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Abstract

In several industrial applications of planning, complex tem-
poral metric trajectory constraints are needed to adequately
model the problem at hand. For example, in production
plants, items must be processed following a “recipe” of steps
subject to precise timing constraints. Modeling such domains
is very challenging in existing action-based languages due to
the lack of sufficiently expressive trajectory constraints.
We propose a novel temporal planning formalism allowing
quantified temporal constraints over execution timing of ac-
tion instances. We build on top of instantaneous actions bor-
rowed from classical planning and add expressive temporal
constructs. The paper details the semantics of our new for-
malism and presents a solving technique grounded in classi-
cal, heuristic forward search planning. Our experiments prove
the proposed framework superior to alternative state-of-the-
art planning approaches on industrial benchmarks, and com-
petitive with similar solving methods on well known bench-
marks took from the planning competition.

1 Introduction
Several real world industrial problems, such as the automatic
synthesis of a controller for an industrial plant, yield com-
putational problems that would be naturally represented and
solved using action-based planning (e.g., PDDL (Fox and
Long 2003)). However, even very expressive language pro-
posals (Gerevini et al. 2009; Fox and Long 2006) are inad-
equate to express and reason over the temporal constraints
that are often an essential part of this class of problems.

Consider for example an electroplating plant (Phillips and
Unger 1976), where the items need to be treated in a se-
quence of chemical baths (“recipe”) with immersion tim-
ings constrained in precise time windows. The problem is
to orchestrate a set of hoists moving a certain number of
items according to a given recipe whilst keeping the im-
mersion timing constraints in check, and ensuring hoists do
not collide among each other. This problem is known in the
literature as the Hoist Scheduling Problem (HSP) (Manier
and Bloch 2003). For non-cyclic productions (e.g. heteroge-
neous recipes or the plant need to change production) this
problem becomes a natural fit for planning techniques. This
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problem is traditionally solved by domain-specific schedul-
ing techniques; our interest is tackling it from a domain in-
dependent standpoint.

In the HSP, it is very natural to model the hoist be-
haviors using the durative-actions of PDDL 2.1 (Fox and
Long 2003). Unfortunately, the cross-action temporal con-
straints (e.g., the time window between the immersion of
an item and its picking), cannot be easily expressed in cur-
rent action-based representations, even with the use of the
state-trajectory constraints offered by PDDL3 (Gerevini et
al. 2009). This is in stark difference with scheduling, where
temporal constraints are usually imposed over the inter-
vals or the events of the schedule, not the states. Other
planning formalisms, such as timeline-based temporal plan-
ning (Frank and Jónsson 2003; Cesta et al. 2009), do offer
rich temporal constraint support, but are not well suited for
problems with prominent causal structure.

Motivated by real-world industrial applications (e.g.,
the HSP), this paper proposes a novel planning frame-
work aimed at taking the best from both action-based and
timeline-based approaches. We start with a classical plan-
ning model where all actions are instantaneous and extend it
with “temporal knowledge”. A temporal knowledge is a set
of quantified temporal metric axioms predicating over the
execution timings of action instances. This way, the encod-
ing of the HSP becomes very natural: the hoist dynamic is
modeled using classical actions, while the immersion tim-
ings are preserved through our temporal knowledge using
a formula with precise temporal metric constraints. Differ-
ently from action-based planning - where temporal con-
straints are implied by action-selection, and from timeline-
based planning - where, instead, the actions are the implicit
part of the problem, our paradigm collocates both planning
goals and temporal constraints on the same level.

We make the following contributions. First, we provide a
formal account to encode quantified temporal formulae over
actions combined with classical planning; we detail the syn-
tax and the semantics of this formalism, along with compi-
lation schemata for encoding temporal constructs presented
in other planning formalisms. Second, we present a heuris-
tic search framework to handle the arising planning prob-
lem in a systematic and practical way. This encompasses
the definition of a search space that intertwines planning
with reasoning over our temporal knowledge. To explore this
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Figure 1: The Hoist Scheduling Problem example.

search space we present a simple yet effective relaxation-
based heuristic that is informed of the temporal structure.
Finally, we provide empirical evidence of the usefulness of
the proposal across a variety of domains inspired by in-
dustrial applications, and well known planning benchmarks.
On industrial domains especially, the proposed framework
makes planning feasible over problems where PDDL 2.1
state-of-the-art temporal planners only solve very small in-
stances. On well known PDDL 2.1 problems, our proposal
proves competitive with existing approaches using similar
techniques, and improves substantially on the state of the art
when the very same domains are extended with the richer
temporal constraints induced by intermediate action effects.

2 Problem Motivation and Formalization
Let us consider the example situation of figure 1. We have a
simple HSP with 2 tanks (LT1

and LT2
) and 1 hoistH . Each

item Ix is required to obey the following “recipe”: after be-
ing picked up from the loading position (LL) stay in LT1

for 10 to 12 minutes, and then in LT2
for 20 to 21 minutes;

finally, reach position (LU ). H takes 1 minute to move be-
tween adjacent tanks and negligible time to load and unload
items. While an item is in a tank,H is free to move, pick and
transport other items. We assume that both the tanks and H
can hold at most one item at a time.

Encoding the HSP in PDDL 2.1 1 is complicated because
the time windows are state-dependent temporal constraints.
One can use the clip-action encoding technique (Fox, Long,
and Halsey 2004), which results in adding extra actions and
variables to the domain. For instance, let unload(Ix, LT2

)
be the action representing the drop-off of item Ix in posi-
tion LT2 ; one needs two durative-actions winl (with dura-
tion 20) and winu (with duration 21) to model the lower
and the upper bounds of the time window in which Ix can
stay in LT2 (we use the end-effects of such actions to en-
force the picking of Ix in this time window). In addition, we
need to force the end of action unload(Ix, LT2

) to happen
at the same time of the starting time of both winl and winu;
this can be done using an additional durative action called
“clip-action”. This construction makes the planning problem
much harder to encode, and much harder to solve for exist-
ing planners. First, it requires the user to rewrite the domain
model instead of enforcing these constraints as goals. Sec-
ond, it makes the reasoning much more complicated, leading
to unnecessary branching points during search, consequence
of breaking the actual structure of the problem. Concretely,

1Another option would be PDDL3, but it only supports few
temporal metric constructs that are insufficient to express the HSP
without a construction analogous to the one for PDDL 2.1.

given an instance of HSP with n hoists, and m positions (all
involved in the recipe) for a number k of items, the clip-
action encoding results in adding 3× (n×m×k) artificial
actions to the original set of actions.

To overcome these modeling limitations, we introduce
a new formalism from which we define a Timed Planning
Problem (TPP). For convenience, we use TPP to refer to
both the planning problem, and the formalism (i.e., the way
such a problem can be expressed).
Notation. Our setting is standard First Order Logic (Kleene
1967). We indicate a formula φ expressed over variables
v1, · · · , vn as φ(v1, · · · , vn); given φ(v1, · · · , vn) we write
φ(x1, · · · , xn) for the substitution of each vi with xi.
Syntax. We start our formalization by recalling the syntac-
tical definition of a classical planning problem.
Def 1. A classical planning problem is a tuple P :
〈X,A, I,G〉 where: X is a set of Boolean state variables;
A is a set of ground actions2 and each a ∈ A is a pair
〈pre(a), eff(a)〉 where pre(a) is a propositional formula
over variables from X and eff(a) is a set of non-conflicting
assignments to variables in X; I , the initial state, is a com-
plete assignment to variables in X; G, the goal, is a propo-
sitional formula over X .
The following definition formalizes the syntax of axioms
that express quantified temporal metric constraints on the
execution time of actions. We allow any alternation of ex-
istential (∃̄) and universal (∀̄) action quantifiers, each bind-
ing one action-typed variable. The body of the axiom is a
formula of binary temporal constraints (Dechter, Meiri, and
Pearl 1991) over such variables.
Def 2. Given a classical planning problem P : 〈X,A, I,G〉,
a temporal action axiom is a formula in the form:
∇1v1 : a1. · · · .∇nvn : an.φ(v1, · · · vn, 0̄) where ∇i ∈
{∃̄, ∀̄} is an action quantifier; vi is a time-point variable;
ai ∈ A is an action; φ(v1, · · · vn, 0̄) is an arbitrary Boolean
combination of atoms of the form vx− vy ≤ k with vx, vy ∈
{v1, · · · vn, 0̄} and k ∈ R, and 0̄ is a distinct time-point vari-
able indicating the starting instant of the plan.
Def 3. A Temporal Knowledge (TK) Γ is a conjunction of
temporal action axioms. A Timed Planning Problem (TPP)
is a pair 〈P,Γ〉, where P is a classical planning problem.
A plan for a given TPP is timed in that each action is asso-
ciated with an execution time.
Def 4. Given a classical planning problem P : 〈X,A, I,G〉,
a timed plan is a set of pairs {〈a1, t1〉, · · · , 〈an, tn〉} where
ai ∈ A is an action and ti ∈ R≥0, for each i ∈ 1 · · ·n.
Semantics. We inherit the semantics of the classical plan-
ning problem from PDDL 2.1 level 1 (Fox and Long 2003),
i.e., its untimed fragment. We just recall that a valid classi-
cal plan is a sequence of actions that, starting from the initial
state, are applicable one after the other, and yield a final state
that fulfills the goal condition. To reason over the validity of
a classical plan within TPP, we define an induced causal
plan as a sequence of actions composed of the very same
actions appearing in the timed plan, sorted by their timing.

2We only present a ground representation; our results extends
to the lifted case and our implementation supports both.
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Def 5. Given a timed plan τ : {〈a1, t1〉, · · · , 〈an, tn〉},
an induced causal plan is an ordered list of actions π :
〈ao(1), · · · , ao(n)〉 where o : N → N is such that for all
i, j ∈ N with i < j, to(i) ≤ to(j) holds.

If two actions are executed at the same time, there might
be more than one induced plan; hence, we define the causal
validity of a timed plan as the validity of all the possi-
ble induced causal plans. This handles the problem of non-
commutative actions scheduled at the same time.

Def 6. A timed plan τ is causally valid for a TPP 〈P,Γ〉, if
all its induced causal plans are valid for P .

We can now define the validity of the temporal action ax-
ioms w.r.t. a timed plan τ . Intuitively, being τ a finite set,
the semantics of ∀̄v : a (∃̄v : a) coincide to a conjunction
(disjunction) over all the instances of action a in τ .

Def 7. Given γ : ∇1v1 : b1. · · · .∇nvn : bn.φ(v1, · · · vn, 0̄),
a timed plan τ : {〈a1, t1〉, · · · , 〈an, tn〉} satisfies temporal
action axiom γ if the following formula (where

⊙i
=

∧
if

∇i = ∀̄ and
⊙i

=
∨

if ∇i = ∃̄) is satisfiable.⊙1
〈b1,x1〉∈τ · · ·

⊙n
〈bn,xn〉∈τ φ(x1, · · · , xn, 0)

Def 8. A timed plan τ is valid for a TPP 〈P,Γ〉 if it is
causally valid and satisfies all temporal action axioms in Γ.

Solving a TPP 〈P,Γ〉 where P : 〈X,A, I,G〉 is the task
of finding a valid timed plan using actions from A. Interest-
ingly, this planning problem is decidable when interpreted
over integer time (as for the PDDL case (Rintanen 2007)).

Thm 1. TPP is decidable if interpreted over integer time.

Proof sketch. We reduce TPP to the satisfiability of a TPTL
formula with past operators, that is decidable (Alur and
Henzinger 1993; 1994). TPTL offers the usual LTL oper-
ators e.g., � (for always in the future) and ♦ (for even-
tually); the past operators e.g., � (for always in the past)
and (for once in the past); and “freezing quantifiers” of
the form “x.” referring to the timing of states. The classi-
cal planning part of TPP has a known compilation in the
LTL fragment of TPTL (Calvanese, De Giacomo, and Vardi
2002), while the temporal action axioms can be encoded us-
ing freezing quantifiers in combination with temporal op-
erators. As for our formalism, TPTL allows Boolean com-
binations of binary temporal constraints expressed over the
variables of freezing quantifiers, hence we only need to en-
code the universal and existential quantification as freezing
quantifications. This can be done by translating ∀̄v : a.α into
�v.(pa → [α])∨�v.(pa → [α]) where [α] indicates the re-
cursive compilation of the right-hand side of the axiom, and
pa encodes the states in which action a is triggered. Simi-
larly, ∃̄v : a.α translates to ♦v.(pa∧ [α])∨ v.(pa∧ [α]).

Example. To specify the HSP problem of figure 1 in
TPP we devise an action load(Ix, L) for loading an item
Ix in location L, similarly an action unload(Ix, L) for
the corresponding drop-off, and finally a pair of actions
move`(L1, L2) and movea(L1, L2) for the movement of
the hoist H (representing the start and end of the movement,

respectively). For each item Ix, we impose the following ax-
iom that encodes the recipe for the item itself.
∀̄l0 : load(Ix, LL).∃̄u1 : unload(Ix, LT1

).∃̄l1 : load(Ix, LT1
).

∃̄u2 : unload(Ix, LT2
).∃̄l2 : load(Ix, LT2

).∃̄u3 : unload(Ix, LU ).

(l0 ≤ u1) ∧ (10 ≤ (l1 − u1) ≤ 12) ∧ (l1 ≤ u2) ∧

(20 ≤ (l2 − u2) ≤ 21) ∧ (l2 ≤ u3)

Intuitively, each time the hoist loads an item from LL, the
universal action quantifier ensures the particular sequence
of events required by the recipe, with the right schedule. For
every pair of positions 〈L1, L2〉, the duration of the hoist
movement is specified by the following axiom schemata.
∀̄ms : move`(L1, L2).∃̄me : movea(L1, L2).(me −ms) = tt(L1, L2)

∀̄me : movea(L1, L2).∃̄ms : move`(L1, L2).(me −ms) = tt(L1, L2)

Where tt(L1, L2) is the time needed to go from L1 to L2.
These axiom schemata leave room for ordering the items
production and the movements of the hoist respecting the
duration constraints. A fragment of a valid timed plan is:

{· · · , 〈move`(LT1
, LT2

), 12〉, 〈movea(LT1
, LT2

), 13〉,

〈unload(I1, LT2
), 13.1〉, · · · , 〈movea(LT2

, LTL
), 15.5〉,

〈load(I2, LTL
), 15.6〉, · · · , 〈load(I1, LT2

), 34〉, · · · }.

TPP as a Target Formalism
We now show how TPP can express interesting features of
other languages. First, we encode durative actions of PDDL
2.1 level 3 (without numeric state variables) under the as-
sumption of non-unbounded self-overlapping actions (Rin-
tanen 2007). Handling this feature is complicated both in
PDDL and in TPP due to the matching of the starts with their
relative ends. Second, we encode problems featuring inter-
mediate actions effects and temporally qualified conditions,
constructs like those offered by ANML (Smith, Frank, and
Cushing 2008) and (to some extent) NDL (Rintanen 2015).
From PDDL2.1 to TPP. Similarly to our encoding of the
HSP, we decompose each durative action da, having dura-
tion constraint Lda ≤ duration ≤ Uda, into a pair of
TPP actions (da`, daa), and prevent self-overlap by means
of a fresh dummy state variable rda. da`, daa are equivalent
to the snap actions used in Coles et al. (2010) with the addi-
tion that da` and daa set rda to> and⊥, respectively. These
two actions retain the causal structure of da (start/end con-
dition and effects), while the temporal aspects are encoded
in TPP using the following axioms:

∀̄s : da`.∃̄e : daa.(e− s ≤ Uda) ∧ (s− e ≤ −Lda)

∀̄e : daa.∃̄s : da`.(e− s ≤ Uda) ∧ (s− e ≤ −Lda).

For each “over all” condition φ of da we conjoin every ac-
tion precondition with the invariant constraint rda → φ.
Intermediate effects and temporally qualified condi-
tions into TPP. An intermediate (also called delayed)
effect is a set of non-conflicting assignments happen-
ing at a specific time after the starting of the action.
This can be modeled in TPP with an instantaneous
action ie encoding the effect, and by imposing the
appropriate axioms: (i) ∀̄s : da`.∃̄e : daa.∃̄i : ie. · · · ,
(ii) ∀̄e : daa.∃̄s : da`.∃̄i : ie. · · · , and finally (iii)
∀̄i : ie.∃̄e : daa.∃̄s : da`. · · · .

A temporally qualified condition (Smith, Frank, and
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Cushing 2008) is a formula that must hold within a specific
interval after the starting of an action. It can be encoded in
TPP with two intermediate effects that explicit, through a
fresh dummy state variable, the start and the end of the inter-
val associated to the condition; similarly to an over-all con-
dition, the encoding then enforces an invariant constraint.

3 Solving Timed Planning Problems
This section presents the heuristic search approach we em-
ploy to solve TPP. We first present the design of the search
space; then we describe the relaxation-based heuristics de-
vised to steer a best-first-search in this space.

Forward Search Schema and Temporal Reasoning
Inspired by POPF (Coles et al. 2010), our search navigates
the state space using forward chaining: start from the initial
state and progress over some next state only using those ap-
plicable actions leading to a satisfiable TK. Differently from
PDDL 2.1, the TK makes the temporal reasoning in our set-
ting much more complicated. As search progresses forward
towards a next state s, it is important to assess which (if
any) from the actions contained in the prefix (i.e., the se-
quence of actions leading to s from the initial state) is in-
terpreting some of the quantified variables involved in TK.
Dealing with universally quantified variables is straightfor-
ward: each matching action instance in the prefix leads to
an instantiation of the quantifier. Instead, existential quan-
tification is more complex: we must decide which action in-
stance in the prefix witnesses the quantifier. For example, let
A : {a0, a1, a2} and ∀̄x : a0.∃̄y : a1.y − x > 10 ∈ TK.
Say 〈a0, a2〉 is the current prefix and the search selects ac-
tion a1. There are two possibilities: either use a1 to witness
the satisfaction of the axiom, or wait for some other occur-
rence of a1 in the future. The first, more committed, choice
would prevent to position this occurrence of a1 anytime be-
fore t(a0) + 10. The second, less committed, choice would
instead allow more freedom in positioning a1 on the time-
line, but require a future occurrence of a1 to witness the sat-
isfaction of the temporal action axiom. Note that, restricting
to either decision results in an incomplete search.
Online temporal reasoning. To handle the above issue sys-
tematically, we annotate each state with temporal commit-
ments, and use these annotations to construct a formula
(called TN ) whose satisfiability encode only course of ac-
tions deemed consistent for the TK at hand. Formally, a
search state s is a tuple 〈µ, π, ρ, σ〉 where: µ is an assign-
ment for the Boolean variables - this corresponds to a clas-
sical planning state; π = 〈ā1, · · · , āk〉 is the sequence of
action instances that have been applied to reach s (i.e., the
prefix). The over-bar writing (i.e., ā) is used to refer to action
instances that can be chosen during search. Let ā be an ac-
tion instance, type(ā) denotes its action type. ρ is a set of ex-
istentially quantified action instances, anticipated to witness
some existential quantifier in TK; σ is a set of elements of
the form fx(b̄y1 , · · ·, b̄yn) = āx, where x is an existentially-
quantified variable in TK and y1, · · ·, yn are the universally
quantified variables appearing on the left-hand side of x; b̄yi
is an action instance from π that matches yi, while āx is an

action instance in π ∪ ρ that matches x. W.l.o.g. we assume
that each variable name in TK is unique. Intuitively, σ en-
codes the Skolemization functions (Hähnle 2001), defined
by cases, of some existential quantifier appearing in TK.

Let s be a state, the formula TN(s) is defined over
a set of real-valued time-points variables each encoding
when an action instance ā (with ā ∈ s.π ∪ s.ρ) is sched-
uled in the resulting timed plan. tp(ā) indicates the time
point associated with ā. To preserve causal validity (as
per definition 6) and to satisfy all the axioms in TK, the
TN(s) formula is the conjunction of a (valid) partial or-
der of π (obtained through the KK algorithm (Bäckström
1998)) and the following encoding of TK. For each axiom
∇1v1 : a1. · · · ∇nvn : an.φ(v1, · · · vn, 0̄) ∈ TK we conjoin
the following formula:∧

b̄o(1)∈U1
· · ·

∧
b̄o(m)∈Um

φ(t1, · · · tn, 0)

where m is the number of universal quantifiers in the axiom
(obviously, m ≤ n); o : 1 · · ·m → 1 · · ·n is such that o(i)
gives the index of the i-th universal quantifier; each Ui is
the set of action instances in π matching the i-th universal
quantifier, defined as {b̄o(x) ∈ π | type(b̄o(x)) = ao(x)};
and tk = tp(b̄k) if ∇k = ∀̄, otherwise (i.e., ∇k = ∃̄)
tk = tp(c̄k) such that fvk(b̄o(1), · · ·, b̄o(z)) = c̄k ∈ σ where
z is the number of universal quantifiers on the left-hand side
of∇k. Intuitively, for each axiom in TK and for each possi-
ble matching of the universally quantified variables (if any)
appearing in such axiom, we enforce the relative tempo-
ral constraint where the existentially quantified variables are
substituted by the bindings defined in σ. If the TN(s) for-
mula is satisfiable, we say that s is temporally consistent,
otherwise, the state can be pruned.
LAZY-SEARCH and EAGER-SEARCH. To progress the
search, we devise two branching strategies. The first (here-
inafter, LAZY-SEARCH), postpones the binding of existen-
tial quantifiers to goal states only. The second (hereinafter,
EAGER-SEARCH), anticipates such temporal commitments
explicitly into the state space. In both cases, a timed plan is
extracted by taking the action instances in the prefix leading
to any goal state s; the execution time of each such an action
is a model of TN(s). Practically, the two strategies differ on
the algorithm used to compute the successor states.

In LAZY-SEARCH none of the existential quantifier is
matched for states that do not satisfy the classical goal.
This corresponds to keep σ always empty and checking
consistency for axioms only containing universal quanti-
fiers. LAZY-SEARCH starts with Ilazy : 〈I, ∅, ∅, ∅〉, and
when a goal state is encountered, it combinatorially ex-
plores the possible bindings for existentially-quantified vari-
ables. More precisely, let s be a classical goal state. LAZY-
SEARCH checks the formula in definition 7 for consistency.
Operationally, one can either use a dedicated constraint
solver, or explicitly explore the possible bindings for the
existentially-quantified variables in TK.

EAGER-SEARCH anticipates the existential matching on-
line, during the search. The pseudocode of its key mecha-
nisms is reported in algorithm 1. SUCC is the top-level func-
tion and is called whenever a new action a is selected for
application in a state s. It takes in input s and a, and returns
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Algorithm 1 EAGER-SEARCH Successor Function
1: function SUCC(s - State, a - Action)
2: µ′ ← CLASSICALAPPLY(s.µ, a)
3: S ← {〈µ′, s.π + 〈ActionInstance(a)〉, s.ρ, s.σ〉}
4: for all ȳ ∈ s.ρ s.t. type(ȳ) = a do
5: S ← S ∪ {〈µ′, s.π + 〈ȳ〉, s.ρ \ {ȳ}, s.σ〉}
6: for all γ ∈ TK and a is universally quantified in γ do
7: S ←

⋃
s′∈S APPLY(s′, γ′, ∅)

8: return {s ∈ S | TN(s) is consistent}
9: function APPLY(s - State, γ - Temporal Axiom, b - ∀̄Bind)

10: S ← ∅
11: if γ is Quantifier Free then
12: S ← {s}
13: else if γ = ∀̄x : a.γ′ then
14: S ← {s}
15: for all ȳ ∈ π s.t. type(ȳ) = a do
16: S ←

⋃
s′∈S APPLY(s′, γ′, b ∪ {x = ȳ})

17: else if γ = ∃̄x : a.γ′ then
18: for all ȳ ∈ π ∪ s.ρ s.t. type(ȳ) = a do
19: σ′ ← s.σ ∪ {fx(b) = ȳ}
20: S ← S ∪ APPLY(〈s.µ, s.π, s.ρ, σ′〉, γ′, b)
21: ā′ ← ActionInstance(a)
22: σ′ ← s.σ ∪ {fx(b) = ā′}
23: S ← S ∪ APPLY(〈s.µ, s.π, s.ρ ∪ {ā′}, σ′〉, γ′, b)
24: return S

the set of successor states computed as follows. First, the al-
gorithm applies the classical effects of action a and stores
them in µ′. Then, it computes all the interpretations of a by
considering both where a does not serve as witness for any
existential quantifier, and where a is interpreting some of
the necessary, but unmatched, actions from s.ρ (line 3 to 5).
The set of states S collects such interpretations. For each of
these states, the algorithm recursively applies all the tempo-
ral action axioms by calling APPLY. APPLY enumerates the
bindings between actions from the entire prefix of the plan
and variables in the axiom γ in a recursive, top-down fash-
ion. The recursion removes from γ one quantifier at a time,
and terminates when a quantifier-free temporal constraint is
reached. If the leftmost quantifier in γ is a ∀̄, the algorithm
iterates over all the matching action instances in the prefix,
appending each match in b (line 16). Note that, the recursive
invocation of line 16 updates the set of successors at each
iteration. Besides the very first, each axiom in TK is applied
over all the successor states computed by the APPLY on the
previously selected axiom. For existentially quantified vari-
ables, APPLY extends the set of successor states with each
possible matching action instance in π or ρ. In addition, it
considers the possibility of satisfying the existential quanti-
fier with an action that is neither in the prefix π nor in the an-
ticipated action instances ρ yet (lines 21 to 23). This forces
to eventually apply such an action instance in that branch
of the search. EAGER-SEARCH starts with all the states ob-
tained by recursively applying all the purely-existential ax-
ioms in TK to Ilazy (the recursion is analogous to lines 6-7
of algorithm 1). Checking the consistency of a TN associ-
ated with a goal state is sufficient to guarantee that the prefix
is a valid solution plan, as long as s.ρ is empty. Otherwise
(s.ρ is not empty), even if the classical goal was reached,
the search needs to expand the prefix further; this is to en-
sure that the commitments in s.ρ are fulfilled.

Both LAZY-SEARCH and EAGER-SEARCH safely prune

a state s iff TN(s) is not consistent - we can guarantee that
the prefix cannot be extended to a valid plan. As a difference,
they explore quite a different search space. Each time a new
action is selected, LAZY-SEARCH successor function gener-
ates a single state (it does not anticipate the binding of exis-
tential quantifiers) while EAGER-SEARCH generates much
more successor states (this is in general exponential in the
number of existential quantified variables). Albeit EAGER-
SEARCH might seem not practical, we highlight that (i) its
exponential behavior is a very worst-case scenario: occur-
rences of the same action in the plan are often limited, and
when an action is not universally quantified, at most 1+|s.ρ|
successors are generated; (ii) by expliciting the temporal
commitments in the state, the search can be more informed.
In fact, EAGER-SEARCH proves superior to LAZY-SEARCH
for a consistent number of problems (see section 5).

Relaxation and Heuristics
The search tree induced by the proposed search schemata
is prohibitively large to be explored exhaustively, hence we
propose relaxation-based heuristics to guide the search. We
build on the well known subgoaling relaxation (Haslum and
Geffner 2000), also known as h1, that ignores the inter-
actions within conjunction of propositions into a recursive
schema. h1 is a safe relaxation of classical planning (i.e., it
proves unsolvable only when the associated classical plan-
ning problem is). Moreover, h1 also relaxes TPP because
classical planning is an obvious relaxation of TPP. From h1,
we concentrate our attention on its additive implementation
(hadd), known to be very effective for satisficing planning.

hadd(G) =

0 if s |= G

mina∈ach(G) hadd(pre(a)) + 1 if |G| = 1∑
g∈G(hadd(g)) if |G| > 1

Clearly, hadd knows nothing about TK, hence we extend it
in two different directions to make it informed of the axiom
structure when employed in EAGER-SEARCH. Recall that,
the set s.ρ keeps track of the foresaw action instances that
are necessary to fulfill the TK axioms in state s. Given such
prediction, a first temporally-aware version of hadd (called
hatk) is obtained by adding to the heuristic estimate the
number of anticipated actions: hatk = hadd + |s.ρ|.

A further improvement is obtained by working on the un-
derlying relaxation of h1. For each action a = type(ā) s.t.
ā ∈ s.ρ, we add a fresh predicate pa to the goal, ensuring
that a is the only achiever of pa. This yields a tighter, state-
dependent classical planning relaxation of TPP. We call the
resulting additive heuristic hdtk.
Prop 1. For any search state s, hdtk(s)≥hatk(s)≥hadd(s).

Proof sketch. In absence of existential statements within
TK, hdtk(s) = hatk(s) = hadd(s). When the current
state contains at least one unmatched existential quantifier
hatk(s) ≥ hadd(s); moreover, hdtk(s) ≥ hatk(s), as hdtk
also considers the preconditions of the action necessary to
match the existential statement.

Naturally, hdtk and hatk bring some computational over-
head (i.e., both need EAGER-SEARCH) over hadd. Their ef-
fectiveness is empirically studied in section 5.
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4 Related Work
Our formalism is inspired by the timeline-based approach
to temporal planning (Frank and Jónsson 2003). This ap-
proach uses temporal constraints to express both the timing
behavior and, implicitly, the causal structure of the system.
Similarly to timelines, TPP allows temporal constraints, but
generalizes synchronization-rules with nesting of quantifiers
and keeps the causal structure explicit.

TPP is similar in spirit to PDDL3 (Gerevini et al. 2009):
both formalisms introduce trajectory constraints. PDDL3
uses not-nested LTL-like formulae, constraining the state
trajectory. TPP predicates over action instances, imposing
metric temporal requirements with arbitrary quantifier alter-
nations. Clearly, it is possible to encode state-change with
dedicated actions in TPP and, symmetrically, use additional
predicates to monitor action executions in PDDL3. How-
ever, problems such as the HSP cannot be expressed as non-
nested PDDL3 trajectory constraints without modifying the
problem structure, analogously to the PDDL 2.1 case.

Similarly, PDDL+ (Fox and Long 2006) can encode some
action timing constraints using dummy predicates, processes
and events. However, even simple constraints are very hard
to encode: e.g., ∀̄x : a.∀̄y : b.y − x ≥ 10 requires several
additional actions, events and processes. Moreover, PDDL+
planners focus on continuous change, not provinding ways
to directly exploit the temporal structure of our domains.

MPMTL (To et al. 2017) focuses on continuous change,
but also temporal trajectory constraints are possible: the
modal operators in the logic are similar to our quantifiers,
but there are several differences: first, MPMTL predicates
over state variables not actions; second, only future opera-
tors are available; finally, the planning language is restricted
to 2-level operator nesting. Arbitrary nesting is needed for
practical purposes: in the HSP a “recipe” is encoded as a
chain of operators (i.e., ∀̄∃̄ · · · ∃̄ corresponding to �♦ · · ·♦).

HTN (Nau et al. 2003) provides facilities to predicate
over actions temporally, but TPP is substantially different.
TPP leaves the planning domain intact (actions represent
the physics (McDermott 2000)) and separated from tempo-
ral constraints. Instead, HTN imposes such constraints in
the planning domain by modifying the model of the actions.
Moreover, HTN is not well suited for metric constraints.

The planning language of TBurton (Wang and Williams
2015) supports the compilation of networks of (restricted)
timed automata, and the specification of the goal condition
as a Simple Temporal Network (STN) over the automata
states. These can be formalized in TPP with purely exis-
tential axioms. TPP subsumes the goal language of TBurton
as it allows arbitrary quantifier alternations.

TAL (Doherty and Kvarnström 2008) is a logic to express
planning control knowledge that can constrain action occur-
rences via the occ statement. These statements, that can be
naturally encoded in TPP, are limited to existential quali-
tative constraints and are not supported by the only planner
implementation using TAL (Doherty and Kvarnström 2001).

Karpas et al. (2015) and Marzal, Sebastia, and Onaindia
(2016) introduce the idea of “temporal action landmark”,
that is a set of actions subject to temporal constraints that
are in any valid plan. Such landmarks can be expressed in

a narrow subset (using only the ∃̄ quantifier) of our formal-
ism, and our techniques can be used to solve and exploit
these structures. As for actions deemed necessary within the
EAGER-SEARCH schema, the existential quantifiers of those
landmarks translates into necessary actions during search.

Several works proposed mechanisms for temporal plan-
ning. We borrowed the basic search schema of POPF and
OPTIC (Coles et al. 2010; Benton, Coles, and Coles 2012)
(keeping the time reasoning lifted and the classical plan-
ning part explicit), substantially extending it to handle the
TPP constructs and providing dedicated heuristics based on
subgoaling decomposition. Instead, decision epoch planners
(e.g., (Do and Kambhampati 2003; Eyerich, Mattmüller, and
Röger 2012)) simplify the search at the cost of making it in-
complete for temporally expressive problems (Cushing et al.
2007). By keeping time lifted, our approach complicates the
search (e.g., duplicate checking (Coles and Coles 2016)), but
proves superior for temporally expressive problems.

5 Experimental Evaluation
We implemented the proposed approach in a planner (called
TPACK) that extends ENHSP (Scala, Haslum, and Thiébaux
2016) with native support for our TK: we allow the specifi-
cation of the temporal axioms using a lisp-like syntax.

Our experimental analysis includes (whenever applicable)
three other planners, ITSAT (Rankooh and Ghassem-Sani
2015), TFD (Eyerich, Mattmüller, and Röger 2012), and
OPTIC (Benton, Coles, and Coles 2012) To assess the ef-
fect of our heuristics and of the two search schemata, we ran
TPACK with 4 different configurations: TPACK (LAZY), im-
plementing LAZY-SEARCH with the hadd heuristic, TPACK
(hdtk), TPACK (hatk) and TPACK (hadd) implementing
EAGER-SEARCH with the heuristic in parenthesis. All con-
figurations ran using a best-first-search with f(s) = g(s) +
4×h(s) where the g-value is the length of the prefix. During
search, TPACK does not explore any state s′ iff the search
has already encountered another s with the same proposi-
tional assignments (i.e. s.µ = s′.µ) and smaller g-value
(g(s) < g(s′)). To ensure completeness, IDA∗(Korf 1985)
is run over the same search space in case best-first-search
deemed the problem unsolvable. The consistency checking
of a TN is implemented by explicitly splitting over its DNF
representation. Each disjunct is a Simple Temporal Network
(Dechter, Meiri, and Pearl 1991), solved using well known
incremental algorithms (Cesta and Oddi 1996).

We consider two classes of problems, namely (i) tempo-
rally expressive domains directly inspired by our industrial
application experience (HSP and a planning version of the
job-shop-scheduling problem (Graham 1966)) and (ii) do-
mains from the International Planning Competition (IPC),
and a reformulation of these featuring intermediate effects.

For all the domains and all the planners, we report the
number of instances solved. We ran all the experiments on a
Xeon E5-2620 2.10GHz with 1800s/15GB of time/memory
limits. TPACK and the benchmark instances are available at
http://es.fbk.eu/people/amicheli/resources/aaai19.
Industrial domains. The HSP is encoded in TPP follow-
ing the description in section 2. Instances scale the number
of tanks (from 2 to 11) and items to be treated (from 1 to
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Figure 2: Industrial experiments. Coverage results for HSP and MAJSP (b-c) and for IPC-14 problems (d-e).

10) for a total of 100 instances. The same instances have
been encoded in PDDL 2.1 using either the clip-action3 or
the window-container construction (Fox, Long, and Halsey
2004; Smith 2003; Cimatti et al. 2018). OPTIC was the only
planner capable to handle the resulting temporally expres-
sive instances. ITSAT parser does not support rational dura-
tions, so we used it on a reformulation of the instances where
the actions duration was scaled to be integral. This scaling
over-approximates the actual problem, and breaks the clip-
action construction in general: we highlight this compari-
son difference in the tables with an asterisk in the affected
columns. We devised a planning version of the job-shop
scheduling problem by requiring items to be transported
by robots to the machines performing the jobs. We refer to
this domain as MAJSP. Instances scale with the number of
robots (from 1 to 3), items to be processed (from 1 to 4),
positions (from 2 to 6) and jobs (from 1 to 4) for a total of
240 instances, formulated both in TPP and PDDL 2.1.

Figures 2b-c report coverage results for the HSP and
MAJSP instances, showing the detrimental effect of encod-
ing time windows in PDDL 2.1. As the problem size grows,
all the incarnations of TPACK outperform the competitors.
In HSP, TPACK (hdtk) solved most of the instances (all up
to 5 items); the search with hdtk expanded roughly linearly
many nodes with the number of positions, and this translated
to substantial speed-ups. This is also evident by observing
figure 2a, reporting a coverage-versus-time comparison. In
MAJSP, the advantage of using hdtk is not prominent as
in the HSP case, because the planning part (i.e., robots al-
location) dominates the temporal constraints aspect, so the
hdtk overhead did not pay off. We ascribe this issue to the
additive nature of hdtk that badly overestimates the interfer-
ence of the two components (planning and scheduling) of
the problem. ITSAT crashed in all MAJSP instances.
IPC with and without intermediate effects. We took 6 do-
mains from the IPC-14 competition (Vallati, Chrpa, and Mc-
Cluskey 2018), choosing those where a problem generator
was available4. For each domain, we experimented on both

3We used the clip-action construction instead of the strut-action
as ITSAT crashed with all the strut instances. The coverage for
OPTIC with strut-actions is identical to the one with clip-actions.

4Many of the original instances were out of reach for most of
the planners, hence we generated smaller ones.

the original and the intermediate effects formulation. The
latter results from adding temporal uncertainty to some ac-
tions and then using the technique in Cimatti et al. (2018) to
compile uncertainty away. The resulting planning problem
with intermediate effects is formulated both in PDDL 2.1
(with clip and container actions) and TPP (as per section 2).

As expected, TPACK does not dominate PDDL planners
over IPC instances (figure 2d-e), yet its best configura-
tion (EAGER-SEARCH and hdtk) proved competitive with
other forward search planners (such as TFD and OPTIC).
Our findings show both that TPACK well complement some
weaknesses of other heuristic search planners and, more im-
portantly, that the translation PDDL to TPP is not only the-
oretically possible but also practical. TPACK suffers in do-
mains such as MATCHCELLAR and SATELLITE probably
for lack of reasoning mechanisms specifically targeting the
structure of durative actions. Interestingly, when the very
same problems are augmented with intermediate effects,
TPACK’s best configuration uniformly manages to solve
small and medium sized instances, instead OPTIC manages
to solve only the small ones, except for MATCHCELLAR
where OPTIC’s heuristic seems to provide exceptional guid-
ance.

6 Conclusions
We proposed a novel temporal planning framework that
is well-suited for naturally specifying a wide class of
industrially-derived problems involving rich temporal met-
ric constraints; we also showed how this framework is gen-
eral enough to encode temporal constructs of alternative ap-
proaches (e.g., intermediate effects). For solving the arising
planning problem, we use a forward heuristic search tailored
for our rich temporal knowledge constructs. Our experimen-
tal findings show our technique being very effective over in-
dustrial problems that are largely out of the reach of state-
of-the-art planners.

We think these ideas pave the way to several interesting
research directions. First, the study of the theoretical prop-
erties of our formalism and of its fragments (e.g., complex-
ity and decidability in continuous time) could lead to even
more effective solvers. Second, the formalism itself can be
extended to account for additional temporal patterns (e.g.,
durative actions).
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