2)(lift-side a2 s1)
5 (move-table a1 r1 r2 s2)(move-table a2 r1 r2 s1)
6 (lower-side a1 s2)

In this plan, agent a2 first puts the block on the table, and
then a1 and a2 concurrently lift each side of the table and
move the table to room r2. Finally, a1 lowers its side of the
table, causing the table to tip and the block to fall to the floor.

The following sequence of classical actions in A′ can be
used to simulate the first joint action of the concurrent plan:
1 (select-phase)
2 (select-to-table a1 r1 s2)
3 (select-pickup-floor a2 b1 r1)
4 (apply-phase)
5 (do-pickup-floor a2 b1 r1)
6 (do-to-table a1 r1 s2)
7 (reset-phase)
8 (end-to-table a1 r1 s2)
9 (end-pickup-floor a2 b1 r1)

10 (finish)

We show that the compilation is both sound and complete.
Theorem 1 (Soundness). A classical plan π′ that solves Π′

can be transformed into a concurrent plan π that solves Π.

Proof. When fluent free is true, the only applicable action
is select-phase. The only way to make free true again is to
cycle through the three phases and end with the finish action.

During the selection phase, a subset of actions a1, . . . , ak
are selected, causing the corresponding agents to be busy.
Because of the precondition free-agent(i) of the finish ac-
tion, each selected action ai has to be applied in the ap-
plication phase, and reset in the reset phase. The resulting
simulated joint action is given by a = {a1, . . . , ak}.

7597

The precondition of a holds since the precondition of each
ai on fluents in F is checked in the selection phase, during
which no fluents in F change values. The concurrency con-
straints of ai are checked in the application phase when all
actions have already been selected. This also ensures that the
conditional effects of ai are correctly applied. Finally, aux-
iliary fluents are cleaned in the reset phase. Hence the joint
action a satisfies all concurrency constraints and is correctly
simulated by the corresponding action subsequence of π′.

Let π be the concurrent plan composed of the sequence
of joint actions simulated by the plan π′. Since π′ solves Π′,
the goal condition G holds at the end of π′, implying that G
also holds at the end of π. This implies that π solves Π.

Theorem 2 (Completeness). A concurrent plan π that
solves Π corresponds to a classical plan π′ that solves Π′.

Proof. Let a = {a1, . . . , ak} be a joint action of the con-
current plan π. We can use a sequence of actions in A′ to
simulate a by selecting, applying and resetting each action
among a1, . . . , ak. Since a is part of π, its precondition and
concurrency constraints have to hold, implying that the pre-
condition and concurrency constraints of each atomic action
hold. Hence the action sequence is applicable and results in
the same effect as a. By concatenating such action sequences
for each joint action of π, we obtain a plan π′. Since π solves
Π, the goal condition G holds at the end of π, implying that
G holds at the end of π′. This implies that π′ solves Π′.

Extensions
The basic compilation checks concurrency constraints in the
application phase. Here we describe an extension that checks
negative concurrency constraints in the selection phase, al-
lowing a classical planner to identify inadmissible joint ac-
tions as early as possible, reducing the branching factor.

Assume that action ai has a negative concurrency con-
straint ¬aj . As before, we can simulate this constraint using
the fluent ¬active-aj . However, aj may be selected after ai
in the selection phase, in which case ¬active-aj holds when
selecting ai. To prevent inadmissible joint actions from be-
ing selected, we introduce additional fluents in the set F ′:

• For each action ai ∈ Ai in the action set of agent i, a flu-
ent req-neg-ai which indicates that ai cannot be selected.

We now redefine the action select-ai as follows:

pre = {select, free-agent(i),¬req-neg-ai} ∪ pre(ai)|F

∪ {¬active-aj : ¬aj ∈ pre(ai)},
cond = {∅B {busy-agent(i),¬free-agent(i), active-ai}}

∪ {∅B {req-neg-aj : ¬aj ∈ pre(ai)}}.

To select ai, req-neg-ai has to be false. For each negative
concurrency constraint ¬aj of ai, action select-ai adds flu-
ent req-neg-aj , preventing aj from being selected after ai.

With this extension, we only need to check positive con-
currency constraints in the application phase. We also rede-
fine end-ai such that fluents of type req-neg-ai are reset in
the cleanup phase, using the opposite effect of select-ai. The

initial state and goal condition do not change since the new
fluents are always false while no joint action is simulated.

The second extension is to impose a bound C on the
number of atomic actions in the selection phase, resulting
in a classical planning problem Π′C = 〈F ′C , A′C , I ′C , G′C〉.
The fluent set F ′C ⊇ F ′ extends F ′ with fluents count(j),
0 ≤ j ≤ C. We add counter parameters to select and reset
actions so that they can respectively increment and decre-
ment the value of the counter. Crucially, no select action is
applicable when j = C, preventing us from selecting more
than C actions. The benefit is to reduce the branching factor
by restricting joint actions to have at most C atomic actions.

We leave the following proposition without proof:
Proposition 3. The compilation Π′C that includes both pro-
posed extensions is sound.

Note that the compilation Π′C is not complete. For in-
stance, consider a concurrent multiagent plan that contains
a joint action involving 4 atomic actions. If C < 4, then
the concurrent multiagent plan cannot be converted into an
equivalent classical plan without exceeding the bound C.

Experimental Results
We tested our compilations in four concurrent domains:
TABLEMOVER, MAZE, WORKSHOP and BOXPUSHING1.

In each domain, we used three variants of our compi-
lations: unbounded joint action size, and joint action size
bounded by C = 2 and C = 4. In all variants, we used the
extension that identifies negative concurrency constraints in
the selection phase. The resulting classical planning prob-
lems were solved using Fast Downward (Helmert 2006) in
the LAMA setting (Richter and Westphal 2010). All experi-
ments ran on Intel Xeon E5-2673 v4 @ 2.3GHz processors,
with a time limit of 30 minutes and a memory limit of 8 GB.

The MAZE domain (Crosby 2014) consists of a grid of
interconnected locations. Each agent in the maze must move
from an initial location to a target location. The connection
between two adjacent locations can be either a door, a bridge
or a boat. A door can only be used by one agent at once, a
bridge is destroyed upon first use, and a boat can only be
used by two or more agents in the same direction.

The WORKSHOP domain is a new domain in which the
objective is to perform inventory in a high-security storage
facility. It has the following characteristics:
• To open a door, one agent has to press a switch while an-

other agent simultaneously turns a key.
• To do inventory on a pallet, one agent has to use a fork-

lift to lift the pallet while another agent examines it (for
security reasons, labels are located underneath pallets).

• There are also actions for picking up a key, entering or
exiting a forklift, moving an agent, and driving a forklift.
The BOXPUSHING domain (Brafman and Zoran 2014)

consists in a grid of interconnected cells. Agents must push
boxes from one cell to another. Boxes have different sizes
and require different numbers of agents to push (1, 2 or 3).

1The code of the compilation and the domains are available at
https://github.com/aig-upf/universal-pddl-parser-multiagent.

7598

We use two algorithms for comparison: Crosby, Jons-
son, and Rovatsos (2014) and Shekhar and Brafman (2018),
which we refer to as CJR and SB respectively. Both algo-
rithms define concurrency constraints in the form of affor-
dances on sets of objects. For example, the affordance on
the object set {location, boat} in MAZE is defined as [2,∞]
in CJR, representing that at least two agents have to row the
boat between the same two locations at once. SB define the
same affordance as [2, 2], only allowing the minimum num-
ber of agents necessary to row a boat (i.e. 2).

CJR do not separate atomic action selection from atomic
action application. This is a problem since one of the atomic
actions can delete the precondition of other atomic actions,
thus canceling the formation of the joint action. For exam-
ple, in the MAZE domain, the action for crossing a bridge
requires that the bridge exists, and destroys the bridge as an
effect. Therefore, as this approach does not separate the se-
lection from the application, this action can be done just by
one agent at a time (and not by infinite agents as the prob-
lem states). The same occurs in the BOXPUSHING domain.
Instances where a medium or a large box must be moved
cannot be solved with this approach because the first agent
to “push” the box will move it. Thus, the box location pre-
condition for the other agent(s) does not hold, so the box
is not moved in the end. On the other hand, SB extend CJR
with mechanisms to avoid this problem, deferring effects un-
til after all agents have applied their atomic actions.

Moreover, concurrency constraints in the form of object
affordances are not as expressive as those of Kovacs (2012):

• Actions cannot appear in conditional effects, making
it impossible to model TABLEMOVER instances (SB
present results from a simplified version without blocks).

• To define concurrency constraints, actions need at least
one shared object, which is not the case in WORKSHOP.

In experiments, we used Fast Downward in the LAMA
setting to solve the instances produced by CJR and SB.

Table 1 shows the results for the four domains. To provide
an idea of how each planner behaves as a function of the
number of agents, the table shows for each domain the same
metrics for different numbers of agents.

In terms of coverage (i.e. number of solved instances),
the compilation variant bounded to 2 performs the best
(52, 61.9%). The unbounded compilation (∞) and the vari-
ant bounded to 4 have similar coverage: 50 (59.5%) and
48 (57.1%) respectively. The performance of the variant
bounded to 2 is not very good in BOXPUSHING for instances
involving four agents because all of them require a large
box to be pushed (i.e. three agents are required). Finally,
SB and CJR are the approaches with the worst coverage:
27 (32.1%) and 11 (13.1%) respectively. The main reason
is that they cannot solve TABLEMOVER and WORKSHOP
instances; CJR cannot solve BOXPUSHING instances either.

Regarding execution time, the unbounded compilation
and the compilation bounded to 2 are the fastest. The higher
the number of agents, the longer it takes to compute a plan.

In terms of makespan (i.e. number of joint actions), our
approach obtains the shortest plans. CJR and SB obtain
longer plans because they only construct joint actions as-

sociated with specific concurrency constraints. Any atomic
action that can be applied on its own thus becomes a joint ac-
tion of size 1. In contrast, our approach can combine atomic
actions arbitrarily and compress the solution while planning.

The main reason that SB works better in BOXPUSHING is
due to the hardcoded representation of collaborative actions
that involve a minimum number of agents. For example, to
push a box that requires b agents to move, SB defines col-
laborative actions that involve exactly b agents, while in our
case, a joint action involving more than b agents will also
satisfy the concurrency constraints. This results in a larger
branching factor which in turn affects the performance.

Note however that such a minimalist representation of
collaborative actions is not always complete. For example,
we can define a MAZE instance where three agents have to
use a boat to cross a stream. If we only define collaborative
actions that involve the minimum number of agents needed
to row a boat (i.e. 2), such an instance becomes unsolvable
since no sequence of 2 agents rowing the boat in different
directions is capable of moving all three agents to the other
side. In contrast, our approach can generate a joint action
that allows all three agents to cross the stream concurrently.

We also performed a scalability experiments in the MAZE
domain. We compare our approach (the ∞ variant) to the
naive approach of converting a MAP into a classical problem
by creating a classical action for each combination of agents.
The instances consisted of (1) a 3x3 grid, (2) a set of agents
with the same initial and goal locations, and (3) a single path
to the goal that consists of interleaved boats and bridges.

Table 2 shows the number of grounded actions and solu-
tion time for varying numbers of agents. The naive approach
cannot solve instances with 7 or more agents due to ground-
ing, while our approach can solve instances with 100 agents.

Related Work
Several other authors consider the problem of concurrent
multiagent planning. Boutilier and Brafman (2001) describe
a partial-order planning algorithm for solving MAPs with
concurrent actions, based on their formulation of concur-
rency constraints, but do not present any experimental re-
sults. CMAP (Borrajo 2013) produces an initial sequential
plan for solving a MAP, but performs a post-processing step
to compress the sequential plan into a concurrent plan.

Jonsson and Rovatsos (2011) present a best-response ap-
proach for MAPs with concurrent actions, where each agent
attempts to improve its own part of a concurrent plan while
the actions of all other agents are fixed. However, their
approach only serves to improve an existing concurrent
plan, and is unable to compute an initial concurrent plan.
FMAP (Torreño, Onaindia, and Sapena 2014) is a partial-
order planner that also allows agents to execute actions in
parallel, but the authors do not present experimental results
for MAP domains that require concurrency.

The planner of Crosby, Jonsson, and Rovatsos (2014) is
similar to ours in that it also converts MAPs into classical
planning problems. The authors only present results from
the MAZE domain, and concurrency constraints are defined
as affordances on object sets that appear as arguments of

7599

Domain N Coverage Time (s.) Makespan # Grounded actions (×103)

2 4 ∞ CJR SB 2 4 ∞ CJR SB 2 4 ∞ CJR SB 2 4 ∞ CJR SB

MAZE 20 13 8 6 11 9 361.5 444.2 145.6 195.1 216.1 47.2 22.0 11.7 77.3 67.7 41.7 69.3 27.9 156.8 108.2
a = 10 10 8 6 5 7 6 250.2 575.6 170.4 228.4 323.1 48.3 25.0 12.2 79.6 69.8 39.9 67.4 26.1 119.3 102.1
a = 15 10 5 2 1 4 3 539.5 - - - - 45.4 - - - - 43.9 71.8 30.0 194.3 115.1

BOXPUSHING 20 9 15 16 - 18 5.2 36.4 143.3 - 305.8 11.2 11.3 12.9 - 20.5 3.5 5.7 2.5 - 2.0
a = 2 10 9 9 9 - 10 5.2 7.6 6.0 - 158.9 11.2 11.9 11.3 - 18.4 1.8 3.2 1.1 - 1.2
a = 4 10 0 6 7 - 8 - 79.7 319.9 - 489.5 - 10.5 15 - 23.1 5.2 8.2 3.8 - 2.9
TABLEMOVER 24 15 12 15 - - 263.4 336.7 341.1 - - 58.7 59.0 61.5 - - 7.4 13.1 4.6 - -
a = 2 12 10 10 11 - - 103.9 226.6 214.7 - - 63.5 62.0 64.5 - - 3.4 6.1 2.0 - -
a = 4 12 5 2 4 - - 582.4 - - - - 49.0 - - - - 11.5 20.1 7.2 - -

WORKSHOP 20 15 13 13 - - 134.3 301.4 52.5 - - 35.7 37.0 32.5 - - 18.0 31.0 11.5 - -
a = 4 10 8 8 8 - - 42.8 263.3 37.1 - - 37.3 43.9 37.3 - - 7.7 13.6 4.8 - -
a = 8 10 7 5 5 - - 238.8 362.3 77.1 - - 33.9 26.0 24.8 - - 28.2 48.3 18.1 - -

Table 1: Summary of results; see text for details. a is the number of agents, N is number of instances; time and length are
averages for all planners that solved at least 5 instances. The number of grounded actions is an average over all instances.

#Agents # Grounded actions Time (s.)

Naive ∞ Naive ∞
2 48 100 0.089 0.226
4 992 260 0.494 0.226
6 31248 484 53.864 0.354
8 - 772 - 0.535

10 - 1124 - 0.758
50 - 21604 - 41.979

100 - 83204 - 289.887

Table 2: Scalability of our approach (∞) compared to the
naive compilation in the MAZE domain.

actions. As we have seen, these concurrency constraints are
not as flexible as those of Boutilier and Brafman (2001).

Brafman and Zoran (2014) extended the MAFS multia-
gent distributed algorithm (Nissim and Brafman 2014) to
support actions requiring concurrency while preserving pri-
vacy. Messages are exchanged between agents in order to in-
form each other about the expansion of relevant states. Con-
sequently, agents explore the search space together while
preserving privacy. As pointed out by Shekhar and Braf-
man (2018), it has two main problems: (1) it does not con-
sider the issue of subsumed actions, and (2) it does not sup-
port concurrent actions that affect each others preconditions.

Maliah, Brafman, and Shani (2017) proposed MAFBS,
which extended MAFS to use forward and backward mes-
sages. This approach reduced the number of required mes-
sages and resulted in an increase in the privacy of agents.

Chouhan and Niyogi (2016, 2017) proposed a PDDL-like
language for specifying problems involving required con-
currency, which is very similar to the one by Boutilier and
Brafman (2001). Their planner does not make assumptions
on the number of agents required to perform a joint action;
rather, the number of agents is determined from the capa-
bility of agents and the objects they are interacting with. For
example, in a robot domain, the number of robots required to
lift an specific object can depend on the weight of the object.

Shekhar and Brafman (2018) extended the planner of
Crosby, Jonsson, and Rovatsos (2014). Thus, it is also based
on compiling the multiagent problem into a classical prob-

lem. With respect to previous work, they added collaborative
actions and removed all collaborative actions that are sub-
sumed by others (i.e. that do not involve a minimum number
of agents). Besides, they showed that their approach can also
be used in a distributed privacy preserving planner.

Compilations from multiagent to classical planning have
also been considered by other authors. Muise, Lipovetzky,
and Ramirez (2015) proposed a transformation to respect
privacy among agents. The resulting classical planning prob-
lem was then solved using a centralized classical planner as
in our approach. Besides, compilations to classical planning
have also been used in temporal planning, obtaining state-of-
the-art results in many of the International Planning Compe-
tition domains (Jiménez, Jonsson, and Palacios 2015).

Conclusion
This paper proposes a new compilation for concurrent mul-
tiagent planning problems. As far as we know, our algorithm
is the first to handle concurrent conditional effects. In exper-
iments we show that our approach is competitive with previ-
ous work, and that it can solve concurrent multiagent plan-
ning problems that are out of reach of previous approaches.

Since the number of atomic actions is exponentially
smaller than the number of joint actions, a distributed action
definition has the potential to scale to much larger instances,
which we demonstrate in our experiments. It is not always
easy to determine beforehand how many joint actions are
needed; in MAZE, we may need k agents to cross a bridge
together, requiring joint actions for 2, 3, . . . , k agents.

In future work, we would like to explore strategies for
optimizing the makespan, improving scalability and intro-
ducing the notion of capability (Chouhan and Niyogi 2017).
We also want to automatically derive the bounds of our algo-
rithm. Furthermore, privacy preserving is a central topic on
multiagent planning; thus, this approach could be combined
with suitable privacy-preserving mechanisms in the future.

Acknowledgments
This work has been supported by the Maria de Maeztu Units
of Excellence Programme (MDM-2015-0502). Anders Jon-
sson is partially supported by the grants TIN2015-67959 and
PCIN-2017-082 of the Spanish Ministry of Science.

7600

References
Borrajo, D. 2013. Plan Sharing for Multi-Agent Planning.
In DMAP 2013 - Proceedings of the Distributed and Multi-
Agent Planning Workshop at ICAPS, 57–65.
Boutilier, C., and Brafman, R. I. 2001. Partial-Order Plan-
ning with Concurrent Interacting Actions. J. Artif. Intell.
Res. (JAIR) 14:105–136.
Brafman, R. I., and Domshlak, C. 2008. From One to
Many: Planning for Loosely Coupled Multi-Agent Systems.
In Proceedings of the Eighteenth International Conference
on Automated Planning and Scheduling, ICAPS 2008, Syd-
ney, Australia, September 14-18, 2008, 28–35.
Brafman, R. I., and Zoran, U. 2014. Distributed Heuristic
Forward Search with Interacting Actions. In Proceedings of
the 2nd ICAPS Distributed and Multi-Agent Planning work-
shop (ICAPS DMAP-2014).
Chouhan, S. S., and Niyogi, R. 2016. Multi-agent Plan-
ning with Collaborative Actions. In AI 2016: Advances in
Artificial Intelligence - 29th Australasian Joint Conference,
Hobart, TAS, Australia, December 5-8, 2016, Proceedings,
609–620.
Chouhan, S. S., and Niyogi, R. 2017. MAPJA: Multi-agent
planning with joint actions. Appl. Intell. 47(4):1044–1058.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A Single-
Agent Approach to Multiagent Planning. In ECAI 2014 -
21st European Conference on Artificial Intelligence, 18-22
August 2014, Prague, Czech Republic - Including Presti-
gious Applications of Intelligent Systems (PAIS 2014), 237–
242.
Crosby, M. 2013. A Temporal Approach to Multiagent Plan-
ning with Concurrent Actions. PlanSIG.
Crosby, M. 2014. Multiagent Classical Planning. Ph.D.
Dissertation, University of Edinburgh.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Int. Res. 20(1):61–124.
Helmert, M. 2006. The Fast Downward Planning System.
J. Artif. Intell. Res. (JAIR) 26:191–246.
Jiménez, S.; Jonsson, A.; and Palacios, H. 2015. Temporal
Planning With Required Concurrency Using Classical Plan-
ning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15).
Jonsson, A., and Rovatsos, M. 2011. Scaling Up Multiagent
Planning: A Best-Response Approach. In Proceedings of
the 21st International Conference on Automated Planning
and Scheduling, ICAPS 2011, Freiburg, Germany June 11-
16, 2011.
Kovacs, D. L. 2012. A Multi-Agent Extension of PDDL3.1.
In Proceedings of the 3rd Workshop on the International
Planning Competition (IPC), 19–27.
Maliah, S.; Brafman, R. I.; and Shani, G. 2017. Increased
Privacy with Reduced Communication in Multi-Agent Plan-
ning. In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS
2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017.,
209–217.

Muise, C.; Lipovetzky, N.; and Ramirez, M. 2015. MAP-
LAPKT: Omnipotent Multi-Agent Planning via Compila-
tion to Classical Planning. In Competition of Distributed
and Multiagent Planners.
Nissim, R., and Brafman, R. I. 2014. Distributed Heuristic
Forward Search for Multi-agent Planning. J. Artif. Intell.
Res. 51:293–332.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Shekhar, S., and Brafman, R. I. 2018. Representing and
Planning with Interacting Actions and Privacy. In Proceed-
ings of the Twenty-Eighth International Conference on Au-
tomated Planning and Scheduling, ICAPS 2018, Delft, The
Netherlands, June 24-29, 2018., 232–240.
Stolba, M.; Fiser, D.; and Komenda, A. 2016. Potential
Heuristics for Multi-Agent Planning. In Proceedings of the
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2016, London, UK, June 12-17,
2016., 308–316.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
Distributed cooperative multi-agent planning. Appl. Intell.
41(2):606–626.

7601

