
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

An Innovative Genetic Algorithm for the Quantum Circuit Compilation Problem

Riccardo Rasconi, Angelo Oddi
Institute of Cognitive Sciences and Technologies,
National Research Council of Italy (ISTC-CNR)

Rome, Italy
{riccardo.rasconi, angelo.oddi}@istc.cnr.it

Abstract

Quantum Computing represents the next big step towards
speed boost in computation, which promises major break-
throughs in several disciplines including Artificial Intelli-
gence. This paper investigates the performance of a ge-
netic algorithm to optimize the realization (compilation)
of nearest-neighbor compliant quantum circuits. Currrent
technological limitations (e.g., decoherence effect) impose
that the overall duration (makespan) of the quantum cir-
cuit realization be minimized, and therefore the makespan-
minimization problem of compiling quantum algorithms on
present or future quantum machines is dragging increasing
attention in the AI community. In our genetic algorithm, a so-
lution is built utilizing a novel chromosome encoding where
each gene controls the iterative selection of a quantum gate to
be inserted in the solution, over a lexicographic double-key
ranking returned by a heuristic function recently published in
the literature.
Our algorithm has been tested on a set of quantum circuit
benchmark instances of increasing sizes available from the
recent literature. We demonstrate that our genetic approach
obtains very encouraging results that outperform the solutions
obtained in previous research against the same benchmark,
succeeding in significantly improving the makespan values
for a great number of instances.

Introduction
Quantum Computing represents the next big step towards
speed boost in computation, which promises major break-
throughs in several disciplines including Artificial Intelli-
gence for the resolution of important problems, for exam-
ple the optimization of complex systems and drug discov-
ery. The impact of quantum computing technology on theo-
retical/applicative aspects of computation as well as on the
society in the next decades is considered to be immensely
beneficial (Nielsen and Chuang 2011). While classical com-
puting revolves around the execution of logical gates based
on two-valued bits, quantum computing uses quantum gates
that manipulate multi-valued bits (qubits) that can represent
as many logical states (qstates) as are the obtainable linear
combinations of a set of basis states (state superpositions).
A idealized quantum circuit is composed of a number of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

qubits and by a series of quantum gates that operate on those
qubits, and whose execution realizes a specific quantum al-
gorithm. Executing a quantum circuit entails the chrono-
logical evaluation of each gate and the modification of the
involved qstates according to the gate logic. Unfortunately,
real current quantum computing technologies like ion-traps,
quantum dots, super-conducting qubits, etc. limit the qubit
interaction distance to the extent of allowing the execu-
tion of gates between adjacent (i.e., nearest-neighbor) qubits
only (Cirac and Zoller 1995; Herrera-Martı́ et al. 2010;
Yao et al. 2013). This has opened the way to the exploration
of techniques and/or heuristics aimed at the compilation of
ideal circuits to real quantum hardware through the synthe-
sis of additional gates that bring the qstates involved in a
gate to satisfying nearest-neighborhood compliance (Quan-
tum Circuit Compilation Problem - QCCP). In addition, the
Achilles’ heel of quantum computational hardware is the
problem of decoherence, which degrades the performance
of quantum programs over time. In order to minimize the
negative effects of decoherence and guarantee more stabil-
ity to the computation, it is therefore essential to produce
circuits whose overall duration (i.e., makespan) is minimal.

The field of applying evolutionary algorithms to quantum
computing follows two major directions: designing quantum
inspired evolutionary algorithms (da Silveira, Tanscheit, and
Vellasco 2017; Talbi and Draa 2017) and designing quan-
tum computers by means of evolutionary algorithms. Specif-
ically, while the research in quantum circuit design focuses
mainly on using genetic algorithm (or genetic programming)
for automatically discovering or synthesizing quantum al-
gorithms given a desired output function (Mukherjee et al.
2009; Ruican et al. 2007), to the best of our knowledge
there are no examples of genetic algorithms used to tackle
the problem of compiling idealized quantum circuits to real
quantum machines focusing on swap insertions.

In this work, we investigate the performance of a ge-
netic algorithm (GA) applied to the problem of compiling
quantum circuits to near-term quantum hardware. Experi-
menting on a set of benchmark instances of different size
belonging to the Quantum Approximate Optimization Algo-
rithm (QAOA) class (Farhi, Goldstone, and Gutmann 2014;
Guerreschi and Park 2017) tailored for the MaxCut problem
and devised to be executed on top of a hardware architecture
proposed by Rigetti Computing Inc. (Sete, Zeng, and Rigetti

7707

(a) N = 8

(b) N = 21

(c) N = 40

1 32

4 5

6 7 8

1 32 4 5

6 7 8

9
10 11 12 13

14 15 16

17 18 19 20 21

1 32 4 5 6 7

8

12

19

23

30

34 35 36 37 38 39 40

11

18

22

29

3331 32

2624 28

13 15 17

20 21

9 10

14 16

25 27

(d) N = 8

1 32

4 5

6 7 8

Figure 1: Three quantum chip designs characterized by an
increasing number of qubits (N = 8, 21, 40) inspired by
Rigetti Computing Inc. Every qubit is located at a different
location (node), and the integers at each node represent the
qubit’s identifier. Two qubits connected by an edge are adja-
cent, and each edge represents a 2-qubit gate (p-s or swap)
that can be executed between those qubits. p-s gates exe-
cuted on continuous edges have duration τp-s = 3, while p-
s gates executed on dashed edges have duration τp-s = 4.
Swap gates have duration τswap = 2. The (d) image de-
picts the crosstalk constraint, whose enforcement disables
the qubits 4 and 3 when a gate between qubits 1 and 2 is
executed.

2016), we demonstrate that our genetic algorithm outper-
forms the approach used in previous research against the
same benchmark, both from the CPU efficiency and from
the solution quality standpoint. In particular, we compare
our approach against the QCCP benchmark originally pro-
posed in (Venturelli et al. 2017), and subsequently expanded
in (Booth et al. 2018) by considering: (i) variable qubit state
initialization (QCCP-V), and (ii) crosstalk constraints that
further restrict parallel gate execution (QCCP-X).

The paper is structured as follows. We first provide some
background information as well as a description of the
QCCP (and variants), then we present a formal representa-
tion of the solved problem. Subsequently, we describe the
proposed genetic algorithm in details, and exhibit the re-
sults of our empirical evaluation. Finally, some concluding
remarks end the paper.

The Quantum Circuit Compilation Problem
Quantum computing is based on the manipulation of qubits
rather than conventional bits; a quantum computation is per-
formed by executing a set of quantum operations (called
gates) on the qubits. A gate whose execution involves k
qubits is called k-qubit quantum gate. In this work we will
focus on 1-qubit and 2-qubit quantum gates. In order to be
executed, a quantum circuit must be mapped on a quantum
chip which determines the circuit’s hardware architecture
specification ((Maslov, Falconer, and Mosca 2007)). The
chip can be generally seen as an undirected weighted multi-
graph whose nodes represent the qubits (quantum physical
memory locations) and whose edges represent the types of
gates that can be physically implemented between adjacent

q1

q2 q5

q3

q7

q4

q6

P-S 1

p-s(q1,q5)
p-s(q2,q3)
p-s(q2,q5)
p-s(q2,q7)
p-s(q3,q7)
p-s(q4,q5)
p-s(q4,q6)
p-s(q5,q6)

MIX 1

mix(q1)
mix(q2)
mix(q3)
mix(q4)
mix(q5)
mix(q6)
mix(q7)

P-S 2

p-s(q1,q5)
p-s(q2,q3)
p-s(q2,q5)
p-s(q2,q7)
p-s(q3,q7)
p-s(q4,q5)
p-s(q4,q6)
p-s(q5,q6)

MIX 2

mix(q1)
mix(q2)
mix(q3)
mix(q4)
mix(q5)
mix(q6)
mix(q7)

Figure 2: MaxCut problem instance on a graph with 7 nodes.
Each node is associated with a particular qstate qi and such
associations define the goals as a set of p-s and mix gates to
be planned for and executed (note that the qstate q8 does not
appear in this instance, and therefore it will not participate
to any gate). On the right side, the list of p-s corresponding
to the phase separation steps (P-S 1 and P-S 2) and to the
mixing steps (MIX 1 and MIX 2).

qubits of the physical hardware (see Figure 1 (a) (b) (c)
as an example of three chip topologies of increasing size).
Since a 2-qubit gate requiring two specific qstates can only
be executed on a pair of adjacent qubits, the required qstates
must be conveyed on such qubit pair prior to gate execu-
tion. Nearest-neighborhood compliance can be obtained by
adding a number of swap gates so that every pair of qstates
involved in the quantum gates can be eventually made adja-
cent, allowing all gates to be correctly executed.

Problem Description
The problem tackled in this work consists in compiling a
given quantum circuit on a specific quantum hardware ar-
chitecture. To this aim, we focus on the same framework
used in (Venturelli et al. 2017): (i) the class of Quantum Ap-
proximate Optimization Algorithm (QAOA) circuits ((Farhi,
Goldstone, and Gutmann 2014; Guerreschi and Park 2017))
to represent an algorithm for solving the MaxCut problem
(see below); (ii) a specific hardware architecture inspired by
the one proposed by Rigetti Computing Inc. (Sete, Zeng, and
Rigetti 2016). The compilation process of the MaxCut prob-
lem on QAOA circuits is composed of a phase separation
(P-S) step and a mixing (MIX) step. This entails the exe-
cution of a set of 2-qubit gates (called p-s gates) on a set
of goals that depend on the particular MaxCut problem in-
stance, immediately followed by the execution of a set 1-
qubit gates (called mix gates), in case the phase separation
step must be re-applied ((Farhi, Goldstone, and Gutmann
2014)). The number of applications of the phase separation
steps (passes) is denoted by P (in this work, P ∈ {1, 2}).
The goals define all the qstate pairs on which a p-s gate must
be applied to solve the problem instance.

Figure 2 (left side) shows an example of a graph upon
which the MaxCut problem is to be executed. Given a graph
G(V,E) with n = |V | nodes and m = |E| edges, the ob-
jective is to partition the node set V in two subsets V1 and
V2 such that the number of edges that connect every node
pair 〈ni, nj〉 with ni ∈ V1 and nj ∈ V2 is maximized. The
following formula: U = 1

2

∑
(i,j)∈E(1 − sisj) describes

7708

a quadratic objective function U for the MaxCut problem,
where si is a binary variable corresponding to the i-th node
vi of the graph G, that takes the value +1 if vi ∈ V1 or−1 if
vi ∈ V2 at the end of the partition operated by the algorithm.
The list of p-s and mix gates (i.e., the goals) that must be
executed during the compilation procedure in order to solve
the MaxCut instance considered in this example is shown on
the right side of the figure. As shown, the compilation prob-
lem requires the execution of the two phase separation steps
P-S 1 and P-S 2, interleaved by the two mixing steps MIX 1
and MIX 2 (P = 2).

Problem Representation
Formally, the Quantum Circuit Compilation Problem
(QCCP) is a tuple P = 〈C0, L0, QM〉, whereC0 is the input
quantum circuit, representing the execution of the MaxCut
algorithm, L0 is the initial assignment of the i-th qstate qi to
the i-th qubit ni (qi ← i), and QM is a representation of the
quantum hardware as a multigraph.

1. The input quantum circuit is a tuple C0 =
〈Q,P-S,MIX, {gstart, gend}, TC0〉, where Q =
{q1, q2, . . . , qN} is the set of qstates which, from a
planning & scheduling perspective (see for example
(Nau, Ghallab, and Traverso 2004), Chapter 15) repre-
sent the resources necessary for each gate’s execution.
P-S and MIX are, respectively, the set of p-s and mix
gate operations such that: (i) every p-s(qi, qj) gate
requires two qstates for execution; (ii) every mix(qi)
gate requires one qstate only. gstart and gend are two
fictitious reference gate operations requiring no qstates.
The execution of every quantum gate requires the
uninterrupted use of the involved qstates during its
processing time, and each qstate qi can process at most
one quantum gate at a time. Finally, TC0 is a set of
simple precedence constraints imposed on the P-S, MIX
and {gstart, gend} sets, such that: (i) each gate in the two
sets P-S, MIX occurs after gstart and before gend; (ii)
according to the total order imposed among the steps
P-S1,MIX1,P-S2,MIX2, . . . ,P-SP ,MIXP , all the gates
belonging to the step P-Sk (MIXk) involving a specific
qstate qi must be executed before all the gates belonging
to the next step MIXk (P-Sk+1) involving the same qstate
qi, for k = 1, 2, . . . , P (for k = 1, 2, . . . , (P − 1)).

2. L0 is the initial assignment at the time origin t = 0 of
qstates qi to qubits ni.

3. QM is a representation of the quantum hard-
ware as an undirected multi-graph QM =
〈VN , Ep-s, Eswap, τmix, τp-s, τswap〉, where VN =
{n1, n2, . . . , nN} is the set of qubits (nodes), Ep-s
(Eswap) is a set of undirected edges (ni, nj) representing
the set of adjacent nodes the qstates qi and qj of the gates
p-s(qi, qj) (swap(qi, qj)) can potentially be allocated to.
In addition, the labelling functions τp-s : Ep-s → Z+ and
τswap : Eswap → Z+ respectively represent the durations
of the gate operations p-s(qi, qj) and swap(qi, qj) when
the qstates qi and qj are assigned to the correspond-
ing adjacent nodes. Similarly, the labelling function
τmix : V → Z+ represents the durations of the mix gate

(which can be executed at any node ni). Figure 1 shows
an example of quantum hardware with gate durations.

A feasible solution is a tuple S = 〈SWAP, TC〉, which
extends the initial circuit C0 with: (i) a set SWAP of addi-
tional swap(qi, qj) gates added to guarantee the adjacency
constraints for the set of P-S gates, and (ii) a set TC of ad-
ditional simple precedence constraints such that:

• for each qstate qi, a total order �i is imposed among the
set Qi of operations requiring qi, with Qi = {op ∈ P-S ∪
MIX ∪ SWAP : op requires qi}.
• all the p-s(qi, qj) and swap(qi, qj) gate operations are al-

located on adjacent qubits in QM .

Given a solution S, the makespan mk(S) corresponds
to the maximum completion time of the gate operations in
S. A path between the two fictitious gates gstart and gend
is a sequence of gates gstart, op1, op2, . . . , opk, gend, with
opj ∈ P-S ∪ MIX ∪ SWAP, such that gstart � op1, op1 �
op2, . . . , opk � gend ∈ (TC0 ∪ TC). The length of the path
is the sum of the durations of all the path’s gates and mk(S)
is the length of the longest path from gstart to gend. An op-
timal solution S∗ is a feasible solution characterized by the
minimum makespan.

Problem Extensions
In the original version of the QCCP problem, the initial
qstate-qubit assignmentL0 is fixed and decided at the begin-
ning. Moreover, the non-overlap constraint existing among
quantum gates only forbids the concurrent execution of any
two gates that share the same qbits. In the following, two
extensions of the original QCCP introduced in (Booth et al.
2018), are presented.

Variable Qstate Initialization (QCCP-V) In the Variable
Initial State problem version, the initial assignment L0 at the
time origin t = 0 of qstates qi to qubits ni (see point 2. of
the QCCP representation) is undecided, and becomes part of
the search problem.

Crosstalk (QCCP-X) The QCCP-X (crosstalk) version of
the problem forbids the concurrent execution of p-s and/or
swap gate pairs that share the same neighboring qubits in
the QM , as follows. Let Neighbors(n) be a function that
returns the neighboring nodes of node n ∈ QM . Given
two quantum gates opi, opj ∈ P-S ∪ SWAP to be exe-
cuted on the node pairs (ni1, n

i
2) and (nj1, n

j
2) respectively, if

(Neighbors(ni1) ∪ Neighbors(ni2)) ∩ {n
j
1, n

j
2} 6= ∅, then

opi and opj cannot overlap.

The Genetic Algorithm
Genetic algorithms define a well-known metaheuristic ap-
proach commonly used to generate high-quality solutions
to optimization and search problems by relying on bio-
inspired operators such as mutation, crossover and selec-
tion (Goldberg 1989) following a rather standardized pat-
tern. The pseudocode of the genetic algorithm used in this
work is depicted in Algorithm 1, and is briefly described in
the following. At the beginning, the initial population pop

7709

Algorithm 1 Genetic Algorithm
bestIndiv ← null;
bestF itness←∞;
pop← GENERATEPOPULATION(populationSize);
EVALUATEPOPULATION(pop);
while (¬termination condition) do

if (pop.GETFITTEST().GETFITNESS() < bestF itness)
then
bestIndiv ← pop.GETFITTEST();
bestF itness← bestIndiv.GETFITNESS();

end if
//Evolve Population
newPop← {bestIndiv};
for (i = 1; i < populationSize; i++) do
Indiv1← TOURNAMENTSELECTION(pop);
Indiv2← TOURNAMENTSELECTION(pop);
newIndiv ← CROSSOVER(Indiv1, Indiv2);
newPop← newPop ∪ {newIndiv};

end for
MUTATEPOPULATION(newPop);
EVALUATEPOPULATION(newPop);
pop← newPop;

end while
return bestIndiv.GETFITNESS();

is generated and evaluated; subsequently, the evolutionary
iteration starts and proceeds by: (i) identifying the best indi-
vidual bestIndiv of the current population; (ii) evolving the
current population into a new one (newPop), and inserting
bestIndiv as the first element of newPop. At the end of the
evolution phase, the new population will become the current
population, and a new iteration is restarted. The evolution
cycle continues until the maximum allotted time has elapsed
(termination condition). The next sections will be dedicated
to a detailed description of the previous algorithm.

The Encoding Scheme
Our encoding scheme is basically a value encoding, where
each gene in the chromosome retains an integer value be-
longing to the [1,maxV alue] range, where maxV alue is a
determined value that depends on the size of each problem
instance, and whose meaning will be discussed in the next
section. At the beginning of the genetic algorithm, the ini-
tial population pop is created, composed of populationSize
chromosomes (3-rd line of Algorithm 1) whose gene values
are randomly generated from the [1,maxV alue] interval ac-
cording to a uniform distribution.

The Decoding Scheme
As shown in Figure 3, in our encoding each gene in the
chromosome retains an integer value representing the exact
quantum gate position within a specific ordering computed
and returned by a particular Quantum Gate Ranking Heuris-
tic introduced in (Oddi and Rasconi 2018), and whose infor-
mal description is provided next (the reader interested in the
technical details is referred to the original publication).

The Quantum Gate Ranking Heuristic (QGRH) The
solution building approach presented in (Oddi and Rasconi
2018) is based on the chronological insertion of one gate op-
eration at a time in the partial solution S, until all the gates
in the set P-S ∪ MIX are in S. This insertion relies on the
concept of chain; we define chaini as a sequence of gate op-
erations op ∈ S that involve qstate qi. In a (partial) solution
S there exist as many chains as are the qstates involved in
the problem instance. Informally, a solution is incrementally
built by: (i) selecting a quantum gate op(qi, qj) at each solv-
ing iteration, and (ii) inserting the selected gate in the partial
solution by attaching it as the last element of the two chains
associated to the qstates qi and qj involved in the gate op-
eration (if op(qi) ∈ MIX , only the chain associated to the
qstate qi is considered).

Clearly, the criteria used for quantum gate selection
(Quantum Gate Ranking Heuristic - QGRH) play a key role
in the solving process described above. Basically, the QGRH
returns a list of gate operations op ∈ P-S ∪ MIX ∪ SWAP,
among the operators that are still to be inserted in the solu-
tion S. The ranking value for each gate op is computed by
ordering lexicographically the values returned by two differ-
ent functions f1 and f2.

The two-dimension distance function used for the gate se-
lection ranking is devised to produce a twofold effect. The
f1 component acts as a global closure metric; by evaluating
the overall distance left to be covered by all the qstates still
involved in gates yet to be executed, it guides the selection
towards the gate that best favours the quickest execution of
the remaining gates. Conversely, the f2 component acts as a
local closure metric, in that it favours the mutual approach
of the closest qstates pairs. Lastly, the reader should note
that the QGRH ranking is deterministic.

Decoding from the QGRH Ranking To wrap up, QGRH
return a list of gate operations ordered by “insertion appeal”,
ranking as most palatable the gates that best facilitate the
efficient execution of the remaining gates while favouring
the mutual approach of the closest qstates pairs.

QCCP. Given the QGRH ranking, it is now possible to
fully explain the structure of the chromosomes. In our al-
gorithm, a chromosome chr is composed of n = |P-S| +
|MIX|+ |SWAP| genes, whose values are the pointers to the
selected quantum gates from the ranking returned by QGRH,
and whose positions in chr denote the chronological order
in which such selections will be made during the construc-
tion of the solution realized by the decoding procedure (see
Figure 3).

Given a chromosome chr, the decoding procedure con-
structs S by iteratively reading the i-th chromosome gene
chr[i] and executing the QGRH over the partial solution S
(initially empty). As explained in the Quantum Gate Rank-
ing Heuristic section, the QGRH will produce a ranking out
of the quantum gates still to be inserted in S, and the gate
op pointed by chr[i] will be selected for the next insertion in
S, where i is the iteration’s number of the decoding proce-
dure. Once the selected gate is inserted in S, QGRH is called
again to produce a new ranking, to be used at the next itera-
tion i+ 1, exploiting the chr[i+ 1] chromosome gene. The

7710

Figure 3: Chromosome decoding example. QCCP case (a):
the value of the 5-th gene (3) of the chromosome chr points
to the quantum gate located on the 3-rd position in the rank-
ing returned by the QGRH. QCCP-V case (b): the chromo-
some is split in two segments chr0 + chr. The chr segment
encodes the information exactly as in the QCCP case, while
the chr0 segments (composed of N genes) encondes the ini-
tial qstate-qubit assignment qi ← chr[i] for chr[i] ∈ chr0.

procedure ends as soon as a complete solution is found (i.e.,
all p-s and mix gates have been inserted and justified by the
necessary swap gates), or the whole chromosome has been
exhausted with no solution found.

It should be highlighted that while the number |P-S| and
|MIX| of p-s and mix gates respectively is known a-priori
for each problem instance, the number |SWAP| of swap
gates is not known. The decoding procedure in the QCCP
case is depicted in Algorithm 2.

QCCP-X case. The decoding procedure in the QCCP-X
case differs from the previous case, as the selected gate op
must be inserted in S without violating the crosstalk con-
straint described in the QCCP-X Problem Extensions sec-
tion. This is achieved by right-shifting the selected gate op
by the minimum slack sufficient to avoid all overlaps with
any other gate in S that shares with op the same neighbor-
ing qubits in QM . More formally: let op be a gate executing
on the (n1, n2) node pair of QM (with st(op) and et(op)
defined as the start and end time of op), and let Xop

S =
{opk : opk ∈ P-S ∪ SWAP, opk ∈ S, (Neighbors(n1) ∪
Neighbors(n2))∩ (Neighbors(nk1)∪Neighbors(nk2)) 6=
∅}. Then, the insertion of op in S satisfies the crosstalk con-
straint iff st(op) ≥ maxopk∈Xop

S
{et(opk)}.

QCCP-V case. In case the initial assignment L0 is not
fixed, the chromosome chr previously described for the
QCCP case is expanded with a further segment chr0 com-
posed of N (number of qstates) genes, whose values deter-
mine each qstate-qubit assignment (see Figure 3 (b)). In the
QCCP-V case, the chromosome chr is therefore composed
of n = N + |P-S| + |MIX| + |SWAP| where qi ← chr[i],

Algorithm 2 Decoding Procedure
S ← ∅;
i← 0;
L0 ← STATEINIT(chr0); //For QCCP-V only
while (S is incomplete) do
op← QGRH(chr[i], S);
S ← INSERTOPERATION(op, S);
i← i+ 1

end while
return S

Algorithm 3 Tournament Selection Procedure
for (i = 0; i < tournmtSize; i++) do
randomIndiv ← pop.GETINDIVIDUAL(random);
tournament← tournament ∪ {randomIndiv};

end for
bestIndiv ← tournament.GETFITTEST();
return bestIndiv;

for i ∈ [1, N]. Clearly, the chr0 segment of the chromo-
some retains a permutation of integer values ranging from
1 to N . The decoding process in the QCCP-V case differs
slightly from the the one used for QCCP, due to the presence
of the chr0 chromosome’s segment dedicated to the variable
initial assignment L0. Such segment is in fact firstly used
to position each qstate qi to its assigned qubit chr[i], for
chr[i] ∈ chr0. After such assignment is accomplished, the
decoding proceeds exactly as in the QCCP case.

The Fitness Function
The computation of the fitness function is rather straightfor-
ward, once the solution S has been decoded. In fact, given
a plan represented by S, its objective function value can be
directly assessed as the plan’s makespan mk(S).

The Selection Operator
As shown in Algorithm 1, the current population pop
is evolved by selecting two new individuals Indiv1 and
Indiv2 by means of a Tournament Selection procedure for
each individual in pop\{bestIndiv} (where bestIndiv is
the best individual found at the previous iteration), and
then generates a new individual newIndiv by performing a
crossover operation between Indiv1 and Indiv2. The Tour-
nament Selection procedure is sketched in Algorithm 3, and
is identical for all problem versions QCCP, QCCP-V, and
QCCP-X. Basically, each new Individual is selected by: (i)
generating a new tournament population of size equal to
tournmtSize < populationSize composed of individ-
uals randomly selected from the current population pop,
and (ii) returning the fittest individual among those in the
tournament population.

The Crossover Operator
The crossover operator procedure for the QCCP (and
QCCP-X) case is sketched in Algorithm 4. The QCCP-V
version of the crossover operator is only described textually.

7711

Algorithm 4 Crossover Procedure (QCCP and QCCP-X)
newIndiv ← null;
for (i = 1; i <= chr.LENGTH(); i++) do

if (probability(xoverRate)) then
gene← Indiv1.GETGENE(i);

else
gene← Indiv2.GETGENE(i);

end if
newIndiv.SETGENE(gene);

end for
return newIndiv;

Algorithm 5 Mutation Operator (QCCP and QCCP-X)
for (k = 0; k < populationSize; k++) do
Indiv ← newPop.GETINDIVIDUAL(k);
for (i = 1; i <= Indiv.LENGTH(); i++) do

if (probability(mutationRate)) then
gene← Indiv.RANDOMVALUE();
Indiv.SETGENE(gene);

end if
end for

end for
return newPop;

QCCP and QCCP-X case. Given two parent chro-
mosomes Indiv1 and Indiv2, the offspring individual
newIndiv is generated by randomly selecting each gene
either from Indiv1 or Indiv2 with a uniform probability
xoverRate, and assigning the selected gene to newIndiv.

QCCP-V case. In the QCCP-V case, since the chr0 chro-
mosome’s segment represents a permutation of values, a
standard Partially-Mapped Crossover (Goldberg and Lingle
1985) has been used. The rest of the chromosome is treated
as in the QCCP case.

The Mutation Operator
When a new population is generated at each evolution step
(see Algorithm 1) every chromosome undergoes a very sim-
ple mutation process, as depicted in the Algorithm 5 for the
QCCP (and QCCP-X) cases. The QCCP-V version of the
mutation operator is only described textually.

QCCP and QCCP-X case. Each gene of each chromo-
some of the newly generated population is randomly modi-
fied with a probability equal to mutationRate.

QCCP-V case. In the QCCP-V case, the chr0 chromo-
some segment is mutated by swapping two randomly chosen
positions i and j (i 6= j, i, j ∈ [1, N]), with mutationRate
probability. The rest of the chromosome is mutated as in the
previous case.

Empirical Evaluation
The material presented in this section describes the per-
formance obtained with our genetic algorithm against the
benchmark set originally presented in (Venturelli et al. 2017)
(QCCP problem version), and later expanded in (Booth et
al. 2018) (QCCP-V and QCCP-X problem versions). Many

of the results obtained in (Venturelli et al. 2017) 1 have
been successively improved by (Oddi and Rasconi 2018) by
means of an heuristic-based greedy randomized search pro-
cedure.

In this work, we compare our results with those of both
the previous works. In particular, the benchmark set we
tackle is composed of three benchmarks characterized by in-
tances of three different sizes, based on quantum chips with
N = 8, 21 and 40 qubits, respectively (see Figure 1). The
N = 8 and the N = 21 benchmarks are solved considering
P = 2 problem instances (two passes), while the N = 40
benchmark is solved in both flavors P = 1 (to allow com-
parison with (Venturelli et al. 2017)) and P = 2 (to allow
comparison with (Oddi and Rasconi 2018)). Moreover, in or-
der to guarantee maximum fairness of comparison, we have
also implemented a version of the greedy random sampling
proposed in (Oddi and Rasconi 2018), named GRS∗ in this
work, to differentiate it with the original GRS procedure.

In the actual implementation of Algorithm 1, we
have assigned the following values for the parameters:
populationSize = 50, tournmtSize = 5, xoverRate =
0.5, mutationRate = 0.015, maxV alue = 15, 30, 60 for
benchmark size N = 8, 21, 40 respectively. To guarantee
fairness of comparison also from the computing resources
standpoint, all experiments have been performed on a 64-bit
Windows10 O.S. running on Intel(R) Core(TM)2 Duo CPU
E8600 @3.33 GHz with 8GB RAM, exactly as in (Oddi and
Rasconi 2018).

Results Analysis
The results of our experimentation are summarized in Ta-
ble 1. The results are presented in aggregated form for rea-
sons of space; however, the complete set of makespan val-
ues, together with the complete set of solutions are available
at http://pst.istc.cnr.it/∼angelo/qc/. We compare our results
with the best results presented in (Venturelli et al. 2017) and
obtained with the TFD (Eyerich, Mattmüller, and Röger
2009), SGPlan (Wah and Chen 2004; Chen, Wah, and Hsu
2006) and LPG (Gerevini, Saetti, and Serina 2003) tempo-
ral planners, and wih those presented in (Oddi and Rasconi
2018) and obtained by means of their GRS greedy random
sampling procedure (see the respective columns in Table 1).
The results of our implementation of the GRS procedure
and of the genetic algorithm are presented in the GRS∗ and
GA columns, respectively. The second row in the table re-
ports the tackled QCCP problem version (QCCP, QCCP-V,
and QCCP-X). The size of the benchmark set is reported in
the column N , while the number of passes characterizing
each benchmark instance is reported in the column P . For
each given benchmark set, the score in every slot of the ta-
ble represents the average of all the scores obtained from
all the set instances, where the score of the i-th instance is
obtained as the ratio MKi/MKi(x), where MKi is best
makespan obtained for the i-th instance among all compet-
ing procedures, and MKi(x) is the makespan obtained with

1Benchmarks and results are available at: https://ti.arc.nasa.
gov/m/groups/asr/planning-and-scheduling/VentCirComp17\
data.zip

7712

Table 1: The results in the table are reported using the plan score formula, from the International Planning Competition (IPC);
given MKi as the best-known makespan for the i-th instance, the plan score score(i, x) obtained by the solving procedure x
for instance i is score = MKi/MKi(x), where MKi(x) is the makespan returned by x for instance i. The figures reported
in the table are the average over the scores found for all the instances. The figures between brackets report the maximum CPU
time (in minutes) allotted for all procedures in their respective works. Note: the QCCP-X problem version has been treated
separately as the crosstalk constraint produces solutions characterized by obviously much larger makespans.

N P TFD SGPlan LPG GRS GRS∗ GA GRS∗ GA GRS∗ GA

(QCCP) (QCCP) (QCCP) (QCCP) (QCCP) (QCCP) (QCCP-V) (QCCP-V) (QCCP-X) (QCCP-X)
8 2 0.78(10) - - 0.84(1) 0.88(1) 0.87(1) 0.99(1) 0.98(1) 0.95(1) 1.00(1)

21 2 0.65(60) - - 0.73(15) 0.80(5) 0.87(5) 0.87(5) 1.00(5) 0.87(5) 1.00(5)

40 1 - 0.47(60) 0.62(60) 0.72(1) 0.88(1) 1.00(1) - - - -
40 2 - - - 0.60(15) 0.73(10) 0.82(10) 0.78(10) 1.00(10) 0.89(10) 1.00(10)

the solving procedure x under analysis. Lastly, the values
between brackets report the maximum CPU time (in min-
utes) allotted to all procedures in their respective works, for
each run.

Interestingly, our implementation of the GRS procedure
(GRS∗) seems to clearly outperform the original counter-
part proposed in (Oddi and Rasconi 2018), which was al-
ready improving significantly over the results obtained with
temporal planners against the QCCP problem version. By
applying some elementary math to the plan scores of Ta-
ble 1, it can be seen that our version further improves the
results obtained by GRS for all benchmark sets, obtaining
the following score improvements: +4.76% (from 0.84 to
0.88) for the [N = 8, P = 2] set, +9.59% (from 0.73 to
0.80) for the [N = 21, P = 2] set, +22.22% (from 0.72 to
0.88) for the [N = 40, P = 1] set, and +21.66% (from 0.60
to 0.73) for the [N = 40, P = 2] set. It should also be noted
that our results have been obtained by further reducing the
allotted CPU time for each run w.r.t. our competitor (5 mins
Vs. 15 mins for the [N = 21, P = 2] instances, and 10 mins
Vs. 15 for the [N = 40, P = 2] instances). For these rea-
sons, we selected theGRS∗ procedure as the main reference
for performance evaluation.

GA Vs. GRS* The main achievement of this work is rep-
resents by the results obtained with the genetic algoritnm
(GA). As the table shows, the superiority of the GA over
the GRS∗ is clear in all cases with the exception of the
[N = 8, P = 2] instances, where the two approaches ex-
hibit similar performance. This can be easily explained by
the fact that for the smallest instances, the search space is
relatively small and therefore the GRS∗ random search ap-
proach is still as effective as the GA; but as the problem
size grows larger (and proportionally, the search space), the
random approach clearly finds more difficulties. For all the
other cases (instance size and problem versions), theGA ex-
hibits convincing score improvements ranging from a min-
imum of +8.75% for the [N = 21, P = 2] set (QCCP
case) to a maximum of +28% for the [N = 40, P = 2]
set (QCCP-V case).

As a comment on the previous results, we note that
in (Oddi and Rasconi 2018), QGRH is used within a greedy
randomized search, to conduct a broad-spectrum search that
randomly selects the best ranked options only and disre-
gards the others, the intuition being that a search process

should both follow the heuristic advice and also find the best
compromise with the random choices to conduct a broader
search and find better quality solutions. On the contrary, the
genetic algorithm starts from a set of different unbiased solu-
tions (the initial population) and progressively converges to
specific solutions still driven by QGRH, but of higher quality
due to the inherent parallelism of population-based search
procedures.

The effect of qubit state initialization This section is
dedicated to commenting on the results obtained compar-
ing the two problem versions QCCP and QCCP-V. As Ta-
ble 1 reports, making the qstate initialization part of the de-
cision process has the twofold effect of: (i) widening the
search space (therefore making the search for good solutions
harder) but on the other hand, (ii) opening the search to bet-
ter solutions from the makespan minimization standpoint.

From this perspective, the obtained results prove that GA
is much more effective than GRS∗ in exploring such en-
larged search space towards good solutions. In fact, two in-
teresting observations can be made from the obtained data
that highlight opposite behaviors on behalf of GRS∗ and
GA, respectively.

The first observation is that the the GRS∗ procedure
weakens its optimization capability as the problem size
grows larger; this can be proved by observing that the plan
score improvement obtained with GRS∗ in the QCCP →
QCCP-V passage decreases as the problem size increases,
passing from +12.5% (from 0.88 to 0.99) for the [N =
8, P = 2] set, to +8.75% (from 0.80 to 0.87) for the
[N = 21, P = 2] set, and finally to +6.85% (from 0.73
to 0.78) for the [N = 40, P = 2] set.

The second observation is that the the GA procedure
strengthens its optimization capability as the problem size
grows larger; this can be proved by observing that the
plan score improvement obtained with GA in the QCCP→
QCCP-V passage increases as the problem size increases,
passing from +12.64% (from 0.87 to 0.98) for the [N =
8, P = 2] set (a value similar to the one obtained with
the GRS∗), to +14.94% (from 0.87 to 1.00) for the [N =
21, P = 2] set, and finally to +21.95% (from 0.82 to 1.00)
for the [N = 40, P = 2] set.

7713

Conclusions
In this paper, we investigate the performance of a genetic
approach to solve the quantum circuit compilation problem
applied to a class of QAOA circuits. The objective is the syn-
thesis of minimum-makespan quantum gate execution plans
that succesfully compile idealized circuits to a set realistic
near-term quantum harwdare architectures.

The main contribution of this work is a genetic algorithm
that leverages a specific chromosome encoding where each
gene controls the iterative selection of a quantum gate to
be inserted in the solution, over a lexicographic double-key
quantum gate ranking returned by a heuristic function re-
cently published in the literature. We have performed an ex-
perimental campaign, testing our algorithm against a Quan-
tum Circuit Compilation Problem benchmark known in the
literature, proving that the proposed algorithm exhibits very
convicing performance compared with recently published
results against the same benchmark. To make the compar-
ison more interesting, we have also proposed a complete re-
implemenation of our Greedy Randomized Search originally
presented in (Oddi and Rasconi 2018), demonstrating im-
proved performance w.r.t. the previous version, despite such
results remain inferior compared to the ones obtained with
the genetic algorithm proposed in this work.

References
Booth, K. E. C.; Do, M.; Beck, C.; Rieffel, E.; Venturelli, D.;
and Frank, J. 2018. Comparing and Integrating Constraint
Programming and Temporal Planning for Quantum Circuit
Compilation. In Proceedings of the 28th International Con-
ference on Automated Planning & Scheduling, ICAPS-18.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal
planning using subgoal partitioning and resolution in sgplan.
J. Artif. Int. Res. 26(1):323–369.
Cirac, J. I., and Zoller, P. 1995. Quantum computations with
cold trapped ions. Phys. Rev. Lett. 74:4091–4094.
da Silveira, L. R.; Tanscheit, R.; and Vellasco, M. M. 2017.
Quantum inspired evolutionary algorithm for ordering prob-
lems. Expert Systems with Applications 67:71 – 83.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS
2009, Thessaloniki, Greece, September 19-23, 2009.
Farhi, E.; Goldstone, J.; and Gutmann, S. 2014. A quan-
tum approximate optimization algorithm. arXiv preprint
arXiv:1411.4028.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in lpg. J. Artif. Int. Res. 20(1):239–290.
Goldberg, D., and Lingle, R. 1985. Alleles, Loci and the
Traveling Salesman Problem. In Proceedings of the 1st

International Conference on Genetic Algorithms and Their
Applications, 1985, p.154-159, 154–159.
Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1st edition.

Guerreschi, G. G., and Park, J. 2017. Gate scheduling for
quantum algorithms. arXiv preprint arXiv:1708.00023.
Herrera-Martı́, D. A.; Fowler, A. G.; Jennings, D.; and
Rudolph, T. 2010. Photonic implementation for the
topological cluster-state quantum computer. Phys. Rev. A
82:032332.
Maslov, D.; Falconer, S. M.; and Mosca, M. 2007. Quan-
tum circuit placement: Optimizing qubit-to-qubit interac-
tions through mapping quantum circuits into a physical ex-
periment. In Proceedings of the 44th Annual Design Au-
tomation Conference, DAC ’07, 962–965. New York, NY,
USA: ACM.
Mukherjee, D.; Chakrabarti, A.; Bhattacharjee, D.; and
Choudhury, A. 2009. Synthesis of quantum circuits using
genetic algorithm. International Journal of Recent Trends in
Engineering 2:212 – 216.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Nielsen, M. A., and Chuang, I. L. 2011. Quantum Compu-
tation and Quantum Information: 10th Anniversary Edition.
New York, NY, USA: Cambridge University Press, 10th edi-
tion.
Oddi, A., and Rasconi, R. 2018. Greedy randomized search
for scalable compilation of quantum circuits. In van Hoeve,
W.-J., ed., Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, 446–461. Cham:
Springer International Publishing.
Ruican, C.; Udrescu, M.; Prodan, L.; and Vladutiu, M. 2007.
Automatic synthesis for quantum circuits using genetic al-
gorithms. In Beliczynski, B.; Dzielinski, A.; Iwanowski,
M.; and Ribeiro, B., eds., Adaptive and Natural Computing
Algorithms, 174–183. Berlin, Heidelberg: Springer Berlin
Heidelberg.
Sete, E. A.; Zeng, W. J.; and Rigetti, C. T. 2016. A functional
architecture for scalable quantum computing. In 2016 IEEE
International Conference on Rebooting Computing (ICRC),
1–6.
Talbi, H., and Draa, A. 2017. A new real-coded quantum-
inspired evolutionary algorithm for continuous optimization.
Applied Soft Computing 61:765 – 791.
Venturelli, D.; Do, M.; Rieffel, E.; and Frank, J. 2017. Tem-
poral planning for compilation of quantum approximate op-
timization circuits. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
17, 4440–4446.
Wah, B. W., and Chen, Y. 2004. Subgoal partitioning
and global search for solving temporal planning problems
in mixed space. International Journal on Artificial Intelli-
gence Tools 13(04):767–790.
Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.;
Duan, L.-M.; Lukin, M. D.; Jiang, L.; and Gorshkov, A. V.
2013. Quantum logic between remote quantum registers.
Phys. Rev. A 87:022306.

7714

