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Abstract

Designing multi-agent systems, where several agents work
in a shared environment, requires coordinating between the
agents so they do not interfere with each other. One of the
canonical approaches to coordinating agents is enacting a so-
cial law, which applies restrictions on agents’ available ac-
tions. A good social law prevents the agents from interfering
with each other, while still allowing all of them to achieve
their goals. Recent work took the first step towards reason-
ing about social laws using automated planning and showed
how to verify if a given social law is robust, that is, allows
all agents to achieve their goals regardless of what the other
agents do. This work relied on a classical planning formalism,
which assumed actions are instantaneous and some external
scheduler chooses which agent acts next. However, this work
is not directly applicable to multi-robot systems, because in
the real world actions take time and the agents can act concur-
rently. In this paper, we show how the robustness of a social
law in a continuous time setting can be verified through com-
pilation to temporal planning. We demonstrate our work both
theoretically and on real robots.

Introduction
One of the main challenges of designing systems with mul-
tiple autonomous agents is coordinating between all agents
acting in a shared environment. Each agent has a goal and
a set of actions it can perform and when the agent acts
it’s actions can affect other agents. Thus, without coordi-
nation, agents must come up with a contingent plan, which
must consider all possible actions of all other agents. This
can be solved using non-deterministic planning (Muise et al.
2016), which unfortunately does not scale very well. There
are also no examples of non-deterministic planners in con-
tinuous time settings, the settings we consider in this paper.

There are several methods to achieve coordination. One,
for example, is to establish a centralized controller, which
controls all agents, ensuring that each achieves its goal.
However, this method fails to scale well for a large num-
ber of agents. A different method is to apply some restric-
tions on the agents’ actions. These restrictions are designed
to make the agents mutually compatible. The union of these
restrictions is called a “social law”, and a system that is
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obliged to follow this law is called an “artificial social sys-
tem” (Tennenholtz 1991; Shoham and Tennenholtz 1992a;
1992b; 1995; Moses and Tennenholtz 1995). In previous
work (Karpas, Shleyfman, and Tennenholtz 2017), a so-
cial law is called robust if it guarantees that each agent can
choose any plan it wants to achieve its goal, and the plans of
different agents will not interfere with each other. This work
took a first step towards reasoning about social laws using
automated planning, by describing a formalism to represent
social laws and a criteria for social law robustness, as well
as an algorithm to verify whether a given social law is robust
by compilation to classical planning.

It is important to note however, that this work assumed
that actions are instantaneous, and that some external sched-
uler chooses which agent acts next, and thus is not applica-
ble to real multi-robot systems where actions take time and
robots can act concurrently. In fact, assuming that only one
single robot acts at any given moment requires a centralized
controller, which defeats the purpose of social law.

In this paper, we address a more realistic setting, where
actions have durations, and agents can act concurrently. We
assume the plan of each agent is a sequence of actions. The
result of agents acting together is a schedule. The contribu-
tions of this paper are threefold: First, we describe a new
notion of robustness of social laws in a continuous time set-
ting where agents act concurrently. Second, we describe a
compilation to temporal planning, which can verify whether
a given social law is robust in such a setting. Finally, we pro-
vide an empirical evaluation which demonstrates our com-
pilation on a real multi-robot system as well as on several
PDDL 2.1 domains.

Preliminaries
We define a temporal multi-agent planning setting, which
is built around a combination of MA-STRIPS (Brafman and
Domshlak 2008) and PDDL 2.1 (Fox and Long 2003). As
in previous work on social laws (Karpas, Shleyfman, and
Tennenholtz 2017), this is different than traditional multi-
agent planning in that each agent has its own goal, and we
assume that each agent can achieve its goal alone, that is,
cooperation is not needed. Moreover, we assume that an
agent is capable of performing only one action at a time.
Formally, a temporal multi-agent planning setting is a tuple
Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, where: F is the set of facts
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used to describe the world, Ai is the set of actions of agent
i (for i = 1 . . . n), I ⊆ F is the initial state and Gi ⊆ F is
the goal of agent i.

Unlike previous work (Karpas, Shleyfman, and Tennen-
holtz 2017), we allow durative actions (Fox and Long 2003)
and consider that agents can execute actions concurrently,
A durative action a is described by its minimum and max-
imum duration dmin(a) and dmax(a), its start condition
conds(a) ⊆ F , its invariant condition condi(a) ⊆ F , and
its end condition conde(a) ⊆ F , as well as its start effect
effs(a) and its end effect effe(a) which are both divided
into add effects (adds(a) ⊆ F and adde(a) ⊆ F , respec-
tively) and delete effects (dels(a) ⊆ F and dele(a) ⊆ F ,
respectively).

A solution to a temporal multi-agent setting is a sched-
ule τ which consists of a set of triples 〈a, t, d〉 where a
is an action, t ∈ R0+ is the time the action starts, and
d ∈ [dmin(a), dmax(a)] is the duration of the action. Ba-
sically, a schedule is valid if it respects all action conditions
and achieves all the agents’ goals in the end state. For ac-
tion conditions, we require that conds(a) holds at time t,
conde(a) holds at time t + d and that condi(a) holds from
t + ε until t + d continuously. Finally, we require that Gi

is satisfied by the state which the schedule reaches after all
actions have been completed, for all agents i.

Social law l is based on the restrictions it applies to the
agents’ actions. Thus, it seems that it can be formally de-
scribed only by the modifications it applies to each action
a ∈ ∪{Ai}ni=1. It turns out this is not the case, some re-
strictions require more complex conditions that cannot be
described with the original facts set F . Other restrictions
are based on a wait-for mechanism which requires an agent
to wait for a certain condition f ∈ F to hold before it
performs an action a. Therefore, social law l is described
by the following: (a) The modifications it applies to the
agents’ actions. (b) The modifications it applies to the facts,
the initial state or the goals. (c) it’s annotations of certain
f ∈ conds(a) as a wait-for precondition. We denote the
wait-for conditions of action a by condws (a), and the other
start conditions by condfs (a). We assume these modifica-
tions make sense and do not make the problem meaning-
less (e.g., by changing the goal to an empty set). Flagging
f ∈ conds(a) as a wait-for precondition requires a more
in-depth discussion which will take place in the following
section.

Waiting in Temporal Social Laws
An agent is waiting for certain facts f ∈ condws (a) if it
avoids performing a by being inactive until these facts hold.
For example, consider two agents moving in a grid. If an
agent tries to enter an occupied position it will certainly fail,
The agent can avoid such a failure by waiting for the position
to be vacated before it tries to enter. To implement this a
social law can flag certain facts f ∈ conds(a) as a wait-for
precondition and thus, an agent who respects the social law
will not perform a until f holds.

One might also consider annotating also some end con-
ditions as wait-for simply by flagging some f ∈ conde(a)
as a wait-for precondition. However, if we annotate an end

condition of some action as wait-for, the action’s duration
becomes uncontrollable. This makes planning much more
complicated and requires us to choose which notions of
controllability make sense: strong controllability (Vidal and
Fargier 1999), dynamic controllability (Morris 2006), or
some hybrid between them. Thus, in this paper we only con-
sider the case where an agent can wait to start an action, and
reserve handling waiting for end conditions for future work.

Although, waiting is effective in terms of preventing cer-
tain types of failures, but it is also possible for it to lead to
a deadlock. We will declare deadlock when there is an agent
who waits for a certain f ∈ conds(a) and it is guaranteed
that f will never hold and thus, this agent will wait forever.

We now describe what is a robust social law in the tempo-
ral setting we propose.

Properties Of Temporal Social Laws
A robust social law enables coordination by ensuring each
agent i is safe from any interference by his fellow agents,
as long as all agents pursue their own goal and follow this
law. Of course, to design an automatic robustness verifica-
tion tool we need more formal descriptions about the possi-
ble interference and how exactly agents pursue their goal.

First, we define the projection of a multi-agent temporal
planning setting Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 for agent i
as the temporal planning problem Πi = 〈F,Ai, I, Gi〉. To
achieve Gi each agent comes up with an individual sequen-
tial plan πi = {〈aj , dj〉}kj=1, where aj ∈ Ai is an action
and dj ∈ [durmin(aj), dur

max(aj)] is its duration, the in-
dex j = 1, 2, ..., k denotes the actions execution order. We
now define what is a possible schedule for a individual se-
quential plan.

Definition 1. τ is a possible schedule for a individual se-
quential plan πi, that is τ = 〈τ1, τ1, ..., τk〉 so that τj =
〈aj , tj , dj〉 if the following conditions hold: (a) all wait-for
conditions of an action aj ∈ τj are met at time tj and, (b)
the sequential nature of πi is kept, meaning ti+1 > ti + di
for all i = 1...(j − 1).

In a possible joint schedule, which describes what might
actually happen in a multi agent system, we assume that: (a)
All agents respect the social law and its wait-for conditions.
(b) There are no two conflicting instantaneous happenings
(start or end effects of an action). Note that although in-
stantaneous happenings are theoretically possible, we argue
that this requires perfect synchronization between different
agents, which is not feasible. (c) When different agents are
waiting for some common fact f which is achieved at a cer-
tain time, the decision about which one starts first is arbi-
trary, and thus, treated as adversarial.

Definition 2. Given a set of individual sequential plans for
the agents {πi}ni=1, τu is a possible joint schedule iff τu =
〈τ1, τ2, ..., τku〉, so that τj ∈ τu is τj = 〈aj , tj , dj〉 and the
following conditions apply. (a) the projection of τu on an
agent i is an individual possible schedule. (b) all wait-for
conditions of any action aj ∈ τj are met at time tj . (c) there
are no {j, k} such that tj = tk or tj = tk + dk.
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The main reason we allow agents to perform only one ac-
tion at a time is that concurrent actions might cause uncon-
trollable action durations which are very hard to handle.

Previous work (Karpas, Shleyfman, and Tennenholtz
2017) defines two notions of robustness: rational robustness,
which assumes each agent is rational and wants to achieve
its goal eventually, and adversarial robustness, which as-
sumes all other agents want to interfere and do not care about
achieving their goal. It was also shown that verifying ratio-
nal robustness is the more general case, and thus in this paper
we only focus on rational robustness. We now define rational
robustness, with the necessary modifications:

Definition 3. A social law l in temporal multi-agent setting
Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 is robust to rational iff for
all agents i = 1 . . . n, for all possible solutions πi to Πi,
for any possible joint schedule τu consisting of {πi}ni=1, the
state after executing τu satisfies G1 ∪ . . . ∪Gn.

Verifying Rational Robustness
With a definition of rational robustness in hand, we now de-
scribe an algorithm that verifies if a social law l in a given
multi-agent temporal planning problem Πl is rationally ro-
bust. The algorithm we present is based on a compilation to
temporal planning. Specifically, the input to our algorithm
is Πl, a temporal multi-agent planning problem with a cer-
tain social law that is already encoded in it. Our compilation
creates a temporal planning problem Π′ such that Π′ is un-
solvable iff Πl is robust to rational.

We construct Π′ = 〈F ′, V ′, A′, I ′, G′〉 such that any so-
lution to Π′ will be composed of individual plans πi for each
agent i, as well as a joint schedule for these individual plans,
such that πi solves the projection of Πl on agent i alone, but
the joint schedule fails.

The possible causes for the joint schedule failing are: (a)
FAILURE: An agent executed action a without meeting one
of its conditions (either start, end, or invariant). (b) DEAD-
LOCK: An agent is waiting forever for a fact f . (c) GOAL
NOT ACHIEVED: Agent i did not achieve its goal at the end
of the joint schedule.

We begin with a high-level description of Π′. Π′ keeps
track of the state of the world for each agent i had it been
acting alone, and of the global state of the world in which
all agents act together. Thus, for each fact f ∈ F , we create
n + 1 facts in Π′: fi (for i = 1 . . . n) which describes the
value of f had agent i been acting alone, and fg which keeps
track of the value of f in the joint schedule. The goal of the
compilation is to achieve the fact failure which indicates
that the joint schedule failed.

For each action a we create multiple copies, correspond-
ing to several possible outcomes. We have one successful
version of a and one version of a to flag the deadlock situ-
ation. Other copies of a deal with the following outcomes:
(a) a fails to meet its start condition. (b) a fails to meet its
invariant condition immediately after it starts. (c) a fails to
meet its end condition. (d) a deletes the invariant condition
of a currently executing action when it starts. (e) a deletes
the invariant condition of a currently executing action when
it ends. The duration of a, that is dur(a) remains the same

in all actions’ copies.
While handling most of these outcomes can be achieved

in a similar manner to the previous work (Karpas, Shleyf-
man, and Tennenholtz 2017), a few require extra insights
which are only relevant to the continuous time setting. First,
the invariant condition of action condi(a) could be violated
by some other action a′. Therefore, we check if there is
an agent that can violate an invariant condition of some
other agent’s current action. If that is the case, we achieve
failure. An important point here is that in order to keep
track of how many actions with invariant condition f are
currently being executed we use a numerical variable invf .

Additionally, this compilation differs from the previous
work (Karpas, Shleyfman, and Tennenholtz 2017) in the way
it handles waiting. As mentioned, we assume the agents act
without any scheduler. Moreover, we assume that a wait-
ing agent will act as soon as his wait-for condition holds.
Therefore, before our compilation declares that an agent that
wants to execute action a with wait-for condition f will wait
forever it needs to ensure that f will never hold. In the pre-
vious work (Karpas, Shleyfman, and Tennenholtz 2017), the
assumption that there is an adversarial external scheduler
who controls the agents made exploiting the possibility of
a deadlock fairly easy — once an agent started waiting it
could be made to wait until all other agents have finished
acting. This allowed other agents to achieve f as long as
they deleted f before the end. In the following subsections
we define the compilation formally.

Facts, Initial State and Goal State
We begin our formal description of the compilation by list-
ing its set of facts, F ′. First, as mentioned above, for each
fact f ∈ F , F ′ contains fg , a copy of f for keeping track
of the global state of the world, as well as fi for each agent
i, a copy of f for keeping track of the state of the world
assuming agent i acts alone. Furthermore, the compilation
indicates a deadlock in which agent i waits for fact f for-
ever with the fact wtf,i. The compilation also include the
fact waitingi, which indicates agent i is waiting forever
for some fact to become true. Additionally, for each agent
i the fact fini indicates whether agent i finished executing
its plan. The proposition act is used to indicate that agents
are free to act. It is initially true, and becomes false once the
agents finish executing “real” actions, allowing only “book-
keeping” actions to be executed. Finally, failure indicates
there was some kind of failure, and thus the social law is not
robust, and is part of the goal.

As mentioned above, we also need the numeric variable
invf , which counts the number of currently executing ac-
tions that have f as an invariant condition, for each fact f .
We remark that n is an upper bound on the number of con-
currently executing actions, and thus it is possible to replace
invf with a set of n propositions. However, in our imple-
mentation we used a numerical variable, as the planner we
used supports them.

The goal of the compilation is to find individual plans
which work alone, and thus fini is part of the goal for each
agent i. As we will describe later, fini is achieved by two
possible endi actions, which have Gi as a precondition and
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fini as an effect, thus ensuring each agent achieves its goal.
Additionally, we want the joint schedule to fail, and thus
failure is also part of the goal.

Finally, we describe the initial state of the compilation,
I ′. First, each fact f is initialized with its value in I for all
of its copies (fi for all agents i and fg). Additionally, act
is initially true, enabling agents to execute “real” actions.
Finally, we initialize invf to be 0.

F
′
= {failure, act} ∪ {f1...fn|f ∈ F} ∪ {fg|f ∈ F}∪

{wtf,i|f ∈ F, i = 1...n} ∪ {fini|i = 1...n} ∪ {waiting
i|i = 1...n}

V
′
= {invf |f ∈ F}

G
′
= {failure} ∪ {fini|i = 1...n}

I
′
= {act} ∪ {fi|f ∈ I, i = 1...n} ∪ {fg|f ∈ I} ∪ {invf = 0|f ∈ F}

Actions
We now turn our attention to describing the actions in the
compilation, beginning with the success version of action a,
denoted as. This version of a is only applicable when: (a)
Both fi and fg satisfy all conditions of a (start, invariant,
and end); (b) a does not delete any fact f that is an invariant
of an action which is currently executing (this is checked
both at start and at end); and (c) If f ∈ addstart ∪ addend
then no other agent is waiting for f forever (wtf,j).

The effects of this version of the action affect both the lo-
cal copy fi and the global copy fg of each affected fact f .
In order to ensure no other agent deletes the invariant condi-
tions of a, we also increase invf for each f ∈ condi(asi ).

conds(a
s
i ) = act ∧ (∧

f∈cond
f
s (a)

(fi ∧ fg))∧(
∧f∈condws (a)(fi ∧ fg)

)
∧ (invf = 0|f ∈ dels(a))∧

(¬wtf,i|f ∈ adds(a), i = 1...k) ∧ (¬waitingi)

condi(a
s
i ) = act ∧

(
∧f∈condi(a)(fi ∧ fg)

)
∧

(¬wtf,i|f ∈ adde(a), i = 1...k)

conde(a
s
i ) = act ∧

(
∧f∈conde(a)(fi ∧ fg)

)
∧

(invf = 0|f ∈ dele(a)) ∧ (¬wtf,i|f ∈ adde(a), i = 1...k)

adds(a
s
i ) = {fi, fg|f ∈ adds(a)}

dels(a
s
i ) = {fi, fg|f ∈ dels(a)}

nums(a
s
i ) = {increase(invf , 1)|f ∈ condi(a)}

adde(a
s
i ) = {fi, fg|f ∈ adde(a)}

dele(a
s
i ) = {fi, fg|f ∈ dele(a)}∪

nume(a
s
i ) = {decrease(invf , 1)|f ∈ condi(a)}

Next, we describe the “simple” failure versions of each ac-
tion a: afstart, in which one of the non wait-for start con-
ditions does not hold when a starts, afinv , in which the in-
variant condition does not hold immediately after a starts,
and afendi , in which one of the end conditions does not hold
when a ends. To make sure the failure is a real one, the con-
ditions of these actions check that one of the (non-wait) con-
ditions indeed does not hold at the appropriate time (start or
end). To check whether the invariant condition does not hold
immediately after a starts, we consider only the facts in the
invariant conditions which are not achieved by the start ef-
fect. Finally, all of these actions affect fi as if a succeeded,
but only affect fg before the failure occurs. Additionally,

these actions achieve failure.
conds(a

fstart
i ) = act ∧

(
∧f∈condws (a)(fi ∧ fg)

)
∧

(∧
f∈cond

f
s (a)

(fi)) ∧ (∨
f∈cond

f
s (a)

(¬fg)) ∧ (¬waitingi)

condi(a
fstart
i ) = act ∧

(
∧f∈condi(a)(fi)

)
conde(a

fstart
i ) = act ∧

(
∧f∈conde(a)(fi)

)
adds(a

fstart
i ) = {failure} ∪ {fi|f ∈ adds(a)}

dels(a
fstart
i ) = {fi|f ∈ dels(a)}

adde(a
fstart
i ) = {fi|f ∈ adde(a)}

dele(a
fstart
i ) = {fi|f ∈ dele(a)}

conds(a
finv
i ) = act ∧

(
∧

f∈cond
f
s (a)

(fi ∧ fg)
)
∧(

∧f∈condws (a)(fi ∧ fg)
)
∧

(
∨f∈condi(a)\adds(a)(¬fg)

)
(invf = 0|f ∈ dels(a))∧

(¬wtf,i|f ∈ adds(a), i = 1...k) ∧ (¬waitingi)

condi(a
finv
i ) = act ∧

(
∧f∈condi(a)(fi)

)
conde(a

finv
i ) = act ∧

(
∧f∈conde(a)(fi)

)
adds(a

finv
i ) = {fi, fg|f ∈ adds(a)} ∪ {failure}

dels(a
finv
i ) = {fi, fg|f ∈ dels(a)}

adde(a
finv
i ) = {fi|f ∈ adde(a)}

dele(a
finv
i ) = {fi|f ∈ dele(a)}

conds(a
fend
i ) = conds(a

s
)

condi(a
fend
i ) = act ∧

(
∧f∈condi(a)(fi ∧ fg)

)
∧

(¬wtf,i|f ∈ adde(a), i = 1...k)

conde(a
fend
i ) = act ∧

(
∧f∈conde(a)(fi)

)
∧(

∨f∈conde(a)(¬fg)
)

adds(a
fend
i ) = {fi, fg|f ∈ adds(a)}

dels(a
fend
i ) = {fi, fg|f ∈ dels(a)}

nums(a
fend
i ) = {increase(invf , 1)|f ∈ condi(a)}

adde(a
fend
i ) = {failure} ∪ {fi|f ∈ adde(a)}

dele(a
fend
i ) = {fi|f ∈ dele(a)}

We now address the case where an action deletes an in-
variant condition of a currently executing action. a

finvstart
x

i

is a version of a which deletes x at the start, and a
finvend

x
i is

a version of a which deletes x at the end. Both check that
another action with invariant condition x is executing when
x is deleted, using the condition invx > 0. These actions
achieve failure, affect fi as if they succeeded, and affect
fg normally until the moment of failure.

conds(a
finvstart

x
i ) = act ∧

(
∧

f∈cond
f
s (a)

(fi ∧ fg)
)

(
∧f∈condws (a)(fi ∧ fg)

)
∧

(
∨x∈dels(a)invx > 0

)
(¬waitingi)

condi(a
finvstart

x
i ) = act ∧

(
∧f∈condi(a)(fi)

)
conde(a

finvstart
x

i ) = act ∧
(
∧f∈conde(a)(fi)

)
adds(a

finvstart
x

i ) = {failure} ∪ {fi|f ∈ adds(a)}

dels(a
finvstart

x
i ) = {fi|f ∈ dels(a)}

adde(a
finvstart

x
i ) = {fi|f ∈ adde(a)}

dele(a
finvstart

x
i ) = {fi|f ∈ dele(a)}
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conds(a
finvend

x
i ) = conds(a

s
)

condi(a
finvend

x
i ) = act ∧

(
∧f∈condi(a)(fi ∧ fg)

)
∧

(¬wtf,i|f ∈ adde(a), i = 1...n)

conde(a
finvend

x
i ) = act ∧

(
∧f∈conde(a)(fi ∧ fg)

)
∧(

∨x∈dele(a)invx > 0
)

adds(a
finvend

x
i ) = {fi, fg|f ∈ adds(a)}

dels(a
finvend

x
i ) = {fi, fg|f ∈ dels(a)}

nums(a
finvend

x
i ) = {increase(invf , 1)|f ∈ condi(a)}

To conclude the versions of the “real” actions, we describe
the deadlock version of a, aw,x

i , which is used to indicate
that agent i will wait for a certain wait-for condition x for-
ever. This version of a adds wti,x at the start, which forces
all other agents to not achieve xg without failing before xg is
achieved. This is done by including ¬wtx,i in the conditions
of all events (start or end) of all other actions that would have
achieved xg otherwise. Other than that, aw,x

i affects fi nor-
mally, and does not affect fg at all (as a will not be executed
in the “real world”), and achieves failure.

conds(a
w,x
i ) = act ∧

(
∧f∈condws (a)(fi)

)
∧

(
∧

f∈cond
f
s (a)

(fi)
)

∧
(
¬xg|x ∈ cond

w
s (a)

)
∧ (¬waitingi)

condi(a
w,x
i ) = act ∧

(
∧f∈condi(a)(fi)

)
conde(a

w,x
i ) = act ∧

(
∧f∈conde(a)(fi)

)
adds(a

w,x
i ) = {failure, wtx,i, waiting

i} ∪ {fi|f ∈ adds(a)}

dels(a
w,x
i ) = {fi|f ∈ dels(a)}

adde(a
w,x
i ) = {fi|f ∈ adde(a)}

dele(a
w,x
i ) = {fi|f ∈ dele(a)}

To allow an agent that is waiting forever to complete its
local plan, we also include awaiting

i , which is a version of
a that can only be applied if agent i is waiting forever (as
indicated by waitingi), and only checks and affects the lo-
cal copy of the state, in the fi facts. In order to make sure
waiting agents do not execute any actions that affect the
global state, all other “real” actions have a start condition
that waitingi is false.

conds(a
waiting
i ) = act ∧

(
∧f∈conds(a)(fi)

)
∧

(
waiting

i
)

condi(a
waiting
i ) = act ∧

(
∧f∈condi(a)(fi)

)
conde(a

waiting
i ) = act ∧

(
∧f∈conde(a)(fi)

)
adds(a

waiting
i ) = {fi|f ∈ adds(a)}

dels(a
waiting
i ) = {fi|f ∈ dels(a)}

adde(a
waiting
i ) = {fi|f ∈ adde(a)}

dele(a
waiting
i ) = {fi|f ∈ dele(a)}

Finally, we describe the endi actions, which are non-
durative actions used for book-keeping. For each agent i,
we have two versions of the action endsi which corresponds
to the agent achieving its goal in the real world, and endfi
which corresponds to the agent failing to achieve its goal
in the real world. Both of these actions have the agent’s
goal,Gi as a precondition in fi, and the success version also
checks if Gi holds in fg . These actions are used to ensure
that once an agent achieves its goal, it will not be deleted by
another agent. Thus, the endi actions also delete act, which

allows only endi actions to be executed afterwards.

pre(end
s
i ) = ¬fini ∧

(
∧f∈Gi

fi
)
∧

(
∧f∈Gi

fg
)

add(end
s
i ) = {fini}

del(end
s
i ) = {act}

pre(end
f
i ) = ¬fini ∧

(
∧f∈Gi

fi
)
∧

(
∨f∈Gi

¬fg
)

add(end
f
i ) = {fini} ∧ {failure}

del(end
f
i ) = {act}

It is easy to see that the compilation is a polynomial size
blow-up and can be constructed in polynomial time. In fact,
the process of compiling a domain is very fast. The proof of
correctness of this compilation follows the structure of the
compilation very closely.

Compilation Correctness
The algorithm we presented can compile the verification of
robustness decision problem of Π, into a temporal planning
problem Π′. Specifically, if Π is a multi-agent temporal plan-
ning problem with social law l; Πi is the projection of Π on
agent i; Πi is solvable for any agent i = 1 . . . n and Π′ is the
compilation of Π. Then we argue that Π′ is not solvable iff
Π consists a robust social law.

As a first step we will show that if Π is robust then Π′ is
not solvable. The main steps in favor of this proof will be:
(1) Let Π be robust and assume that Π′ is solvable so that
π′ is its solution and τ ′ is a possible schedule for π′. (2) We
will show that it is possible to: (2a) Split τ ′ into individual
schedules τ ′i for every agent i. (2b) Reduce τ ′i to τi , an indi-
vidual possible schedule to Πi for agent i. (3) We will show
that the joint schedule τu that is made out from {τi}ni=1 is an
illegal schedule and as such it will not satisfy G1 ∪ ... ∪Gn

making Π not robust. (4) However, Π is robust and therefore
we conclude that π′ does not exist, so the problem Π′ is not
solvable. Sections (1 - 2a) are trivial. To split τ ′ in the way
described in (2a) one can simply pick the triplets that has
attribution to agent i out of τ ′ and then construct τi. Let us
proceed by proving (2b).

Theorem 1. Assume, Π is a multi-agent temporal planning
problem, solvable for all agents i; Π′ is compiled from Π; τ ′
is a possible schedule for Π′ and τ ′i is a possible schedule for
Π′

i Then, τ ′i can be reduced to τi that is a possible individual
schedule to Πi.

Proof. Let τ ′ = {τ ′1, τ ′2 . . . τ ′k} be a solution to Π′ =
{F ′, A′, I ′, G′}. Every triples τ ′j = 〈a′j , t′j , d′j〉 in τ ′ has a
certain attribution to some agent i. Let us denote the projec-
tion of Π′ on {fi|f ∈ F} ∪ {fini} by Π′

i . Notice that: (1)
Since Π′

i is an abstraction of Π′ any τ ′, a possible schedule
for Π′, is also a possible schedule for Π′

i; (2) Π′
i is only a

simple extension of Πi differing as follows: (2a) The goal of
Π′

i is fini , the goal of Πi is {f ∈ Gi}; (2b) There is an
additional action in Π′

i , endi ∈ A′
i . This action achieves

fini (every other action is degenerated to the simple origi-
nal action ai ∈ Ai); (3) The action endi ∈ A′

i preconditions
are

∧
f∈Gi

fi and (4) The only actions that modifies fi are
made by agent i. So, basically if τ ′ is a possible schedule to
Π′ then: τ ′i is a possible schedule for Π′

i and τi , a reduction
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of τ ′i (without the end actions ), is an individual possible
schedule to Πi.

Now we can prove that the joint schedule τu that is made
out of {τi}ni=1 is an illegal joint schedule making Π not ro-
bust to rational.

Theorem 2. Assume, τ ′ is a possible schedule for Π′ and
τi , a reduction of τ ′, is a possible schedule to Πi, then the
schedule τu that is made out of {τi}ni=1 is an illegal joint
schedule for Π.

Proof. let us define A′
failure as a set of all actions a′ ∈ A′,

so that failure ∈ addstart(a′) ∪ addend(a′).
Easy to see that there is at least one action a′ ∈ A′

failure

in τ ′. This is because failure ∈ G′. Let us denote the non-
success action with the earliest failed happening as a′nsi and
assume this action was committed by agent i.

We have already shown that we can construct τi out of
τ ′i and hence if τ ′ is a possible schedule to Π′ then there is
τu a joint schedule made out of {τi}ni=1 , where every τi
is a possible schedule for Πi. τu contains at least one non-
success action.

Consider ansi , if it is originates from: (a) afstarti then τu
gives us a schedule where agent i does not respect the start
conditions of action ai; (b) afendi then τu gives us a schedule
where agent i does not respect the end conditions of action
ai; (c) afinvi then τu gives us a schedule where agent i does
not respect the overall conditions of action ai; (d) afinv

x
start

i
then τu gives us a schedule where agent i deletes a fact x
at start while another agent’s action marked this fact as an
invariant fact; (e) afinv

x
end

i then τu gives us a schedule where
agent i deletes a fact x at end while another agent’s action
marked this fact as an invariant fact; (f) aw,x

i then τu gives
us a schedule where agent i is in a deadlock state. In this
state this agent waits for a certain x ∈ prestartw (a) before
performing action a. We can guarantee it will keep waiting
because we do not allow any agent to modify x as soon as
wtx,i is raised; (g) endfi then τu gives us a schedule where
agent i do not meet its goal. All of the above will result in
an illegal joint schedule.

We are now ready to prove our main theorem regarding
the connection between the our compilation and the social
law robustness verification decision problem.

Theorem 3. Assume, Π is a multi-agent planning problem,
which is solvable for every agent i = 1 . . . n. Then Π′ is not
solvable iff Π is robust.

Proof. Let Π be robust and assume that Π′ is solvable. We
denote τ ′ as a possible schedule for Π′. According to The-
orem 1, it is possible to create a joint schedule τu out of τ ′
so that τu is made out of individual possible schedules τi for
Πi. According to Theorem 2 τu is an illegal joint schedule as
opposed to the definition of social law robustness, therefore
τ ′ does not exist, making Π′ not solvable.

Now, Let Π′ be unsolvable. Let τi be any possible sched-
ule for Πi. Let τu be the joint schedule made out of {τi}ni=1.
We argue that: (a) All actions in τu respect all conditions

of any action ai; (b) There is no action in τu that deletes a
fact that is invariant by another action; (c) There is no agent
in a deadlock state; (d) All agents can reach their goals by
performing τu. As otherwise Π′ would be solvable (by cre-
ating τ ′ out of τu with the appropriate π′

actions and adding
π′
end actions). If the above is correct then: for all agents, for

all individual solutions πi to Πi, for all joint schedule τu,
τu achieves {Gi}ni=1 and therefore the social law l in Π is
robust to rational.

Empirical Evaluation
In order to empirically evaluate our compilation, we imple-
mented it in Python. Our compilation takes a PDDL 2.1 plan-
ning problem, as well as definitions of who the agents are,
which goal fact is assigned to which agent, and which start
conditions are wait-for conditions. It then generates a tem-
poral planning problem in PDDL 2.1. To solve the gener-
ated problems, we used the OPTIC planner (Benton, Coles,
and Coles 2012) with the CLP solver, because it was one
of the only temporal planners to support required concur-
rency (Cushing et al. 2007), which is necessary to find con-
flicts involving one agent action interefering with another’s
invariant condition. We used a single Intel i7-7700K core on
a computer with 32GB of RAM, and with a time limit of
30 minutes. We evaluated our compilation on one real world
multi robot system and on 5 virtual PDDL domains: 3 IPC
benchmark domains and 2 new domains 1 which illustrate
interesting aspects of the compilation. For each domain, we
evaluate the compilation with an empty social law, which
allows all actions, and with a robust social law. When pos-
sible, we also evaluate with a non-trivial social law which is
not robust.

Real World Multi Robot System
We have created a simple multi agent system consisting of
2 robots that move around on a grid. Each square is clas-
sified as either dirty or clean. The robots can either clean
the square in which they are located or move to one of its
neighboring squares. Once a robot enters a “clean” square,
the square becomes dirty. The goal of each robot is to clean
its set of squares.

The first possible conflict was found by our compilation in
less than 3 seconds. This conflict was caused by one Turtle-
bot trying to enter an occupied square. In order to prevent
this and make the Turtlebot wait for a square to be vacated
we added a wait-for start condition to the move-to action.
Then, the compilation found an additional form of failure
in less than one second. This conflict was a deadlock situa-
tion where each Turtlebot is waiting for the other to vacate
its current location. To deal with this conflict we divided the
area into two disjoint territories, and assigned each territory
to one of the Turtlebots. Each Turtlebot was only allowed
to enter its own territory. Then, although we suspected that
we had formulated a robust social law, OPTIC was not able
to prove unsolvability within the time limit. Finally,we im-

1These new domains are available at https://tinyurl.com/
y8cbgqbn
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plemented 2 this domain on real Turtlebots using ROSPLAN
(Cashmore et al. 2015).

New Domains
Intersection Domain The intersection domain describes a
four-way intersection, which cars can cross in all four car-
dinal directions. Cars crossing from north to south do not
interfere with cars crossing from south to north, but can col-
lide with cars crossing from east to west or vice versa.

This domain is modeled using eight possible locations for
each car: for each lane, there is a location before crossing
the intersection and another after crossing the intersection.
We use a durative action to describe crossing the intersec-
tion, with an invariant condition which ensures no interfer-
ing cars cross while the action is executing. Specifically, the
drive(dir1, dir2) action (where dir1 and dir2 are directions)
adds a proposition that indicates that a car is crossing the in-
tersection in this direction, and deletes it at the end. It also
has an invariant condition that no cars are crossing in the
orthogonal direction.

Running our compilation on an instance of this domain
with 4 cars, one in each direction, results in a failure, as cars
collide with each other. We then added a wait-for start con-
dition similar to the above invariant condition, resulting in a
robust social law. In this case OPTIC was able to verify that
this social law is robust within less than a second.

Drink Domain In this domain there are two agents, who
are both thirsty at the beginning. There is a single cup on the
table, and to quench their thirst they need to take the cup off
the table, fill it and drink. Running our compilation on this
problem with an empty social law finds an easy failure, as
they both try to grab the cup at the same time, and one fails.

Marking the fact that the cup is on the table as a wait-for
condition also results in a failure, this time a deadlock, as the
first agent taking the cup does not have to return the cup to
the table. To fix this, we added a goal to each agent stating
that the cup must be on the table. Surprisingly, this is still
not robust, as the first agent to take the cup can fill it, drink,
and then fill it again — causing the fill action of the second
agent to fail. Finally, adding another start condition to the
action that returns the cup to the table, stating that the cup
must be returned empty, yields a robust social law.

OPTIC was able to find counter examples for the non-
robust social laws quickly (less than 0.15 seconds). How-
ever, it was not able to prove that the compilation of the
robust social law is unsolvable. This is possibly due to the
presence of reversible actions, which means there are in-
finitely long possible plans.

IPC Benchmarks
To conclude our empirical evaluation, and show the scala-
bility of our compilation, we also used IPC Benchmark do-
mains. We adapted each domain to our multi-agent setting
by deciding who the agents were and assigning goal facts

2A video illustrating both robots acting concurrently is avail-
able at https://youtu.be/oETH6wK9CwE

(from the original goal) to each agent. We remark that as-
signing each goal fact to one agent tends to improve heuris-
tic guidance. We used 3 domains: DRIVERLOG (IPC 2002),
ZENOTRAVEL (IPC 2002), and FLOORTILE (IPC 2008), and
formulated a social law for each of them.

DRIVERLOG is a logistics problem involving drivers that
can walk or drive trucks, and packages which can be loaded
or unloaded. In order to turn this problem into a multi-agent
one, the drivers were treated as the agents, and LOAD and
UNLOAD actions were assigned to drivers, also adding the
condition that the driver had to be present at the location. We
also assigned each goal fact to a driver randomly.

ZENOTRAVEL is also a logistics problem, involving planes
that fly or zoom between locations and pickup or drop off
passengers, consuming fuel. Planes can also refuel. In this
case, the agents were the planes, and each goal fact was ran-
domly assigned to a plane.

FLOORTILE involves multiple robots moving around on a
grid, painting tiles. In this case, each robot is an agent. Ran-
domly assigning each goal fact (a specific tile painted a spe-
cific goal) to agents does not work, as this yielded unsolv-
able problems. Therefore we divided the floor into contigu-
ous sections, and assigned each section to a specific robot,
ensuring that each robot is able to achieve its goal individ-
ually, also leaving two rows of tiles unpainted. We also up-
dated all action durations to one time unit, to allow OPTIC to
solve more problems.

For each of the 20 instances in these 3 domains3, we first
ran OPTIC to solve the centralized planning problem. The
solution time for each solved instance (within the given time
and memory limits) is reported in Table 1, and serves as a
baseline for comparison. We then ran our compilation with
the empty social law and report (a) The time it took for OP-
TIC to solve the compiled instances and by that to prove
that this social law is not robust. (b) The total number of
instances that were solved. While the average solving time
did increase from the baseline, these results show that our
compilation alone does not introduce too much overhead.

We then formulated a social law for each domain. For
DRIVERLOG, we began by formulating a non-robust social
law, which assigned each truck to a specific driver, and pre-
vented driver from interacting with trucks that were not as-
signed to them. This social law was not robust, because
drivers could “steal” packages of other drivers. The time it
took for OPTIC to solve these compiled instances is reported
in Table 1. We then proceeded to formulate a robust social
law, which also assigns each package to the driver for de-
livering it. OPTIC was unable to solve any of the robust in-
stances within the time limit but was also unable prove un-
solvability. For ZENOTRAVEL, we formulated a robust social
law which assigns each passenger to a plane, and restricts
planes from picking up passengers that were not assigned to
them. Again, OPTIC was unable to solve or prove unsolvabil-
ity for any instance within the time limit. Finally, for FLOOR-
TILE, we formulated a social law which assigns each tile to
a specific robot. Each goal tile was assigned to the robot re-

3The first two instances of FLOORTILE contained only a single
robot, so were excluded.
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DRIVERLOG ZENOTRAVEL FLOORTILE
NA CP EMPTY NR NA CP EMPTY NA CP EMPTY

1 2 0.01 (7) 0.07 (11) 0.07 (11) 1 NA NA 2 0.22 (38) 15.64 (48)
2 2 0.09 (21) 1.49 (35) TLE 1 NA NA 2 0.17 (35) 33.85 (50)
3 2 0.06 (17) 1.08 (45) 6.72 (30) 2 0.01 (6) 0.18 (16) 2 0.13 (36) 34.32 (46)
4 3 0.13 (23) 35.72 (45) 303.7 (36) 2 0.02 (17) 0.18 (17) 2 0.16 (27) 33.86 (47)
5 3 0.12 (20) 41.43 (37) 5.95 (50) 2 0.03 (17) 2.25 (35) 2 0.11 (35) 2.86 (43)
6 3 0.09 (14) 0.44 (24) 79.09 (30) 2 0.13 (20) 4.26 (27) 3 0.15 (36) 22.9 (39)
7 3 0.31 (23) 0.57 (43) 24.02 (27) 2 0.25 (24) 15.09 (27) 3 0.1 (35) 20.43 (46)
8 3 0.49 (29) TLE 545.9 (54) 3 0.27 (18) 6.37 (25) 3 0.17 (37) 28.96 (40)
9 2 0.25 (35) 52.77 (50) 84.68 (37) 3 0.86 (40) 55.76 (49) 3 0.17 (38) TLE

10 2 0.14 (39) 1.73 (50) 41.89 (53) 3 0.47 (37) 83.71 (53) 3 0.37 (38) 46.28 (42)
11 2 0.14 (54) 5.99 (52) 109.9 (55) 3 0.36 (28) 65.36 (28) 2 2.69 (71) TLE

12 2 4.63 (57) 79.79 (72) TLE 3 0.49 (41) 468.8 (47) 2 701.8 (65) TLE

13 3 6.47 (52) 1700.7 (77) TLE 3 423 (37) TLE 2 2.38 (67) TLE

14 3 6.4 (55) TLE TLE 5 TLE TLE 2 TLE TLE

15 4 4.2 (80) TLE TLE 5 215.9 (69) TLE 2 TLE TLE

17 5 TLE TLE TLE 5 468.6 (112) TLE 3 TLE TLE

SOL 15 12 10 13 10 13 9

Table 1: Planning Time on IPC Benchmarks and (Plan
Lengths) (CP= centralized planning, NR = non robust, TLE
= time limit exceeded, NA = number of agents)

sponsible for it. Each non-goal tile (the two unpainted rows),
was assigned in a way that ensures each robot can access the
tiles assigned to it. Here as well, OPTIC was not able to solve
or prove unsolvability for any instance within the time limit.

Conclusion
In this paper, we have described a technique for verifying
whether a social law is robust in a continuous time setting
in which agents act concurrently. Our technique is based
on a compilation to temporal planning, which attempts to
find a set of plans which work for each agent by itself, and
some schedule that combines them in a way that leads to
failure. Our empirical evaluation shows that our technique
scales fairly well when the social law is not robust. How-
ever, except for a single example in the intersection domain,
the temporal planner we used, OPTIC, was not able to prove
unsolvability. Thus, we claim that further work on proving
unsolvability for temporal planning would improve the use-
fulness of this technique. It is also important to note that
others have defined different notions of robustness in the
context of social laws. For example, a notion of robustness
relating to how many agents must obey the social law before
the multi-agent system fails was proposed (Ågotnes, van der
Hoek, and Wooldridge 2009). However, if a social law is ro-
bust according to our definition, and agents utility is defined
by whether they achieve their goal or not (ignoring costs),
then it is always in their best interest to obey.
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