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Abstract

As classical planning is known to be computationally hard, no
single planner is expected to work well across many planning
domains. One solution to this problem is to use online portfo-
lio planners that select a planner for a given task. These port-
folios perform a classification task, a well-known and well-
researched task in the field of machine learning. The classifi-
cation is usually performed using a representation of planning
tasks with a collection of hand-crafted statistical features. Re-
cent techniques in machine learning that are based on auto-
matic extraction of features have not been employed yet due
to the lack of suitable representations of planning tasks.
In this work, we alleviate this barrier. We suggest representing
planning tasks by images, allowing to exploit arguably one
of the most commonly used and best developed techniques
in deep learning. We explore some of the questions that in-
evitably rise when applying such a technique, and present
various ways of building practically useful online portfolio-
based planners. An evidence of the usefulness of our pro-
posed technique is a planner that won the cost-optimal track
of the International Planning Competition 2018.

Introduction
Domain-independent planning is known to be challenging
not only due to its computational complexity (Bylander
1994), but also due to the various and very different types of
domains that planners are expected to solve. Consequently,
research in planning has not only focused on individual
planning techniques such as the predominant planning-as-
heuristic-search paradigm, but also on the question of how to
combine and exploit different planning techniques for solv-
ing a variety of planning tasks.

One such approach is to create portfolios of planners
to leverage their combined strengths (Seipp et al. 2012;
Vallati 2012; Cenamor, de la Rosa, and Fernández 2013;
Seipp et al. 2015). Besides parallel portfolios that are well-
suited to exploit multiple CPUs, many portfolios are sequen-
tial, which means that they execute one or more planners
sequentially on a given task. The decision such a portfolio
has to make is which planner to run next and for how long.
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While some portfolios settle on a schedule offline (Helmert
et al. 2011; Núñez, Borrajo, and Linares López 2014; Seipp,
Sievers, and Hutter 2014a; 2014b; 2014c), i.e., ahead of exe-
cution, others try to select good planners online based on the
given task (Cenamor, de la Rosa, and Fernández 2016; 2014;
2018). The latter is based on machine learning techniques,
training a classifier on planning instances, represented as a
vector of hand-crafted features. The need for extracting such
features manually was alleviated in machine learning com-
munity with the popularization of deep learning techniques.

While there exists some work employing deep learning
techniques for learning policies in probabilistic planning
(Toyer et al. 2018; Issakkimuthu, Fern, and Tadepalli 2018),
to the best of our knowledge, there is no published work
on applying deep learning to classical planning task classi-
fication. The direction, however, is most promising, as evi-
denced by a sequential online planning portfolio called Delfi
for DEap Learning of PortFolIos (Katz et al. 2018). Delfi1,
the winning planning system of the cost-optimal track of the
International Planning Competition (IPC) 2018, represents
planning tasks as images and employs image convolution for
binary classification. Delfi raises several interesting ques-
tions regarding both the data representation and the model
selection and makes some practical decisions on how to re-
solve these issues.

In this work, focusing on deep learning for planning task
classification for cost-optimal planning, we elaborate on the
approach and revisit the decisions made by Delfi. We start by
introducing a way to represent planning tasks as images. We
then explore the space of possible models that exploit image
convolution for planning task classification. Specifically, we
explore three questions.

The first one deals with the various levels of abstraction
for planner performance data. We suggest four conceptual
methods: perform regression using either the raw or normal-
ized total runtime to solution, or perform classification using
either a discretized set of (runtime) values or a binary value
encoding whether the task was solved by that planner.

The second question concerns the number of planners in
a portfolio, given the limited amount of existing data. Start-
ing with the collection of planners used by Delfi, we add to
the collection the planners from the latest IPC 2018. As a
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third option, we select a minimal size subset of planners that
achieve the same coverage on the training data.

The third question is how to generalize to previously un-
seen domains, especially with training data that is not in-
dependent identically distributed. One conjecture is that for
good generalization to unseen domains, the training data
should also be split into training and validation sets in a sim-
ilar way. We experimentally compare a random split to a ran-
dom split that keeps all instances of the same domain in the
same set, and we also consider not splitting the data for the
final model training.

As this is the first work on deep learning for planning task
classification, we focus on a rather broad exploration of pos-
sibilities for research in this area, thus providing both the
planning and machine learning community the means for fu-
ture explorations of this topic. To this end, we also conclude
the paper with an extensive discussion of lessons learned and
possible future research.

Background
In this section, we discuss the two planning formalisms that
we base our graphical representation on: the lifted represen-
tation based on the Planning Domain Definition Language
(PDDL) (McDermott 2000) and the ground finite-domain
representation SAS+ (Bäckström and Nebel 1995) extended
with support for action cost, conditional effects, and axioms.

PDDL tasks are defined over a first-order language L that
consists of predicates, functions, a set of natural numbers,
variables, and constants. Predicates are either fluent or de-
rived. Atoms and literals are defined over predicates and
variables/constants as in first-order logic. They are called
fluent if they only contain fluent predicates, and likewise,
they are called derived if they only contain derived predi-
cates. Function assignments assign a natural number from
the set to function terms, which are defined over functions
and variables/constants as in first-order logic. Free variables
of formulas over L are also defined as in first-order logic. If
a formula does not have free variables, it is called ground.

Given L, a normalized (Helmert 2009) PDDL task is a
tuple Π = 〈O,A, I, G〉 with the following components. O
is a set of schematic operators o = 〈cost(o), pre(o), eff(o)〉,
where cost(o) is a function term called the cost, pre(o) is a
set of literals over L called the precondition, and eff(o) is
called the effect. Such an operator effect is a set of univer-
sally quantified effects e = ∀v1, . . . , vk : cond(e) . eff(e)
with vi ∈ L, cond(e) a set of literals over L called the (ef-
fect) condition, and eff(e) a literal over L without derived
predicates called the effect. A is a set of schematic axioms
a = head(a) ← body(a), where head(a) is an atom with a
derived predicate called the head and body(a) is a set of lit-
erals over L called the body. Free variables in body(a) must
be free in head(a), and A must be stratifiable (Thiébaux,
Hoffmann, and Nebel 2005). Finally, I is a set of ground
fluent literals over L and consistent ground function assign-
ments, called the initial state specification, and G is a set of
ground literals over L, called the goal specification.

To define the semantics of a PDDL task, we need the
notion of grounding a task. Grounding is the process that
instantiates all free variables of schematic operators and

axioms in all possible ways by replacing them with con-
stants. That means that each operator and axiom is replaced
by a set of induced ground operators and axioms. Given
a PDDL task Π as above, the induced ground task is de-
fined as Π = 〈O,A, s0, s?〉, where O and A are obtained
through grounding as just described. A state s assigns TRUE
or FALSE to all ground fluent atoms. The corresponding de-
rived state JsK extends the assignment of s to all ground
atoms, evaluating ground axioms as in stratified logic pro-
gramming. The initial state s0 assigns TRUE to all ground
atoms in I and FALSE to all others ground fluent atoms. The
goal s? assigns TRUE to all positive ground literals in G and
FALSE to all negative ground literals in G. A ground opera-
tor o is applicable in s if JsK |= pre(o). Ground atom A is
true in the successor state if it has been true in s and o has
no effect ϕ . ¬A such that JsK |= ϕ or if o has an effect
ϕ . A with JsK |= ϕ. A plan for Π is a sequence of ground
operators that can be subsequently applied starting in s0 and
that leads to a state s with JsK |= s?. Its costs is the accu-
mulated operator costs, where the cost values are taken from
the function assignments in I .

Most modern planners reason on a ground planning
task representation rather than a lifted one. Since the in-
duced ground task is usually prohibitively large, these plan-
ners typically apply reachability analyses to transform the
ground representation into a variable-based representation
such as STRIPS or SAS+. In the latter, a task Π =
〈V,Vd,O,A, sd, s0, s?〉 has the following components. V
is a set of finite-domain variables v with finite-domain
dom(v). Vd ⊆ V is a subset of variables called derived vari-
ables. A partial state s is a partial assignment over a subset
V ⊆ V of the variables, written vars(s), assigning a value
from dom(v) to each v ∈ vars(s), written s[v]. If vars(s) =
V , s is called a state. Two partial states s, s′ are consistent if
s[v] = s′[v] for all v ∈ vars(s) ∩ vars(s′). O is a set of op-
erators o = 〈cost(o), pre(o), effs(o)〉 where cost(o) ∈ R+

0
is called the cost, pre(o) is a partial state called the pre-
condition, and effs(o) is a set of effects. Each such ef-
fect e ∈ effs(o) is a tuple e = 〈cond(e), var(e), val(e)〉,
where cond(e) is a partial state called the (effect) condi-
tion, var(e) ∈ V \ Vd is called the effect variable and
val(e) ∈ dom(var(e)) the effect value. A is a set of axioms
a = 〈pre(a), var(a), val(a)〉, where pre(a) is a partial state
called the precondition, var(a) ∈ Vd is called the derived
variable and val(a) ∈ dom(var(a)) the derived value. sd
is a partial state defined over Vd, assigning to each derived
variable v ∈ Vd a default value sd[v] ∈ dom(v). s0 is the
initial state and s? a partial state called the goal.

The semantics of a SAS+ task Π as above is as follows.
Operator o is applicable in state s if s and pre(o) are con-
sistent. Effect e ∈ effs(o) fires in s if s and cond(e) are
consistent. Applying o in s leads to the state s′ that is con-
sistent with s except for all effect variables var(e) of effects
e ∈ effs(o) that fire, for which s′[var(e)] = val(e). Effects
e and e′ of the operator o are conflicting if there exists a
state s reachable from the initial state such that (a) pre(o) is
consistent with s, (b) both cond(e) and cond(e′) are consis-
tent with s, and (c) var(e) = var(e′) and val(e) 6= val(e′).
We assume the absence of conflicting effects. Extending the
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classical SAS+ definition to axioms, for a state s, the cor-
responding derived state JsK is obtained from s by applying
all axioms as in stratified logic programming. As a result,
each derived variable v ∈ Vd is assigned a value, starting
with the default values sd. As for PDDL tasks, plans are se-
quences of operators that lead from s0 to s? and their cost is
the summed operator costs.

Representing Planning Tasks
The first step towards applying existing deep learning tools
to learn any model of planner performance of a domain or
a task is to be able to represent the planning task in a way
consumable by such tools. To come up with one such rep-
resentation, in this work we follow the direction explored in
the SAT and CSP communities (Loreggia et al. 2016) and
represent tasks as images. In the aforementioned work the
textual description of an instance was turned into a grayscale
image by converting each character to a pixel. Here, we in-
stead want to make use of existing graph representations of
planning tasks, which we deem more natural than the tex-
tual description. Such representations losslessly encode the
information in the planning task and are often used for sym-
metry detection. In particular, we base the images on graphs
used for the computation of structural symmetries (Shleyf-
man et al. 2015) for both ground and lifted representations
(Pochter, Zohar, and Rosenschein 2011; Sievers et al. 2017).
We remark that these graphs originally are defined as col-
ored graphs for the purpose of excluding symmetries be-
tween parts of the tasks that are colored differently. Since
these colors do not add to the graphs as a structural repre-
sentation of the task, we omit them here.

Problem Description Graph
Originally introduced by Pochter, Zohar, and Rosenschein
(2011), the problem description graph (PDG) is a graph that
represents a SAS+ task for the purpose of detecting symme-
tries of the task. Shleyfman et al. (2015) later showed (in the
STRIPS setting) that automorphisms of the PDG are struc-
tural symmetries of the task. Below, we extend the original
definition to support conditional effects and axioms.

Definition 1. Let Π = 〈V,Vd,O,A, sd, s0, s?〉 be a SAS+

task. The problem description graph of Π is the digraph
〈N,E〉 with nodes

N = {n0, n?} ∪ {nv | v ∈ V} ∪Nf ∪NO ∪ {na | a ∈ A},

where Nf = {ndv | v ∈ V, d ∈ dom(v)} and NO = {no |
o ∈ O} ∪ {neo | o ∈ O, e ∈ effs(o)}, and edges

E = E0 ∪ E? ∪ Ev ∪ Ea ∪ Eo, where

E0 = {〈n0, nd
v〉 | s0[v] = d}

E? = {〈ng , nd
v〉 | v ∈ vars(s?), s?[v] = d}

Ev = {〈nv , nd
v〉 | d ∈ dom(v)}

Ea = {〈na, nd
v〉 | a ∈ A, v ∈ vars(pre(a)), pre(a)[v] = d}

∪ {〈na, nd
v〉 | a ∈ A, var(a) = v, val(a) = d}

Eo = {〈no, nd
v〉 | o ∈ O, v ∈ vars(pre(o)), pre(o)[v] = d}

∪ {〈no, ne
o〉 | e ∈ effs(o)}

∪ {〈nd
v , n

e
o〉 | 〈c, ·, ·〉 ∈ effs(o), v ∈ vars(c), c[v] = d}

∪ {〈ne
o, n

d
v〉 | 〈·, v, d〉 ∈ effs(o)}.

(a) Image from the ASG of the
PDDL representation.

(b) Image from the PDG of the
SAS+ representation.

Figure 1: Lifted (left) and grounded (right) representations
of task pfile01-001.pddl of BARMAN-OPT11.

Abstract Structure Graph
Using a ground SAS+ task as a basis for the PDG means
to obtain a representation that to some extent depends on
the used grounding and invariant synthesis algorithms. As
an alternative, we also consider the abstract structure graph
(ASG) (Sievers et al. 2017) that was defined for the compu-
tation of structural symmetries of PDDL tasks and used by
Sievers et al. to model planning tasks as abstract structures.
Definition 2 (Sievers et al., 2017). Let S be a set of symbols,
where each s ∈ S is associated with a type t(s). The set of
abstract structures over S is inductively defined as follows:
• each symbol s ∈ S is an abstract structure, and
• for abstract structures A1, . . . , An, the set {A1, . . . , An}

and the tuple 〈A1, . . . , An〉 are abstract structures.
Using the language L of a PDDL task Π, each part of Π

can inductively be defined as an abstract structure, with the
symbols of L forming the basic abstract structures. Finally,
abstract structures can be naturally turned into a graph.
Definition 3 (Sievers et al., 2017, fixed). Let A be an ab-
stract structure over S. The abstract structure graph ASGA
is a digraph 〈N,E〉, defined as follows.
• N contains a node A for the abstract structure A. If
N contains a node for A′ = {A1, . . . , An} or A′ =
〈A1, . . . , An〉, it also contains the nodes for A1, . . . , An.

• For every set (sub-)structure A′ = {A1, . . . , An} there
are edges A′ → Ai for i ∈ {1, . . . , n}.

• For every tuple (sub-)structure A′ = 〈A1, . . . , An〉, the
graph contains auxiliary nodes nA

′

1 , . . . , nA
′

n , edge A′ →
nA

′

1 and for 1 < i ≤ n edges nA
′

i−1 → nA
′

i . For each
component Ai, there is an edge nA

′

i → Ai.

Converting Graphs to Images
As the final step before being able to use off-the-shelf image
convolution tools for learning, we need to compute images
from graphs. Inspired by the character to pixel conversion of
Loreggia et al. (2016), we also chose to represent each task
by a grayscale image of a constant size of 128 ∗ 128 pixels.
For the conversion, we start with the adjacency matrix of the
graph 〈N,E〉, which is essentially a black&white image of
size |N |∗|N |. Then, we perform what we call bolding, an ad
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hoc technique that colors black the left, right, up, and down
neighbors of a black pixel, which helps preserving the graph
structure depicted in the image when shrinking it to a fixed
size. Next, we turn the image into grayscale by partitioning
the image to 3 ∗ 3 squares and turning each square into one
grayscale pixel. Finally, the size of the obtained grayscale
image is resized to the constant size using antialiasing. Fig-
ure 1 illustrates the different images we obtain for a task of
the BARMAN domain.

We remark that our approach of turning the adjacency
matrix into an image orders the graph nodes according to
their type. While this is a fixed order, which we deem useful
to obtain similar images for similarly structured graphs, the
choice of that order may impact the resulting representation
and other orders may result in images that “better” represent
the planning task. Furthermore, there might also be other
ways of overcoming the limitations of shrinking images to
a fixed size, and more generally, constructing images from
graphs. We leave exploring such alternatives as future work.

The Data
In this work we create an online portfolio for a predefined
collection of planners. At runtime, we choose a planner out
of that collection for a given task. This is essentially a clas-
sification task for which we use the planning task represen-
tation described in the previous section and image convolu-
tion, one of the best performing techniques for image clas-
sification. In the following, we describe the collections of
planners as well as the benchmark set that we use to create
data, for both training the model and testing its performance.
We further discuss how to represent the performance of cost-
optimal planners on the benchmarks, i.e, the total time until
an optimal solution was found (or not solved). Finally, we
discuss different approaches to data separation.

Component Planners
Decades of research on classical planning provide a huge
pool of available planners to any portfolio method. How-
ever, integrating many potentially very different planners
is a technical challenge and furthermore, it is usually not
easy to identify the contribution of each component to the
performance of the portfolio. Therefore, for our portfolio,
we picked the 17 planners from the Delfi portfolio, which
Katz et al. (2018) cherry-picked from cost-optimal planners
openly available prior to IPC 2018 and which they describe
in detail. To evaluate our approach on a larger set of (po-
tentially better) planners, we also include the other planners
that participated in the latest IPC 2018 (with the exception
of two planners that could not be built out of the box). These
additional 12 planners are Complementary1 (Franco et al.
2018), Complementary2 (Franco, Lelis, and Barley 2018),
DecStar (Gnad, Shleyfman, and Hoffmann 2018), FDMS1
and FDMS2 (Sievers 2018), Metis 2018 1 and Metis 2018
2 (Sievers and Katz 2018), Planning-PDBs (Moraru et al.
2018), Scorpion (Seipp 2018), SYMPLE 1 and SYMPLE
2 (Speck, Geißer, and Mattmüller 2018), and the IPC 2018
baseline, symbolic-bidirectional (Torralba et al. 2017).

Out of these planners, we consider three collections, to
also test the influence of their size: CD, the collection of 17

planners from Delfi, CA, the collection of all 29 available
planners, and CC , a minimal subset of CA which preserves
coverage of the training set. We compute CC by optimally
solving the corresponding set cover problem, which results
in a collection of 9 planners, 3 from Delfi (SymBA∗ 2014,
OSS HC-PDB, DKS B-MIASMdfp) and 6 from the IPC
2018 planners (Complementary1, Complementary2, Metis2,
Planning-PDBs, Scorpion, symbolic-bidirectional).

Planning Tasks
Our collection of tasks includes all benchmarks of the clas-
sical tracks of all IPCs as well as some domains from the
learning tracks. When domains were used in several IPCs,
we only used those of the latest IPC. We further include the
domains BRIEFCASEWORLD, FERRY, and HANOI from the
IPP benchmark collection (Köhler 1999), and the genome
edit distance (GEDP) domain (Haslum 2011). We also use
domains generated by the conformant-to-classical planning
compilation (T0) (Palacios and Geffner 2009) and the finite-
state controller synthesis compilation (FSC) (Bonet, Pala-
cios, and Geffner 2009). In addition to existing tasks of these
domains, we generated additional ones for some domains
where generators were available. To filter out too hard tasks,
we removed all tasks from the benchmark set that were not
solved by any of our planners. For full details of the used
benchmarks, please consult the Delfi planner abstract (Katz
et al. 2018). To obtain performance data of all planners, we
ran them on all planning tasks with a time bound of 1800
seconds and a memory bound of 7744 MiB (the latter being
the limit allowing to fully use all cores of our compute grid).

Planner Performance Representation
In the optimal track of the IPC, the only criterion that counts
is coverage. Therefore, we need to be able to predict whether
a planner from the portfolio will be able to solve the task
optimally within the given time and memory bounds. The
information we have, however, includes the runtime it takes
a planner to solve a planning task in our training set. There
are several possible ways of modeling (the final layer of) the
neural network for making such a prediction.

Our first two prediction methods use regression to predict
the runtime of a planner to solve a task optimally and then
pick the planner with minimum runtime. The first method,
called time, uses the raw runtime for tasks where a plan was
found within the time bound of 1800 seconds and 3600 to
encode that the task was not solved. The second method,
called normalized, uses the same logic but normalizes run-
times to [0, 1] and the additional value 2. In both cases, the
final layer contains a single neuron for each planner, each
with a linear activation function. Its output is a real value
predicting the (raw/normalized) runtime of the planner.

To escape the need for continuous variables, and to some-
what abstract the runtime information, our third method
models the runtimes as a small set of discrete values and
performs a multi-class classification for each planner. We
choose to partition the 1800 seconds into three 600 second
intervals and use an additional value for tasks not solved.
For this method, called discrete, the final layer contains four
neurons for each planner. Each neuron stands for one of the
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Figure 2: Graphical visualization of the CCN models. The
final layer contains x neurons, which depends on the used
planner collection C: for the methods time, normalized, and
binary, x = |C|, and for the method discrete, x = 4|C|.

four classes and uses a sigmoid activation function. Its out-
put is a real value in [0, 1] which represents the confidence
that the associated discrete value is the right time interval
prediction for the corresponding planner. For each planner,
we compute the average over the discrete values weighted
with their predicted confidence levels and choose a planner
that minimizes this weighted average.

Finally, the fourth method fully abstracts away the infor-
mation about the actual runtime, encoding only whether the
task was solved by a planner. This corresponds to a binary
classification for each planner. For this method, called bi-
nary, the final layer contains a single neuron for each plan-
ner, each with a sigmoid activation function. Their output is
is a real value in [0, 1] that represents the confidence that the
planner solves the task within the time bound. We choose a
planner that maximizes this value.

The rationale behind exploring different levels of abstrac-
tion of the performance data is twofold. First, it might be
the case that the amount of data is not sufficient to learn a
meaningful model on the least abstract level. In such cases,
purportedly, the more we abstract the time domain, the less
data should be needed for learning. Second, it is sensible to
assume that there is not much difference in terms of per-
formance between planners that report solving a given task
in under, say, 10 seconds. The actual measure might not be
exact, and may vary, depending on multiple factors beyond
our control. Assuming that the same logic carries over to the
predicted results, choosing either of these planners should
not make a big difference.

Data Separation
When learning a portfolio, the first decision one needs to
make is how to separate the data into training and test sets.
Since in domain-independent planning the domains are of-
ten unknown a priori, we decided to use the domains from
IPC 2018 as the test set. The rest of the tasks are referred as

domain-preserving split random split
CD CA CC CD CA CC

decay 0.089 0.089 0.055 4.3e-5 3.2e-5 1.5e-4
momentum 0.73 0.73 0.25 0.95 0.94 0.95
nesterov 1 1 1 1 1 1
learning rate 0.085 0.085 0.07 0.0058 0.0065 0.005
batch size 85 85 89 101 53 56
convolution filter size 3 3 5 6 2 2
dropout rate 0.48 0.48 0.39 0.49 0.49 0.5
pool filter size 3 3 2 1 1 4

Table 1: Hyper-parameters for the binary method.

the training set. This separation thus recreates the scenario
of the actual IPC 2018, where competitors could use all pre-
viously available benchmarks for preparing their planners,
and planners were then evaluated on the new benchmarks.

It is common in many learning tasks to further separate the
training set, taking out a validation set. The rationale behind
this is that the validation set serves as a good representation
of the test set, and thus all decisions taken based on the val-
idation set will hold for the test set. This, however, works
under the assumption of independent identically distributed
(i.i.d.) data, which breaks for planning tasks that come from
various domains, and even the tasks within each domain are
typically not i.i.d. Further, the domains of the IPC 2018 (our
test set) were all new (in contrast to some previous IPCs that
reused domains) and, to some extent, structurally very dif-
ferent from old domains (in our training set). For instance,
many of the tasks introduced in the IPC 2018 have actions
with a much larger number of conditional effects than previ-
ous tasks, which also directly impacts the PDGs/ASGs and
with that, the image representations of these tasks.

Given that we want to generalize to unseen domains that
are potentially different from our training data, we investi-
gate the question whether a random separation of the train-
ing data into training and validation set should keep tasks of
the same domain together in one of the sets. We call the two
variants random split and domain-preserving split. One con-
jecture is that domain-preserving splits should better reflect
the scenario of testing on unknown, structurally different do-
mains. A further interesting question to be asked is whether
the validation set, and thus, any form of validation, is even
needed at all, since in our case it likely does not represent
the test set very accurately. We evaluate all of these options
experimentally.

The data set described in this section is available online.1

Coming up with a Model
In this section, we describe how to build a model for combi-
nations of prediction methods, planner sets, and data separa-
tion. The training is performed on NVIDIA(R) Tesla(R) K80
GPUs. The evaluation on the test set boils down to classify-
ing tasks from the test set and looking up the performance
of the selected planner on that task. To save space, in what
follows we present only the results of representing planning
tasks by ASGs, i.e., using the lifted PDDL representation,
which also performed better in the IPC 2018. Our experi-

1https://github.com/IBM/IPC-image-data
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time normalized discrete
domain-preserving split random split domain-preserving split random split domain-preserving split random split
CD CA CC CD CA CC CD CA CC CD CA CC CD CA CC CD CA CC

β1 0.975 0.99 0.98 0.96 0.96 0.89 0.89 0.6 0.67 0.99 0.77 0.91 0.99 0.93 0.99 0.99 0.98 0.98
β2 0.99 0.99 0.99 0.99 0.99 0.999 0.999 0.99 0.995 0.99 0.99 0.99 0.99 0.998 0.9995 0.99 0.99 0.9998
ε 9.7e-9 9.9e-9 9.9e-9 4.6e-9 4.6e-9 5.1e-9 7.8e-9 5.85e-9 9.8e-9 9.99e-9 7.7e-9 9.9e-9 9.98e-9 4.5e-10 9.85e-9 9.85e-9 9.9e-9 2.5e-10
learning rate 7e-4 5e-4 6e-4 0.0049 0.0049 0.0041 0.0043 0.0049 0.0036 0.0015 5e-4 5e-4 5e-4 8e-4 5e-4 6e-4 5e-4 5e-4
batch size 124 113 53 70 70 84 85 95 89 63 58 65 94 119 114 123 77 101
convolution filter size 2 2 2 3 3 3 3 6 5 3 5 2 6 5 2 2 6 6
dropout rate 0.49 0.16 0.49 0.34 0.34 0.47 0.48 0.49 0.38 0.16 0.16 0.48 0.10 0.43 0.11 0.50 0.49 0.50
pool filter size 1 2 1 2 2 4 3 1 2 2 5 2 1 4 1 1 4 4

Table 2: Hyper-parameters for the time, normalized, and discrete methods.

ments with the ground representation using PDGs showed
similar behavioral trends.

Model Architecture
For our models, we employ a simple convolutional neural
network (CNN) (LeCun, Bengio, and Hinton 2015) con-
sisting of one convolutional layer, one pooling layer, one
dropout layer, and one hidden layer. The main reason to
choose a network with few parameters is to reduce the
chances of overfitting given the limited amount of available
data. Figure 2 shows the structure of the CNN for all predic-
tion methods. The number of neurons in the last layer equals
the number of planners in the chosen collection, multiplied
by 4 when using the prediction method discrete.

For the prediction methods time and normalized, the
CNNs are trained by optimizing for mean squared error. For
the other two methods, discrete and binary, the CNNs are
trained by optimizing for binary cross-entropy (Rubinstein
1997). For binary, the optimizer used is Stochastic Gradi-
ent Decent, while for the other three methods, we use the
Adam optimizer (Kingma and Ba 2015). Our tool of choice
for training is Keras (Chollet 2015) with Tensorflow as a
back end.

Model Selection Strategies
Although our CNNs are rather simple, they still feature a
range of model hyper-parameters, which are fine-tuned em-
ploying the approach by Diaz et al. (2017). Each step of
the algorithm uses a 5-fold cross-validation, separating the
training data into 5 subsets consisting of 20% of the data
each. We optimize hyper-parameters once for each of the
four prediction methods, two data separation techniques, and
three planner collections, which results in 24 different pa-
rameters settings. In order to facilitate reproducibility of our
results, and to allow our methods to be transferred to other
settings, Tables 1 and 2 summarize the parameters obtained
for these 24 settings.

Experimental Evaluation
With the hyper-parameters for the 24 settings fixed, we train
the models either on a subset of the training set according to
the split strategy of the setting, or on the entire training data
(no validation). In the former case, we train 10 models by
separating the training data into 10 folds. Each fold serves
once for selecting the best model trained on the remaining
folds. By that, we hope to alleviate the problem of possibly

domain-preserving split random split
validation no validation validation no validation

mean std mean std mean std mean std

time
CD 50.0 4.4 57.3 1.6 57.5 1.5 57.5 0.0
CA 48.7 4.4 49.9 2.7 50.8 3.4 48.8 0.9
CC 52.6 3.9 50.5 2.2 50.7 3.9 50.3 2.3

normalized
CD 50.9 4.4 53.8 2.0 55.4 3.1 54.9 3.1
CA 51.8 3.7 50.5 2.6 48.8 1.2 49.3 1.8
CC 49.5 5.6 50.2 2.1 50.0 1.3 50.3 1.8

discrete
CD 49.5 4.0 53.7 5.9 53.9 3.3 54.1 3.0
CA 55.4 3.4 52.7 2.2 53.9 3.8 53.7 5.1
CC 50.5 1.6 51.6 3.1 58.3 5.2 53.3 1.4

binary
CD 49.6 4.0 50.2 1.4 52.0 3.3 50.3 1.1
CA 50.4 4.7 48.9 1.8 49.9 2.2 49.6 1.5
CC 53.4 3.0 49.2 2.2 52.3 2.7 51.7 3.6

Table 3: Coverage of all 48 planners as the percentage of all
240 tasks in the test set, showing mean and standard devia-
tion over the 10 models of each planner.

being (un)lucky with partitioning the training data. In the
latter case, we train 10 times on the same data, taking each
time the best model on that data. Thus, in both cases, we end
up with 10 models for each of the 48 settings. We treat these
as 48 randomized planners, run 10 times each.

Before reporting results, we briefly discuss the setting
used to train Delfi. Regarding prediction, Delfi used the
binary method. Regarding data separation, Delfi used a
domain-preserving split (for hyper-parameter optimization)
and no validation. The domain-preserving split is hand-
picked, using all domains from IPCs up to 2011 as the train-
ing set and those from IPC 2014 as validation set. We did not
reproduce the same setting in our experiments because we
considered using a hand-crafted data split to not adhere to
good machine learning practice. For completeness, we still
report and compare against the performance of Delfi1.

Table 3 shows coverage of all 48 planners as the percent-
age of the 240 tasks of the test set (IPC 2018 domains),
showing mean and standard deviation over the 10 models
of each planner. In the following, we begin with comparing
the different variants of our techniques against each other.
To do so, we compare pair-wise each variant of the same
technique, keeping everything else the same. Table 4 show
matrices where each entry in row x and column y shows the
number of settings where method x achieves a higher aver-
age coverage than method y.

First, we compare the four performance representation
methods (cf. Table 4a). The discrete method compares fa-
vorably against all other methods in most of the settings, and
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t n d b
time - 7 5 7
normalized 4 - 4 7
discrete 7 8 - 10
binary 5 5 2 -

(a) Prediction methods.

CD CA CC
CD - 12 10
CA 3 - 6
CC 6 10 -

(b) Planner collections.

domain-preserving split random split
validation no validation validation no validation

dom-pres. split & val. - 5 5 5
dom-pres. split & no val. 7 - 2 3
random split & val. 7 10 - 8
random split & no val. 7 9 3 -

(c) Data split strategies with/without validation.

Table 4: Pair-wise comparison of different methods. An
entry in row x and column y denotes the number of set-
tings (out of 12/16/12 settings for parts (a)/(b)/(c)) in which
method x is better than method y. An entry is bold if x is
better than y more often than vice versa.

conversely, binary is worse than all other methods in most of
the settings. However, there is no strict dominance between
the methods, and the number of settings where one is better
than the other is often close. Still, we think that the discrete
method might be a good way of abstracting some informa-
tion on runtime of planners, while still taking it into account
(in contrast to binary).

Second, we evaluate using different planner collections
(cf. Table 4b). Here, using the planners that Delfi trained on,
CD, results in clearly better performance compared to using
the extended planner collection CA and the minimum set of
planners to cover the training set, CC . CA and CC perform
similarly to each other, with CC having a slight advantage.
Clearly, our assumption that a richer set of planners, with
a higher possible coverage, should result in better perfor-
mance does not hold on average. It is also worth noting that
the best overall performance, with a mean of 58.3%, is ob-
tained for a setting that uses the reduced collection CC , how-
ever with the highest standard deviation of 5.2%. We think
that CA might contain too many planners for the relatively
low amount of data in our training set, which resulted in
models trained on CD and, to a lesser extent, on CC , making
better predictions more often.

Third, we compare the two data split strategies and the op-
tion to use validation or not, given a data split strategy (cf.
Table 4c). We observe that using a random split with vali-
dation compares favorably in most of the settings, followed
by using a random split without validation, leaving random
domain-preserving split strategies behind. However, there
again is no strict dominance between the different strate-
gies, and our conjecture that domain-preserving splits better
reflect the test set does not seem to hold on average.

We now proceed with comparing our models against some
baseline planners. Table 5 shows coverage, again as the per-
centage of the 240 tasks of of the test set (IPC 2018 do-
mains): The first three entries (two columns each) report
mean and standard deviation over 1000 randomly picked
planners from each collection. The next three entries show

rnd. CD rnd. CA rnd. CC oracle best
mean std mean std mean std CD CA CC C2 Sym Delfi1
42.8 8.3 45.0 8.8 50.3 9.8 67.9 72.1 70.8 58.3 57.1 60.0

Table 5: Coverage as the percentage of all 240 tasks in the
test set: mean and standard deviation over 1000 randomly
chosen planners of each collection; oracle coverage of each
collection; three individual planners

oracle coverage of each collection. The last three entries
show coverage of individual planners, namely Complemen-
tary2 (C2), the best performer on the test set from CA and
CC , Sym (SymBA∗), the best performer on the test set from
CD, and Delfi1, the winner of the cost-optimal track of IPC
2018. Note that these planners are not the best planners on
the entire training set, where DKS-LMcut is the best plan-
ner from CD, solving 1956 out of 2530 tasks compared to
SymBA* which solves 1856 tasks, and Scorpion is the best
planner from CA and CC , solving 2079 out of 2530 tasks
compared to Complementary2 which solves 2030 tasks.

First, comparing against the random baseline for each col-
lection, we observe that our results with CD and CA strictly
dominate. However, using CC , there are 6 out of 16 set-
tings where performance is worse than the random baseline.
While not shown in the tables, we also verified that our mod-
els are consistent w.r.t. planner selection: on average, they
selected a single planner in [4.95± 3.1] domains, 2 planners
in [2.21±1.52] domains, 3 planners in [1.42±1.19] domains,
and 4 or more planners in the remaining ~3 domains.

Next, we compare against the upper end of the spectrum,
namely the best planner of each collection. Using CD, 3 out
of 16 settings are better than SymBA∗, the best planner of
CD, and the two best settings of these beat SymBA∗ with 10
respectively 8 out of 10 models. Using the other two collec-
tions, none of our settings are better than Complementary2
on average (6 out of 10 models of the best setting for CC
and 3 out of 10 models of the best setting for CA beat Com-
plementary2). More generally, comparing against the per-
formance of the best (oracle) planners, we see that there is
still lots of room for improvement for all of the settings we
tested.

Finally, we compare our models against Delfi1, the win-
ner of the optimal track of IPC 2018. Clearly, all of our
settings fall behind on average compared to its coverage of
60%. Our best performing setting (58.3%) has 6 out of 10
models with performance superior to Delfi1, and overall,
13 out of the 480 models perform better than Delfi1, with
a peak coverage of 63.3%. The setting of our experiments
that corresponds to that of Delfi1 (domain-preserving split,
no validation, planner collection CD) only achieves a mean
coverage of 50.2%. The key difference to Delfi1 seems to
be the hand-crafted domain-preserving split used by Delfi1
which separates domains according to IPCs, that presumably
resulted in particularly good hyper-parameters. In this work,
we decided to do a proper cross-validation instead. Another
difference came apparent in some preliminary experiments
where we retrained Delfi1 under its original setting: due
to randomization in both hyper-parameter optimization and
network training, the performance varied a lot.
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Discussion and Future Work
In this work, we presented a method to apply deep learn-
ing techniques to task-dependent planner selection for cost-
optimal planning. For that, we introduced a principled way
of representing planning tasks which is consumable by ex-
isting deep learning techniques. Focusing on one such tech-
nique, image convolution, we explored the space of possible
ways to derive a model for classifying planning tasks. Aim-
ing at presenting the reader with some of the issues that arise
when the basic assumptions do not hold for existing data,
we also explored various possibilities of resolving these is-
sues and empirically evaluated the resulting models. Our re-
sults show that there is no single recipe that works well for
all tested methods. In fact, the same recipe that Delfi1 used
(modulo using a different data split strategy) was found to
not be the top performer among the tested methods. Further-
more, also the best of our settings did not reach the actual
performance of Delfi1 on average.

One likely reason is that machine learning algorithms
(both for hyper-parameter optimization and network train-
ing) are heavily randomized. For instance, the outcome of
network training, at least in our case, depends heavily on the
initial random assignment to the network variables. This re-
sults in a large variance in the outcome, as verified in prelim-
inary experiments aimed at retraining the model of Delfi1.
Thus, further research is needed into ways of performing
hyper-parameter optimization and model construction that
produce a more stable outcome.

The second likely reason is the hand-crafted domain-
preserving split used by Delfi1. The corresponding setting
in our experiments, using a random domain-preserving split
instead of the hand-crafted one, results in mean coverage
significantly worse than that of Delfi1. The problem behind
finding meaningful data splits in our scenario is that the most
basic assumption of machine learning, which is that the data
is distributed i.i.d., does not hold for planning. As a result,
the common practices in machine learning may and should
be questioned when applied in this setting.

One example is the way a model is selected. The common
practice is to choose the model that gives the best perfor-
mance on a validation set, which is separated from the train-
ing set prior to the learning phase. The assumption is that the
validation set is a good representative of the test set. This as-
sumption, however, does not hold in our case. To exemplify,
one phenomenon that we observed when separating training
data into training and validation set is that the best model
chosen on the training set sometimes performed better than
the one chosen on the validation set. In other words, it can be
beneficial to completely ignore the data in the validation set.
Consequently, more research is needed for both the question
of how to split the training data of planners into a training
and validation set, and for when (not) to use a validation set.

In this work, we focused on generalizing to previously
unseen domains, a setting used in planning competitions. In
real life, however, in many cases, there is a need for solving
tasks that are either new instances of existing domains or
slight modifications of previously seen tasks. In such cases,
some of the issues we experienced might not appear, or be-
come less significant. For instance, although such data sets

are still not i.i.d., the test data would be much more simi-
lar to the training data than in our setting. Furthermore, the
amount of training data used in this work is relatively small
by machine learning standards. Generating more data should
allow using larger planning collections as components for
the trained models, in turn improving the overall potential
of these models.

More generally, we also see potential future work in ex-
ploring alternative network architectures, leaving behind the
restriction to a simplistic architecture used for image convo-
lution that we used in this work. More sophisticated archi-
tectures might be effective in discovering important features
of planning tasks out of the task representation.

Concerning task representations, our findings clearly
demonstrate that they indeed represent the tasks and that
they serve well for task classification. However, our rather
ad hoc approach to constructing images from graphs can
certainly be improved. Furthermore, the chosen task repre-
sentation is not the only possible image representation for
planning tasks, and image convolution is not the only tech-
nique that can be applied to the chosen task representation.
Exploring other task representations and other techniques to
learn from these representations is a promising research di-
rection.

For example, we could use the graph representation di-
rectly, employing graph convolution techniques. Toyer et al.
(2018) use what they call “action schema networks” for rep-
resenting probabilistic planning tasks. Ma et al. (2018) use
the graphs of our data set in an initial study to directly train
networks on them. Alternatively, it should also be possible to
learn a good representation of a planning task, which would
require a way to evaluate the “quality” of a given representa-
tion. We have only started exploring this direction and hope
that our work will inspire other researchers to work on this
problem.

Finally, since none of the ingredients of our approach is
restricted to classical planning, our techniques can also di-
rectly be transferred to planning settings beyond the classi-
cal one, given that there exist suitable graph or image repre-
sentations of non-classical tasks.

Acknowledgments
This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications” (SSX).

References
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Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 planner abstracts,
38–45.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
deep reactive policies for probabilistic planning problems.
In Proc. ICAPS 2018, 422–430.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning. In
IPC-9 planner abstracts, 57–64.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In Proc. ICLR 2015.
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Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Proc. AAAI 2018, 6294–6301.
Vallati, M. 2012. A guide to portfolio-based planning. In
Proc. MIWAI 2012, 57–68.

7723


