
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Multi-Agent Path Finding for Large Agents ∗

Jiaoyang Li
CS Department

Univ. of Southern California
jiaoyanl@usc.edu

Pavel Surynek
Faculty of Information Technology

Czech Technical University
pavel.surynek@fit.cvut.cz

Ariel Felner
SISE Department

Ben-Gurion University
felner@bgu.ac.il

Hang Ma
T. K. Satish Kumar

Sven Koenig
CS Department

Univ. of Southern California

Abstract
Multi-Agent Path Finding (MAPF) has been widely studied
in the AI community. For example, Conflict-Based Search
(CBS) is a state-of-the-art MAPF algorithm based on a two-
level tree-search. However, previous MAPF algorithms as-
sume that an agent occupies only a single location at any
given time, e.g., a single cell in a grid. This limits their ap-
plicability in many real-world domains that have geometric
agents in lieu of point agents. Geometric agents are referred
to as “large” agents because they can occupy multiple points
at the same time. In this paper, we formalize and study LA-
MAPF, i.e., MAPF for large agents. We first show how CBS
can be adapted to solve LA-MAPF. We then present a gen-
eralized version of CBS, called Multi-Constraint CBS (MC-
CBS), that adds multiple constraints (instead of one con-
straint) for an agent when it generates a high-level search
node. We introduce three different approaches to choose
such constraints as well as an approach to compute admis-
sible heuristics for the high-level search. Experimental re-
sults show that all MC-CBS variants outperform CBS by up
to three orders of magnitude in terms of runtime. The best
variant also outperforms EPEA* (a state-of-the-art A*-based
MAPF solver) in all cases and MDD-SAT (a state-of-the-art
reduction-based MAPF solver) in some cases.

1 Introduction
In robotics and computer games, one has to find collision-
free paths for multiple agents operating in a common envi-
ronment. This has led to the study of Multi-Agent Path Find-
ing (MAPF) in the AI community, where we are required to
find a path for each agent from its given start vertex to its
given goal vertex on a given graph such that no two agents
collide with each other at any given time. MAPF can be ap-
plied to warehouse robots (Wurman, D’Andrea, and Mountz
∗The research at the University of Southern California was sup-

ported by the National Science Foundation (NSF) under grant num-
bers 1409987, 1724392, 1817189 and 1837779 as well as a gift
from Amazon. The research was also supported by the United
States-Israel Binational Science Foundation (BSF) under grant
number 2017692 and the Czech Science Foundation (GACR) under
grant number 19-17966S. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the sponsoring organizations, agencies or the U.S. government.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008), office robots (Veloso et al. 2015), aircraft-towing ve-
hicles (Morris et al. 2016), video game characters (Ma et al.
2017) and many other domains.

Numerous optimal MAPF algorithms have been devel-
oped in recent years, including reduction-based algorithms
(Yu and LaValle 2013a; Erdem et al. 2013; Surynek et
al. 2016), A*-based algorithms (Standley 2010; Wagner
and Choset 2011; Goldenberg et al. 2014) and dedicated
search-based algorithms (Sharon et al. 2013; 2015; Bo-
yarski et al. 2015; Felner et al. 2018). See (Ma et al. 2016a;
Felner et al. 2017) for complete surveys.

Although previous MAPF algorithms have found some
real-world applications (Hönig et al. 2016), they are based
on one simplistic assumption that limits their applicability.
This assumption is to ignore the shape of agents and con-
sider them as point agents, which occupy exactly one point
at any time. In reality, agents are geometric in nature with
definite shapes. Therefore, they typically occupy a set of
points at any time. We refer to such agents as large agents.
MAPF algorithms can be applied to large agents by lower-
ing the resolution of discretization of the environment. How-
ever, this degrades their performance and thus their practical
applicability.

To address these concerns, we formally study Multi-Agent
Path Finding for Large Agents (LA-MAPF) which takes into
consideration the shapes of agents. This consideration also
addresses the case where agents have to maintain a safety
distance from each other since a virtual boundary can now
be defined for each agent. Intuitively, LA-MAPF is harder to
solve than MAPF since it is a generalization of MAPF and
agents are more likely to collide with each other.

The remainder of the paper is organized as follows. In
Section 2, we formalize the LA-MAPF problem. In Sec-
tion 3, we solve LA-MAPF by a straightforward adaption
of a state-of-the-art search-based MAPF solver, Conflict-
Based Search (CBS) (Sharon et al. 2015), and analyze its
poor performance. In Section 4, we present a new algorithm,
called Multi-Constraint CBS (MC-CBS), that improves CBS
by adding multiple constraints in a high-level node expan-
sion. We propose three different approaches to choose such
constraints as well as a special constraint representation for
regular shaped agents. In Section 5, we explain how to com-
pute heuristics for the high-level search of MC-CBS. In Sec-
tion 6, we compare the performances of adapted CBS, vari-

7627

(a) (b)

Figure 1: Shows two examples of two agents colliding with
each other. (a) shows a 4-neighbor 2D grid with square-
shaped agents, where lines represent edges, intersection
points represent vertices, and black cells represent obstacles.
(b) shows a 3D roadmap with sphere-shaped agents.

ants of MC-CBS, adapted EPEA* and adapted MDD-SAT.1
EPEA* (Goldenberg et al. 2014) is a state-of-the-art A*-
based MAPF solver, and MDD-SAT (Surynek et al. 2016)
is a start-of-the-art reduction-based MAPF solver. All MC-
CBS variants outperform CBS by up to three orders of mag-
nitude in terms of runtime. The best variant also outperforms
EPEA* in all cases and MDD-SAT in some cases.

2 Problem Definition and Related Concepts
We formalize LA-MAPF as follows: We are given an undi-
rected graph G = (V,E) embedded in a d-dimensional Eu-
clidean space (usually d = 2, 3). Each vertex v ∈ V is a
point in the Euclidean space that is specified by its coordi-
nates (v(1), . . . , v(d)). We are also given a set of k agents
{a1 . . . ak} with unique start and goal vertices, and each
agent has a fixed geometric shape around a reference point
that cannot undergo transformations like rotations. We say
that an agent is at a vertex v when its reference point is at
vertex v, and we say that an agent traverses an edge (u, v)
when its reference point moves along edge (u, v). If ai is at
vertex v, then the set of points occupied by ai is denoted by
Si(v). Figure 1(a) shows an example of two square-shaped
agents on a 2D grid. Their reference points are the top-left
corners. a1 (blue) is at vertex v = (3, 3) with an 1.5×1.5
square shape S1(v) = {(x(1), x(2)) | 0 ≤ x(j) − v(j) ≤
1.5, j = 1, 2}, and a2 (red) is at vertex u = (3, 1) with
a 2.5×2.5 square shape S2(u) = {(x(1), x(2)) | 0 ≤
x(j) − u(j) ≤ 2.5, j = 1, 2}. Figure 1(b) shows another
example on a 3D roadmap where two sphere-shaped agents
a1 (blue) and a2 (red) are at vertices F and E, respectively.
Their reference points are the sphere centers.

On the same graph G, different agents have different
traversable subgraphs because of their different shapes (e.g.,
in Figure 1(a), a1 can be at (0, 0) while a2 cannot). This
subgraph Gi = (Vi, Ei) is called the configuration space
of ai. We assume that the start and goal vertices of each
agent are in the same connected component of its configu-

1We refer to the adapted versions of CBS, EPEA* and MDD-
SAT also as CBS, EPEA* and MDD-SAT, respectively.

ration space. At each discrete timestep t, ai can either wait
at its current vertex v ∈ Vi, or move to an adjacent vertex
u, where (v, u) ∈ Ei. Both wait and move actions have unit
costs unless ai terminally waits at its goal vertex.

In MAPF, a conflict between two agents is either a ver-
tex conflict, where two agents are at the same vertex at the
same timestep, or an edge conflict, where two agents traverse
the same edge in opposite directions at the same timestep.
In LA-MAPF, however, agents could collide when they are
in close proximity with each other. Therefore, we general-
ize the definitions of conflicts. We define a vertex conflict
as a five-element tuple 〈ai, aj , u, v, t〉, where the shapes of
ai and aj overlap if ai is at vertex u and aj is at vertex v
at the same timestep t. Similarly, we define an edge conflict
as a seven-element tuple 〈ai, aj , u1, u2, v1, v2, t〉, where the
shapes of ai and aj overlap if ai moves from vertex u1 to u2
and aj moves from vertex v1 to v2 at the same timestep t.
We assume that there exists a conflict detection function that
checks entire paths and returns all vertex conflicts and edge
conflicts. Our task is to find a set of conflict-free paths that
move all agents from their start vertices to their goal vertices
with minimum sum of costs of all paths.

Previous research has also used generalized conflicts.
Hönig et al. (2018) considered the shape of large agents
like quadrotors and defined three new types of generalized
conflicts: vertex-vertex conflicts, vertex-edge conflicts and
edge-edge conflicts, where the first one is a special case of
our vertex conflicts and the two other ones are special cases
of our edge conflicts. They solved the problem by adapting
ECBS (Barer et al. 2014), a suboptimal version of CBS, to
their problem in a way similar to the adapted CBS that we
introduce in Section 3.2. We show in Section 3.2 that this
kind of direct adaptation is inefficient in many cases. Using
a different perspective, Atzmon et al. (2018) generalized the
definition of a conflict from a timestep to a time range in
order to obtain robust plans.

3 Conflict-Based Search (CBS)
LA-MAPF is NP-hard, since it generalizes MAPF, which is
NP-hard (Yu and LaValle 2013b; Ma et al. 2016b). In this
section, we review Conflict-Based Search for MAPF and in-
troduce its direct adaption to LA-MAPF.

3.1 CBS for MAPF
Conflict-Based Search (CBS) (Sharon et al. 2015) is a two-
level search-based algorithm that is complete and optimal
for MAPF. Its high level performs a best-first search on a
binary constraint tree (CT). Each CT node contains a set of
constraints, where a constraint is either a vertex constraint
〈ai, u, t〉 that prohibits agent ai from being at vertex u at
timestep t or an edge constraint 〈ai, u1, u2, t〉 that prohibits
ai from moving from u1 to u2 at timestep t, and a set of
paths for all agents that satisfy all constraints. The cost of the
CT node is the sum of costs of all paths. The CT root node
contains an empty set of constraints and a set of individual
shortest paths.

When the high level expands a CT node N , it first runs a
conflict detection function to find conflicts among all of its

7628

paths. If they are conflict-free, then N is a goal node and
CBS returns its paths. Otherwise, the high level arbitrarily
chooses and resolves a vertex conflict 〈ai, aj , u, v, t〉 (u = v
in MAPF) or an edge conflict 〈ai, aj , u1, u2, v1, v2, t〉 (u1 =
v2 and u2 = v1 in MAPF) by splitting N into two child
CT nodes, N1 and N2, that inherit all constraints and paths
from N . The high level also adds a new vertex constraint
〈ai, u, t〉 or edge constraint 〈ai, u1, u2, t〉 to N1 and a new
vertex constraint 〈aj , v, t〉 or edge constraint 〈aj , v1, v2, t〉
to N2 and then runs a low-level search for both child nodes
to find shortest paths for all agents that satisfy the new set of
constraints in each of them. Since each child node has one
additional constraint imposed on only one agent, the low-
level search needs to re-plan the path for only that one agent.

Improved CBS (ICBS) (Boyarski et al. 2015) improves
CBS by classifying conflicts and choosing to resolve car-
dinal conflicts first. A conflict is cardinal if, when CBS
uses this conflict to split a CT node, the cost of each one
of the two resulting child nodes is larger than the cost of
the CT node. CBSH (Felner et al. 2018) improves it further
by aggregating cardinal conflicts and computing admissible
heuristics to guide the high-level search.

3.2 CBS for LA-MAPF
Similar to techniques used in (Hönig et al. 2018), CBS can
be directly adapted to LA-MAPF by considering generalized
conflicts and changing the conflict detection function to the
one discussed in Section 2. However, the resulting version
of CBS is very inefficient for large agents. For example, in
Figure 1(a), a1 tries to move from (3, 0) to (3, 4), and a2
tries to move from (0, 1) to (3, 1). In the CT root node, both
agents follow their individual shortest paths and have vertex
conflicts at timesteps 1, 2 and 3. The drawing is a snapshot
that shows their vertex conflict at timestep 3. If CBS chooses
to resolve this vertex conflict, then the right child node has
a new constraint 〈a2, (3, 1), 3〉. a2 is forced to wait for one
timestep and thus stays at vertex (2, 1) at timestep 3. How-
ever, a2 then still conflicts with a1 at timestep 3 in this child
node. The conflict between a1 and a2 at timestep 3 is there-
fore not resolved by this split. Although it will be resolved
eventually, many intermediate CT nodes are generated.

4 Multi-Constraint CBS (MC-CBS)
The above observations motivate the idea of adding multi-
ple constraints in a single CT node expansion. We present
a new algorithm, MC-CBS, which adds multiple constraints
for the same timestep to child nodes in order to resolve mul-
tiple related conflicts in a single CT node expansion, which
resembles lookahead reasoning at the high level and can re-
sult in smaller CTs, thus making the search more efficient.

We say that two vertex or edge constraints for ai and aj
respectively are mutually disjunctive iff any pair of conflict-
free paths for ai and aj satisfies at least one of the two
constraints, i.e., there do not exist two conflict-free paths
such that both constraints are violated. In particular, the con-
straints that CBS adds to two child nodes are always mutu-
ally disjunctive. We say that two sets of constraints are mu-
tually disjunctive iff each constraint in one set is mutually

disjunctive with each constraint in the other set. Intuitively,
working with mutually disjunctive constraint sets gives us
the power of constraint propagation.

When MC-CBS resolves a conflict 〈ai, aj , u, v, t〉 (or
〈ai, aj , u1, u2, v1, v2, t〉) in a CT node N , it generates two
child nodes with N ’s current constraint set and additional
constraint sets, C1 and C2, respectively:

1. C1 and C2 include the core constraints that CBS uses to
resolve the conflict, i.e., 〈ai, u, t〉 ∈ C1 and 〈aj , v, t〉 ∈
C2 (or 〈ai, u1, u2, t〉 ∈ C1 and 〈aj , v1, v2, t〉 ∈ C2).

2. C1 and C2 are enhanced with other constraints that en-
sure that C1 and C2 remain mutually disjunctive.

Different strategies for choosing C1 and C2 are discussed
in Sections 4.1 and 4.2. Here, we show that MC-CBS is com-
plete and optimal.

Lemma 1 (Optimality). If MC-CBS terminates, it returns a
set of conflict-free paths with the minimum sum of costs.

Proof. The proof has two parts. We first show that, for a
given CT node N with constraint set C, any set of conflict-
free paths that satisfy C also satisfy at least one of the con-
straint sets C

⋃
C1 and C

⋃
C2. This is true because, oth-

erwise, there would exist two conflict-free paths such that
both of them are consistent with C but one path violates a
constraint c1 ∈ C1 and the other one violates a constraint
c2 ∈ C2. Then, c1 and c2 are not mutually disjunctive, con-
tradicting the assumption. Therefore, the expansion of a CT
node does not lose any set of conflict-free paths.

The second part is the same as the proof of optimality for
CBS (Sharon et al. 2015). The cost of a CT node is a lower
bound on the sum of costs of conflict-free paths that satisfy
its constraint set. The high-level search chooses to expand a
CT node with minimum cost and the expansion does not lose
any conflict-free paths. So the cost of the chosen CT node is
always a lower bound on the sum of costs of all conflict-free
paths. Therefore, the set of paths of the first CT node chosen
for expansion whose paths are conflict-free is indeed a set of
conflict-free paths with the minimum sum of costs.

Lemma 2 (Completeness). MC-CBS terminates if there ex-
ists a set of conflict-free paths.

Proof. The costs of CT nodes are non-decreasing in expan-
sion order because MC-CBS runs a best-first search and the
costs of child nodes are at least as large as the costs of their
parents. In addition, there are a finite number of CT nodes
for a given cost c, because there are only a finite number of
possible conflicts within c timesteps and, once a conflict is
resolved at CT node N , it does not reappear in the subtree
of N . Therefore, a set of conflict-free paths must be found
after expanding a finite number of CT nodes.

There are numerous ways to generalize the core con-
straints to two mutually disjunctive constraint sets for MC-
CBS. For example, in Figure 1(a), the two sets first in-
clude the core constraints, i.e., C1 = {〈a1, (3, 3), 3〉} and
C2 = {〈a2, (3, 1), 3〉}. We can add constraints for other ver-
tices to C1 and C2, such as 〈a2, (2, 1), 3〉 to C2 (because a1
being at (3, 3) conflicts with a2 being at (2, 1)). We can also

7629

add constraints for other timesteps, such as 〈a2, (3, 2), 4〉
to C2 (because, no matter where a1 moves from (3, 3) at
timestep 3, it conflicts with a2 being at (3, 2) at timestep 4).

In this paper, we only add constraints for the same
timestep to keep MC-CBS simple. In general, it is hard to
determine whether two constraints for different timesteps
are mutually disjunctive. Moreover, we can often find equiv-
alent (e.g., block the same set of paths) or better (e.g.,
block a larger set of paths) constraint sets to add for the
same timestep. In Figure 1(a), the pair of constraint sets
{〈a1, (3, 3), 3〉} and {〈a2, (3, 1), 3〉, 〈a2, (3, 2), 4〉} is no
better than the pair of constraint sets {〈a1, (3, 3), 3〉} and
{〈a2, (x, y), 3〉 | 2 ≤ x ≤ 4, 1 ≤ y ≤ 3} because a2 can
only be at vertex (x, y), 2 ≤ x ≤ 4, 1 ≤ y ≤ 3, at timestep
3 to reach vertex (3, 2) at timestep 4.

In Sections 4.1 and 4.2, we introduce three approaches
for choosing constraint sets for MC-CBS. In Section 4.3,
we present a new representation of constraint sets to speed
up MC-CBS for regular shaped agents. We only discuss the
constraint sets for vertex conflicts since the constraint sets
for edge conflicts can be derived analogously.

4.1 Asymmetric and Symmetric Approaches
Consider the resolution of a vertex conflict 〈ai, aj , u, v, t〉.
Two mutually disjunctive constraint sets can be built asym-
metrically or symmetrically.2

1. The asymmetric approach (ASYM) adds a constraint set
of size one {〈ai, u, t〉} to the left child node that prohibits
agent ai from being at its current vertex v at timestep t
and a large constraint set {〈aj , v′, t〉 | 〈ai, aj , u, v′, t〉 is
a vertex conflict} to the right child node that prohibits
agent aj from being at any vertex at timestep t where it
could collide with ai.

2. The symmetric approach (SYM) chooses a point p in the
Euclidean space that is inside the overlap area Si(u) ∩
Sj(v), and then adds one constraint set to each child
node. The constraint set blocks all vertices that the agent
could be at while including p in its shape, i.e., C1 =
{〈ai, v′, t〉 | p ∈ Si(v′), v′ ∈ V } and C2 = {〈aj , v′, t〉 |
p ∈ Sj(v

′), v′ ∈ V }. Unlike ASYM, that adds a con-
straint set of size one to one child node and a large con-
straint set to the other child node, SYM adds constraint
sets of similar cardinalities to both child nodes.

For example, in Figure 1(a), ASYM adds {〈a1, (3, 3), 3〉}
to one child node and {〈a2, (x, y), 3〉 | 1 ≤ x, y ≤ 4} to
the other child node. But SYM adds {〈a1, (x, y), 3〉 | 2 ≤
x, y ≤ 3} to one child node and {〈a2, (x, y), 3〉 | 1 ≤
x, y ≤ 3} to the other child node when the chosen point
p is (3.25, 3.25). Thus, ASYM adds 17 constraints in to-
tal while SYM adds only 13 constraints in total. However,
we empirically show in Section 6.1 that SYM usually out-
performs ASYM, perhaps because SYM usually has more
pairs of mutually disjunctive constraints, e.g., 36 pairs in this

2Atzmon et al. (2018) introduced similar asymmetric and sym-
metric approaches to add multiple constraints, although they stud-
ied a different problem and added constraints for the same vertex
at different timesteps.

example. Since each such pair may block some conflicting
paths, SYM usually results in smaller search spaces.

Another important observation is that not all constraints
generated by SYM or ASYM are relevant. Some con-
straints are irrelevant because they block vertices that are
not reachable by the agents at the given timestep, such as
〈a2, (4, 1), 3〉 given that the start vertex of ai is (0, 1), and
some constraints are less relevant because they block the ver-
tices that can be reached only when paths are very long, such
as 〈a2, (1, 4), 3〉 given that the start vertex and the goal ver-
tex of a2 are (0, 1) and (3, 1), respectively. Therefore, we
present a more intelligent approach that aims to add more
relevant constraints in the next section.

4.2 Maximizing the Costs of Child Nodes
When splitting a CT node, large costs of both child nodes
mean more progress for the high-level search. Thus, the
costs of the child nodes can be used to measure the relevance
of a constraint set. ICBS (Boyarski et al. 2015) utilizes this
insight by choosing cardinal conflicts whenever available,
where both child nodes have higher costs than their parent
node. Here, we try to find a pair of constraint sets where the
child nodes have the highest possible costs.

Calculating the weights of constraint sets. A Multi-
Valued Decision Diagram (MDD) (Sharon et al. 2013)
MDDµ

i is a directed acyclic graph that consists of all paths
of cost µ for agent ai from its start vertex to its goal vertex.
All nodes at depth t of MDDµ

i correspond to all vertices
where ai can be at timestep t en route such a path. There-
fore, if a constraint set for timestep t blocks all vertices of
MDDµ

i at depth t, the cost of the agent’s new path is at
least µ+ 1 after adding it. Conversely, if a constraint set for
timestep t does not block all vertices of MDDµ

i at depth t,
the cost of the agent’s new path is at most µ after adding it.

ICBS usesMDDµ
i to predict whether the cost of ai’s path

is µ or higher after adding a constraint. Here, we generalize
this idea and use MDDµ+d

i to predict whether the cost of
ai’s path is µ, . . . , µ+ d or at least µ+ d+ 1 after adding a
constraint set. d ∈ N is called the lookahead depth, and the
predicted cost increment in {0, 1, . . . , d + 1} is called the
weight of the constraint set.

Given a CT node N and an agent ai whose path is of
cost µ, we build MDDµ+d

i . During this construction, we
also assign a weight w to each MDD node (v, t) such that
µ + w equals the cost of ai’s shortest path moving from its
start vertex to its goal vertex via vertex v at timestep t, i.e.,
(v, t) ∈ MDDµ+w

i and (v, t) /∈ MDDµ+w−1
i . The weight

of a constraint set C ′ for ai at timestep t is calculated as
follows. Consider all MDD nodes at depth t: (1) If C ′ does
not block all MDD nodes with weight 0, then the cost of ai’s
path after adding C ′ does not change, and thus the weight of
C ′ is 0. (2) Otherwise, if C ′ blocks all MDD nodes with
weights no more than w (0 ≤ w < d) but does not block all
MDD nodes with weight w + 1, then the cost of ai’s path
after adding C ′ increases by exactly w + 1, and thus the
weight of C ′ is w + 1. (3) Otherwise, C ′ blocks all MDD
nodes, the cost of ai’s path after adding C ′ increases by at
least d+ 1, and thus the weight of C ′ is d+ 1.

7630

Algorithm 1: A template for MaxWeight-d.
Input: Vertex conflict 〈ai, aj , u, v, t〉, and depth d.
Output: Constraint sets, C1 and C2, and weights, w1 and w2.

1 C1 ← {〈ai, u, t〉};
2 C2 ← {〈aj , v′, t〉 | 〈ai, aj , u, v′, t〉 is a vertex conflict};
3 w1 ← getWeight(C1); w2 ← getWeight(C2);
4 for w′1 = w1 + 1 : d+ 1 do
5 C′1 ← {〈ai, u′, t〉 | (u′, t) ∈MDDµ+d

i and its weight
< w′1}// µ is the cost of ai’s shortest path.

6 C′2 ← {〈aj , v′, t〉 | 〈aj , v′, t〉 is mutually disjunctive
with every constraint in C′1};

7 if 〈aj , v, t〉 /∈ C′2 then
8 break;

9 w′2 ← getWeight(C′2);
10 if {w′1, w′2} is better than {w1, w2} then
11 C1, C2, w1, w2 ← C′1, C

′
2, w

′
1, w

′
2;

12 return C1, C2, w1 and w2;

Maximizing the weights of constraint sets. We can now
design a new approach for choosing constraint sets for MC-
CBS based on maximizing their weights. We refer to this
approach as MaxWeight-d (MAX-d or MAX for short). It
builds MDDs for both agents with lookahead depth d and
chooses the best pair of constraint sets, i.e, the pair that max-
imizes the smaller weight of the two. It breaks ties by pre-
ferring the pair with the maximum sum of weights.

Algorithm 1 shows the pseudo-code for MAX. It enumer-
ates all possible weights ofC1 and, for each possible weight,
computes the maximum weight of C2 such that C2 includes
the core constraint and is mutually disjunctive with C1. Ini-
tially, it regards the pair of constraint sets generated by
ASYM as the best pair seen so far (Lines 1-3). It then itera-
tively increases the weightw′1 of the first constraint set (Line
4). In each iteration, it first chooses C ′1 to be of minimum
size for the given weight w′1 (Line 5), i.e., C ′1 only blocks
those MDD nodes whose weights are smaller than w′1. It
then builds C ′2 of maximum size to be mutually disjunctive
with C ′1 (Line 6). If the core constraint 〈aj , v, t〉 /∈ C ′2, indi-
cating that C ′1 cannot have a weight equal to or larger than
w′1, it just returns the best constraint sets and weights found
so far (Lines 7-8). Otherwise, it computes the weight of C ′2
(Line 9) and updates the best constraint sets and weights if
necessary (Lines 10-11).

Algorithm 1 is shown only for vertex conflicts for ease of
explanation. When expanding a CT node in MC-CBS, we
run Algorithm 1 for all vertex conflicts and edge conflicts
and choose to resolve the conflict with the best constraint
sets. Particularly, the smaller weight of two constraint sets
for cardinal conflicts is always at least one, and the smaller
weight of two constraint sets for other conflicts is always
zero. Therefore, cardinal conflicts still have higher priority
than other conflicts, which is consistent with the conflicts
prioritization of ICBS.

4.3 Constraints for Regular Shaped Agents
Agents often have regular shapes, such as rectangles and cir-
cles in a 2D space or cuboids and spheres in a 3D space. In
such cases, two mutually disjunctive constraint sets have ge-
ometric representations that can be leveraged for computa-
tional benefits.

For example, when all agents are rectangular, an agent ai
of size ~si = (s

(1)
i , s

(2)
i) whose reference point is the point

with minimum coordinates has Si(v) = {~p | ~v ≤ ~p ≤ ~v +
~si}. Here, ~v is the vector representation of vertex v and the
vector inequalities indicate that the inequalities hold for both
dimensions. The tuple 〈ai, aj , u, v, t〉 is a vertex conflict iff
Si(u) ∩ Sj(v) 6= ∅ or, equivalently,

−~sj ≤ ~v − ~u ≤ ~si. (1)

A rectangle constraint of the form 〈ai, ~umin, ~umax, t〉 can
be used to represent a constraint set that prohibits agent
ai from being in the rectangular area {v | ~umin ≤ ~v ≤
~umax} at timestep t. We say that two rectangle constraints
〈ai, ~umin, ~umax, t〉 and 〈aj , ~vmin, ~vmax, t〉 are mutually dis-
junctive iff their corresponding constraint sets are mutu-
ally disjunctive or, equivalently, −~sj ≤ ~vmin − ~umax and
~vmax − ~umin ≤ ~si.

We can replace the constraint setsC1 andC2 for MC-CBS
by two rectangle constraints. Instead of checking for each
pair of constraints in C1 and C2 whether they are mutually
disjunctive we need to only check two diagonal vertices, and
all approaches in Sections 4.1 and 4.2 can thus be simplified.

For some other regular shaped agents, such as circle,
cuboid or sphere shaped agents, we can use similar repre-
sentations and thus simplify MC-CBS as well.

5 Adding Heuristics to MC-CBS
Felner et al. (2018) improve CBS by adding heuristics to the
high-level search. A CT node’s g-value is its cost, and its ad-
missible heuristic is the cost of the minimum vertex cover of
an unweighted conflict graph. The conflict graph has ver-
tices representing agents and edges representing cardinal
conflicts between agents. Here, we generalize this model
to a weighted conflict graph GCF = (VCF , ECF), where
each vertex vi ∈ VCF represents an agent ai, each edge
(vi, vj) ∈ ECF represents cardinal conflicts between agents
ai and aj , and each pair of weights wij and wji for edge
(vi, vj) represents that either ai has to increase its cost by at
least wij or aj has to increase its cost by at least wji in order
to resolve this conflict. In MC-CBS, we use the weights of
C1 and C2 for wij and wji, respectively. Then, the optimal
solution of the following Integer Linear Program (ILP) is an
admissible heuristic:

minimize

k∑
i=1

ci (2)

s.t. ci ≥ wijxij , 1 ≤ i, j ≤ k, i 6= j

xij + xji ≥ 1, 1 ≤ i < j ≤ k
xij ∈ {0, 1}, 1 ≤ i, j ≤ k, i 6= j,

where ci is a variable that represents the minimum cost that
ai’s path has to increase, and xij is a Boolean variable that
represents whether the conflict between ai and aj is resolved
by increasing the cost of ai’s path. The minimum vertex

7631

(a) Success rate. (b) Expanded CT nodes.

Figure 2: Experimental results for CBS and variants of MC-
CBS on a 20×20 grid with 10% blocked cells.

cover problem in (Felner et al. 2018) is a special case where
all wij = 1. Similar conflict graphs and ILP models are used
in the context of cost-optimal planning (Pommerening et al.
2015).

6 Experimental Results
We implemented and experimented with CBS, all MC-CBS
variants (i.e., ASYM, SYM and MAX), EPEA* and MDD-
SAT on grids with square agents. We also tested CBS and
some MC-CBS variants on a 3D roadmap with ellipsoid
agents. All CBS-based algorithms used the conflict prioriti-
zation of ICBS. All algorithms were written in C++ and ran
on a 2.80 GHz Intel Core i7-7700 laptop with 8 GB RAM
and a runtime limit of 5 minutes. We tried both brute force
search and an off-the-shelf ILP solver to solve the ILP in
Equation (2) for calculating heuristics. Brute force search
ran faster on small graphs while the ILP solver ran faster
on large graphs. In both cases, the overhead of computing
the heuristics was very small since the conflict graphs were
sparse. Therefore, we simply use brute force search in our
experiments.

6.1 Square Agents on a 2D Grid
We first compare the performances of CBS and all MC-CBS
variants on a 4-neighbor 20×20 2D grid with 10% random
blocked cells. Each agent is a 2.5×2.5 square whose refer-
ence point is its top-left corner. All algorithms use Equa-
tion (1) to detect conflicts. All MC-CBS variants use the
rectangle constraints discussed in Section 4.3. For MAX, we
tested lookahead depths d from 0 to 4. We used 50 instances
with randomly generated start vertices and goal vertices for
each number of agents.

Overall performances. Figure 2(a) shows the success
rate, i.e., number of instances solved within 5 minutes,
of each algorithm. The success rates of MAX with d =
1, 2, 3, 4 are quite close to each other, so we only plotted
MAX-2. Overall, CBS performs the worst since it repeatedly
resolves related conflicts between the same agents. SYM,
ASYM and MAX-0 perform better since they resolve a set of
related conflicts in a single expansion. MAX-2 performs the
best since it looks ahead several steps and takes into consid-
eration the costs of child nodes. Table 1 shows the runtime

Table 1: Average runtime and number of expanded CT nodes
for CBS, SYM and MAX-2 on instances solved by SYM.
Cutoff time of 5 minutes is included in the average for un-
solved instances. k is the number of agents.

Runtime (ms) Expanded CT nodes
k Ins. CBS SYM MAX-2 CBS SYM MAX-2
2 50 8,907 7 2 25,924 20 3
3 50 52,876 903 24 218,136 2,214 36
4 43 >98,056 22,057 2,100 >376,921 43,904 2,958
5 33 >138,875 72,703 3,056 >320,928 125,593 2,683
6 25 >199,285 116,613 6,373 >802,317 244,991 8,324

Table 2: Average runtime (ms) of MAX with different looka-
head depths d. Cutoff time of 5 minutes is included in the
average for unsolved instances. k is the number of agents.

k d = 0 d = 1 d = 2 d = 3 d = 4
2 6.6 1.8 1.9 1.7 2.1
3 551.1 24.0 23.6 31.6 49.3
4 43,747.1 31,612.9 29,544.7 27,391.2 28,539.8
5 104,597.3 56,336.4 51,225.3 49,273.0 55,912.9
6 152,360.1 70,675.5 61,283.5 66,329.4 68,116.7

and number of expanded CT nodes of CBS, SYM and MAX-
2 on instances solved by SYM. SYM outperforms CBS by
up to three orders of magnitude on both metrics, indicating
that the overhead per expanded CT node is negligible for
SYM. MAX-2 outperforms SYM by factors of up to 60 and
20 with respect to the number of expanded CT nodes and
the runtime, respectively, indicating that it has more over-
head per expanded CT node but is still beneficial overall.

Comparing ASYM and SYM. Figure 2(b) shows the
number of expanded CT nodes for ASYM and SYM on in-
stances solved by both algorithms. With a few exceptions,
SYM outperforms ASYM not only on the success rate but
also on the number of expanded CT nodes (and thus the run-
time).

Comparing MAX with different lookahead depths. Ta-
ble 2 compares the runtime of MAX with d ranging from 0 to
4. We observe that MAX with d = 0 (no lookahead) is sig-
nificantly slower than the others. As d increases, the runtime
first decreases and then increases because a larger lookahead
depth has more pruning power but also incurs more over-
head. d = 2 or 3 works best in our experiments.

MAX with heuristics. Adding heuristics to MAX de-
creases both the number of expanded CT nodes and the run-
time, although it does not improve its success rate. For in-
stance, adding heuristics to MAX-4 decreases the number
of expanded CT nodes by 30.1% and the runtime by 21.5%
on 8-agent instances. Similar observations have been made
in (Felner et al. 2018) on sparse grids, but in the next sub-
section we discuss cases where adding heuristics provides a
much larger speedup.

6.2 Ellipsoid Agents on a 3D Roadmap
We also tested our algorithms on the “Swap50” instance
from (Hönig et al. 2018), that is used to plan paths for
quadrotor swarms in a dense 3D space. The environment is

7632

(a) Success rate on small map (b) Runtime on small map (c) Success rate on large map (d) Runtime on large map

Figure 3: Experimental results on 2D grids.

Figure 4: Shape of agents (left), reproduced from (Hönig et
al. 2018), and the structure of the roadmap (right).

Table 3: The runtime and number of expanded CT nodes on
“Swap50” with a 3D roadmap. k is the number of agents.
MAX+h is MAX-1 with heuristics.

Runtime (ms) Expanded CT nodes
k CBS ASYM MAX-1 MAX+h CBS ASYM MAX-1 MAX+h
5 38 61 23 13 18 26 9 7
6 124 122 126 40 28 25 20 11
7 1,175 549 735 290 188 93 100 52
8 253,550 15,829 10,570 5,221 30,411 2,408 1,289 747

a 7.5 m× 6.5 m× 2.5 m space with ellipsoid agents. The el-
lipsoids model quadrotors and their downwash effects. The
ellipsoids have radii (0.15 m, 0.15 m, 0.3 m) with central
reference points, as in Figure 4(left). Agents are required to
fly through windows in a wall in opposite directions. The
roadmap, generated by the SPARS algorithms (Dobson and
Bekris 2014), has 869 vertices and 3,371 edges, as in Fig-
ure 4(right). In a preprocessing step, we identify all possible
vertex and edge conflicts using the swept collision model
(Hönig et al. 2018). On average, there exist 1.75 different
vertex conflicts per vertex, and 24.08 different edge conflicts
per edge. The original instance has 50 agents and was solved
by suboptimal solvers in (Hönig et al. 2018). We randomly
chose a small subset of agents and solved the resulting in-
stance with our optimal algorithms CBS, ASYM, MAX-1,
and MAX-1 with heuristics.

Table 3 shows the runtime and number of expanded CT
nodes. ASYM, MAX-1 and MAX-1 with heuristics decrease
the runtime of CBS by factors of up to 16, 24 and 49, re-
spectively. Unlike the results in Section 6.1, adding heuris-

tics here significantly reduces the number of expanded CT
nodes and runtime because agents traverse narrow corridors
in opposite directions, which results in more cardinal con-
flicts.

6.3 Comparing with Other Solvers on 2D Grids
We now compare CBS and two MC-CBS variants, namely
SYM and MAX-2, with an A*-based solver, EPEA*, and a
reduction-based solver, MDD-SAT, on the same instances
as in Section 6.1. We also test them on larger instances
with square agents of different sizes randomly chosen from
{2.5, 3.5, 4.5}. We used a large 4-neighbor 194×194 2D
grid with 51.3% blocked cells, namely the benchmark game
map lak503d from (Sturtevant 2012). We used 50 instances
with randomly generated start vertices and goal vertices for
each number of agents.

EPEA*. A*-based MAPF solvers conduct search in the
joint multi-agent state space. EPEA* (Goldenberg et al.
2014) is a lazy version which delays the generation of nodes
whose costs are larger than the costs of their parents and
thus avoid generating unnecessary nodes. It can be adapted
to LA-MAPF by using Equation (1) to identify conflict-free
actions as legal operators. This adaptation is promising since
the branching factor could be smaller than the one for MAPF
instances. CBS-based solvers, on the other hand, have more
conflicts to resolve for LA-MAPF than for MAPF.

MDD-SAT. MDD-SAT (Surynek et al. 2016) is a SAT-
based MAPF solver. It relies on the construction of a propo-
sitional formula that is satisfiable iff the given MAPF in-
stance has a set of conflict-free paths of a certain cost. It
introduces a propositional variable X tv(ai) for each agent ai
and node (v, t) in ai’s MDD that is ‘true’ iff agent ai is at
vertex v at timestep t. MDD-SAT can be modified for LA-
MAPF by introducing additional variables Ytu(ai) and con-
straints involving them to reflect the shapes of agents. Here,
Ytu(ai) is ‘true’ iff there exists vertex v such that X tv(ai) is
‘true’ and vertex u ∈ Si(v). In other words, implications
X tv(ai) → Ytu(ai) added for each vertex u ∈ Si(v) ensure
that the entire shape of the agent moves in tandem with the
reference point. In addition to MDD-SAT’s constraints that
encode movement rules for reference points, “at-most-one”

7633

constraints
∑k
i=1 Ytv(ai) ≤ 1 are used to disallow collisions

between agents.

Results. Figure 3(a), Figure 3(b) present the success rates
and runtimes on the small map. MAD-SAT dominates all
other algorithms in terms of success rates within 5 minutes.
When we vary the runtime limit, MAX-2 has the highest
success rate when the runtime limit is less than 10 s (where
instances are relatively easy), while MDD-SAT has the high-
est success rate when the runtime limit is more than 10 s
(where instances are more difficult). Figure 3(c), Figure 3(d)
present the success rates and runtimes on the large game
map. MAX-2 significantly outperforms all other algorithms
in all cases except when the runtime limit is less than 0.1 s.

Although it is hard to predict the performances of the al-
gorithms in all domains, we can give some guidance based
on these observations and analysis. MDD-SAT is strong for
difficult problems in small domains. MAX is strong for easy
problems or in large domains, despite the fact that its looka-
head depth needs to be set appropriately.

7 Conclusions and Future Work
In this paper, we generalized MAPF to a practically viable
version, called LA-MAPF, that takes into consideration the
shapes of agents. We presented MC-CBS, a new algorithm
that improves CBS by adding multiple constraints during the
expansion of a CT node. Unlike CBS, the MC-CBS allows
us to resolve multiple related conflicts in one shot, while also
generalizing the use of the minimum vertex cover for heuris-
tic guidance of the high-level search. We proposed three ap-
proaches for choosing the constraints as well as an approach
for computing the heuristics. Empirically, we showed that all
MC-CBS variants outperform CBS by up to three orders of
magnitude in terms of runtime, and the best variant also out-
performs EPEA* in all cases and MDD-SAT in some cases.

There are many directions for future work. For example,
we could study the problem that allows the rotation of shapes
and develop sub-optimal LA-MAPF solvers, with the expec-
tation that they would be more scalable than optimal ones.

References
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.; and
Zhou, N. 2018. Robust multi-agent path finding. In SoCS, 2–9.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Suboptimal
variants of the conflict-based search algorithm for the multi-agent
pathfinding problem. In SoCS, 19–27.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betza-
lel, O.; and Shimony, S. E. 2015. ICBS: Improved conflict-based
search algorithm for multi-agent pathfinding. In IJCAI, 740–746.
Dobson, A., and Bekris, K. E. 2014. Sparse roadmap spanners for
asymptotically near-optimal motion planning. The International
Journal of Robotics Research 33(1):18–47.
Erdem, E.; Kisa, D. G.; Oztok, U.; and Schueller, P. 2013. A
general formal framework for pathfinding problems with multiple
agents. In AAAI, 290–296.
Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Goldenberg, M.;
Sharon, G.; Sturtevant, N. R.; Wagner, G.; and Surynek, P. 2017.
Search-based optimal solvers for the multi-agent pathfinding prob-
lem: Summary and challenges. In SoCS, 29–37.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T. K. S.;
and Koenig, S. 2018. Adding heuristics to conflict-based search
for multi-agent path finding. In ICAPS, 83–87.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant,
N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced Partial
Expansion A*. Journal of Artificial Intelligence Research 50:141–
187.
Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Ayanian,
N.; and Koenig, S. 2016. Multi-agent path finding with kinematic
constraints. In ICAPS, 477–485.
Hönig, W.; Preiss, J. A.; Kumar, T. K. S.; Sukhatme, G. S.; and
Ayanian, N. 2018. Trajectory planning for quadrotor swarms. IEEE
Transactions on Robotics 34(4):856–869.
Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hönig, W.; Kumar,
T. K. S.; Uras, T.; Xu, H.; Tovey, C.; and Sharon, G. 2016a.
Overview: Generalizations of multi-agent path finding to real-
world scenarios. In IJCAI-16 Workshop on Multi-Agent Path Find-
ing.
Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig, S.
2016b. Multi-agent path finding with payload transfers and the
package-exchange robot-routing problem. In AAAI, 3166–3173.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S. 2017.
Feasibility study: Moving non-homogeneous teams in congested
video game environments. In AIIDE, 270–272.
Morris, R.; Pasareanu, C.; Luckow, K.; Malik, W.; Ma, H.; Kumar,
S.; and Koenig, S. 2016. Planning, scheduling and monitoring for
airport surface operations. In AAAI-16 Workshop on Planning for
Hybrid Systems.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2015.
Heuristics for cost-optimal classical planning based on linear pro-
gramming. In Proceedings of the IJCAI, 4303–4309.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013. The
increasing cost tree search for optimal multi-agent pathfinding. Ar-
tificial Intelligence 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Arti-
ficial Intelligence 219:40–66.
Standley, T. S. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 173–178.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in Games
4(2):144–148.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016. Efficient
SAT approach to multi-agent path finding under the sum of costs
objective. In ECAI, 810–818.
Veloso, M. M.; Biswas, J.; Coltin, B.; and Rosenthal, S. 2015.
Cobots: Robust symbiotic autonomous mobile service robots. In
IJCAI, 4423–4429.
Wagner, G., and Choset, H. 2011. M*: A complete multirobot
path planning algorithm with performance bounds. In IROS, 3260–
3267.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI
Magazine 29(1):9–20.
Yu, J., and LaValle, S. M. 2013a. Planning optimal paths for mul-
tiple robots on graphs. In ICRA, 3612–3617.
Yu, J., and LaValle, S. M. 2013b. Structure and intractability of
optimal multi-robot path planning on graphs. In AAAI, 1444–1449.

7634

