
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

On Testing of Uniform Samplers∗†

Sourav Chakraborty
Indian Statistical Institute

Kolkata

Kuldeep S. Meel
School of Computing

National University of Singapore

Abstract

Recent years have seen an unprecedented adoption of arti-
ficial intelligence in a wide variety of applications ranging
from medical diagnosis, automobile industry, security to air-
craft collision avoidance. Probabilistic reasoning is a key
component of such modern artificial intelligence systems.
Sampling techniques form the core of the state of the art prob-
abilistic reasoning systems.

The divide between the existence of sampling techniques that
have strong theoretical guarantees but fail to scale and scal-
able techniques with weak or no theoretical guarantees mir-
rors the gap in software engineering between poor scalability
of classical program synthesis techniques and billions of pro-
grams that are routinely used by practitioners. One bridge
connecting the two extremes in the context of software engi-
neering has been program testing. In contrast to testing for
deterministic programs, where one trace is sufficient to prove
the existence of a bug, in case of samplers one sample is typ-
ically not sufficient to prove non-conformity of the sampler
to the desired distribution. This makes one wonder whether
it is possible to design testing methodology to test whether a
sampler under test generates samples close to a given distri-
bution.

The primary contribution of this paper is an affirmative
answer to the above question when the given distribution
is a uniform distribution: We design, to the best of our
knowledge, the first algorithmic framework, Barbarik, to test
whether the distribution generated is ε−close or η−far from
the uniform distribution. In contrast to the sampling tech-
niques that require an exponential or sub-exponential number
of samples for sampler whose support can be represented by
n bits, Barbarik requires only O(1/(η − ε)4) samples. We
present a prototype implementation of Barbarik and use it to
test three state of the art uniform samplers over the support
defined by combinatorial constraints. Barbarik can provide a
certificate of uniformity to one sampler and demonstrate non-
uniformity for the other two samplers.

∗The author list has been sorted alphabetically by last name;
this should not be used to determine the extent of authors’ contri-
butions.
†An extended version of the paper along with open source tool

is available at https://github.com/meelgroup/barbarik
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 Introduction
Recent years have seen an unprecedented adoption of artifi-
cial intelligence (AI) in a wide variety of applications rang-
ing from medical diagnosis, automobile industry, security to
aircraft collision avoidance. Such an unprecedented prolif-
eration owes to the ability of modern AI-based systems to
almost match human or surpass human abilities for several
complex tasks. Probabilistic reasoning is a key component
of such modern artificial intelligence systems. The usage of
AI-based systems in domains where the decisions can have
significant consequential effects on our lives has highlighted
the need for verification and testing of AI systems (Seshia,
Sadigh, and Sastry 2016). The modern AI systems signifi-
cantly differ from traditional systems in their ability to learn
and usage of probabilistic reasoning. In traditional verifica-
tion, a trace of execution of a program is sufficient to prove
existence of a bug. Such is not the case for AI systems whose
behavior is inherently probabilistic. This has led to the call
of development of randomized formal methods for synthe-
sis, verification, and testing of AI systems. In this paper, we
focus on a core component employed in the construction of
modern AI systems: sampling from a discrete distribution
specified by a probabilistic model.

The sampling techniques based on Monte Carlo Markov
Chain (MCMC) techniques are employed to sample from the
posterior distribution represented by the probabilistic model
under consideration (Jerrum and Sinclair 1996). The cor-
rectness of such sampling methods requires that the under-
lying Markov Chain mixes properly (Jerrum and Sinclair
1996). Since mixing times of the underlying Markov Chains
are often exponential, several heuristics have been proposed
over the years. While the heuristics would not provide theo-
retical guarantees of mixing in polynomial time, such tech-
niques tend to behave well in practice. On the other end
of the spectrum of lie a wide spectrum of approaches such
as variational inference (Jordan et al. 1999), rejection sam-
pling (Gilks and Wild 1992), importance sampling (Neal
2001), hashing-based techniques (Chakraborty, Meel, and
Vardi 2013; Ermon et al. 2013b; Chakraborty et al. 2015a),
and the like.

Given the computational intractability of sam-
pling (Koller and Friedman 2009), the implementation
of different paradigms often resort to the usage of heuris-
tics (Koller and Friedman 2009). The widespread usage of

7777

heuristics in different sampling-based techniques creates
a gap between theory and practice: In theory, heuristics
would nullify guarantees while in practice the heuristics
seem to work well for problems arising from real-world
instances (Koller and Friedman 2009). Often statistical tests
are employed to argue for the quality of distributions, but
such statistical tests are usually performed on a very small
number of samples for which no theoretical guarantees exist
for their accuracy (Dutra et al. 2018). In contrast to testing
for deterministic programs, where one trace is sufficient
to prove the existence of a bug; such is not the case for
samplers as one sample is typically not sufficient to prove
non-conformity of the sampler to the desired distribution.
This makes one wonder whether it is possible to design
testing methodology to test whether a sampler under test
generates samples close to a given distribution.

The primary contribution of this paper is an affirmative
answer to the above question when the given distribution
is a uniform distribution: We design, to the best of our
knowledge, the first algorithmic framework, Barbarik1, to
test whether the distribution generated is ε−close or η−far
from the uniform distribution. In contrast to the sampling
techniques that require the exponential or sub-exponential
number of samples for sampler whose support can be rep-
resented by n bits, Barbarik requires only O(1/(η − ε)4)
samples.

The key technical ideas in the design of Barbarik sit at
the intersection of property testing and constrained count-
ing, in particular, from the works on conditional sam-
pling (Chakraborty et al. 2016; Canonne, Ron, and Servedio
2015; Chakraborty et al. 2015b). The design of Barbarik, to
the best of our knowledge, is among one of the first usage of
property testing in the context of verification.

To demonstrate practical efficiency of Barbarik, we de-
veloped a prototype implementation in Python and sought
out to test three state of the art uniform samplers. Given
the ubiquity of applications of uniform sampling, the three
samplers under test were drawn from different domains with
different underlying techniques: (i) SearchTreeSampler
was designed to sample from highly challenging domains
such as energy barriers and highly asymmetric spaces and
was shown to outperform traditional approaches based on
stimulated annealing and Gibbs sampling (Ermon, Gomes,
and Selman 2012), (ii) Quicksampler was designed in the
context of software testing and employs usage of ran-
dom perturbations for sampling (Dutra et al. 2018), and
(iii)UniGen2 was designed in the context of constrained ran-
dom simulation and employs universal hashing-based tech-
niques (Chakraborty, Meel, and Vardi 2013; Chakraborty et
al. 2015a). While SearchTreeSampler and Quicksampler
do not have formal guarantees of uniformity, UniGen2 pro-
vides guarantees of almost-uniformity. Another motivation
for choice of the above three samplers was recent compari-
son of their uniformity based on statistical tests, which failed
to distinguish between the samplers (Dutra et al. 2018). In

1In Indian mythology, Barbarik’s head watched the entire Ma-
habharata war and was suggested as a judge by Krishna to settle
arguments among Pandavas about their contribution to the victory.

contrast, Barbarik can provide the certificate of uniformity
to UniGen2 demonstrate non-uniformity for the other two
samplers.

Given the ubiquity of sampling-based techniques, we be-
lieve that Barbarik will allow developers of heuristics to test
the quality of their samplers and accordingly tune their sam-
plers akin to the way testing framework supports code de-
velopment in software engineering.

2 Notations and Preliminaries
A literal is a Boolean variable or its negation. Let ϕ be a
Boolean formula in conjunctive normal form (CNF), and let
X be the set of variables appearing in ϕ. The set X is called
the support of ϕ, denoted by Supp(ϕ). Given an array a,
a[i : j] represents the sub-array consists of all the elements
of a between indices i and j. A satisfying assignment or
witness, denoted by σ, of is an assignment of truth values
to variables in its support such that ϕ evaluates to true. A
satisfying assignment is also represented as a set of literals.
For S ⊆ X , we use σ↓S to indicate the projection of σ over
the set of variables S. We denote the set of all witnesses of
ϕ as Rϕ. For notational convenience, whenever the formula
ϕ is clear from the context, we omit mentioning it.

2.1 Uniform Generators
We use Pr [X] to denote the probability of event X . Given a
Boolean formula ϕ, a probabilistic generator G of witnesses
of ϕ is a probabilistic algorithm that generates a random wit-
ness in Rϕ. We use pG(ϕ, x) to denote the probability that
G(ϕ, ·) generates x. We useDG(ϕ) to denote the distribution
induced by G over the solution set of ϕ. For a set T ⊆ Rϕ,
we use DG(ϕ) | T to denote the distribution DG(ϕ) condi-
tioned on the set T .
Definition 1. Given a Boolean formula ϕ, A uniform gener-
ator Gu(ϕ) is a probabilistic generator that guarantees

∀y ∈ Rϕ,Pr [Gu(ϕ) = y] = 1/|Rϕ|, (1)

Definition 2. Given a Boolean formula ϕ and tolerance pa-
rameter ε, Gaau(ϕ, ε) is an additive almost-uniform gener-
ator (AAU) if the following holds:

∀y ∈ Rϕ,
1− ε
|Rϕ|

≤ Pr [Gau(F, ε) = y] ≤ 1 + ε

|Rϕ|
(2)

Definition 3. A multiplicative almost-uniform generator
(MAU) Gamu(·, ·) if the following holds:

∀y ∈ Rϕ,
1

(1 + ε)|Rϕ|
≤ Pr [Gau(F, ε) = y] ≤ 1 + ε

|Rϕ|
(3)

where ε > 0 is the specified tolerance. Note that every MAU
is an AAU but not vice versa.
Definition 4. A near-uniform generator Gnu(·) further
relaxes the guarantee of uniformity, and ensures that
Pr [Gnu(ϕ) = y] ≥ c/|Rϕ| for a constant c, where 0 < c ≤
1.

Probabilistic generators are allowed to occasionally “fail”
in the sense that no witness may be returned even if Rϕ is
non-empty. The failure probability for such generators must
be bounded by a constant strictly less than 1.

7778

Definition 5. Given a Boolean formula ϕ and an intol-
erance parameter η an generator G(ϕ, .) is η-far from
uniform generator if the `1-distance (or, twice the varia-
tion distance) DG(ϕ) from uniform is at least η. That is,∑
x∈Rϕ

∣∣∣pG(ϕ,x) − 1
|Rϕ|

∣∣∣ ≥ η.
2.2 Sampler Verifier
Definition 6. Given a Boolean formula ϕ, a sampler G, tol-
erance parameter ε, an intolerance parameter η, a sampler
verifier T (·, ·, ·, ·) returns ACCEPT or REJECT (with a wit-
ness) with the following guarantees:

1. If the sampler G(ϕ, ε) is an additive almost-uniform gen-
erator (AAU), then T (G,ϕ, ε, η) returns ACCEPT with
probability at least 1− δ

2. If the sampler G(ϕ, ε) is η-far from uniform generator,
then T (G,ϕ, ε, η) returns REJECT with probability at
least 1− δ
The focus of this paper is design a sampler verifier T .

2.3 Maximum-Likelihood Estimator
Maximum-Likelihood Estimation (MLE) is a standard tech-
nique for estimating parameters of a distribution. One par-
ticular case is using MLE for estimating the probability of
a Bernoulli distribution, which is a well-studied area as it is
same as estimating the bias of a biased coin. In this case
the maximum-likelihood estimator simple tosses the coin n
times and outputs n1/n as the estimate of the bias, where,
n1 is the number of times it observes HEAD in the n coin
tosses. The following guarantee follows easily from the con-
centration inequalities like Chernoff Bound.

Lemma 1. If a biased coin, with probability p of falling
HEADS, is tossed n times then with probability eO(γ2n) the
estimate n1/n is within an additve error of γ from p, where,
n1 is the number of heads observed. That is, p−γ ≤ n1/n ≤
p+ γ.

Optimizing the constants, we have that if n = 1/9γ2 then
with probability 1/2 the estimate is within an additive error
of γ. We use the following definition:

Definition 7. Let M(γ) be the number of times a biased
coin has to be flipped to estimate the bias up to ±γ with
probability ≥ 1/2. Note that we have that M(γ) is at most
1/9γ2.

Note that if the number of tosses is M(γ) × m then the
probability that the additive error is less than γ is at least
(1− (1/2)m).

2.4 Chain Formulas
Our work uses a special class of Boolean formulas, called
chain formulas, which were introduced in (Chakraborty et
al. 2015b) and inductively defined as follows. Every literal
(i.e., a variable or its complement) is a chain formula. Be-
sides, if l is a literal and ψ is a chain formula in which nei-
ther l nor ¬l appears, then (l ∨ψ) and (l ∧ψ) are also chain
formulas. Note that chain formulas can be represented as

l1 C1 (l2 C2 (· · · (ln−1 Cn−1 ln) · · ·)), where the li’s are lit-
erals and every Ci is either the connector “∨” or the con-
nector “∧”. It is easy to see from De Morgan’s laws that if
ψ is a chain formula, then so is ¬ψ. The following lemma
show that every chain formula can be efficiently represented
in both CNF and DNF.
Lemma 2. (Chakraborty et al. 2015b) Every chain formula
ψ on n variables is equivalent to a CNF (resp., DNF) for-
mula ψCNF (resp., ψDNF) having at most n clauses. In addi-
tion, |ψCNF| (resp., |ψDNF|) is in O(n2).

Let m > 0 be a natural number, and k < 2m be a positive
odd number. Let c1c2 · · · cm be the m-bit binary represen-
tation of k, where cm is the least significant bit. We then
construct a chain formula ϕk,m(·) on m variables a1, . . . am
as follows. For every j in {1, . . .m− 1}, let Cj be the con-
nector “∨” if cj = 1, and the connector “∧” if cj = 0.
Define

ψk,m(a1, · · · am) = a1 C1 (a2 C2(· · · (am−1 Cm−1 am) · · ·))

For example, consider k = 5 and m = 4. The bi-
nary representation of 5 using 4 bits is 0101. Therefore,
ϕ5,4(a1, a2, a3, a4) = a1 ∧ (a2 ∨ (a3 ∧ a4)). The following
lemma shows that ψk,m(·) has exactly k satisfying assign-
ments.
Lemma 3. (Chakraborty et al. 2015b) Let m > 0 be a nat-
ural number, k < 2m , and ψk,m as defined above. Then
|ψk,m| is linear in m and ψk,m has exactly k satisfying as-
signments.

3 Background
Since sampling techniques form the core of the state of the
art inference techniques, researchers have investigated sev-
eral practical approaches to designing samplers. With the
proposal of every new sampling techniques, a significant
effort is put for the evaluation of the proposed techniques.
The literature bears testimony to the focus on runtime per-
formance comparison of the proposed technique with the
previous state of the art (See, for example (Chakraborty,
Meel, and Vardi 2013; Ermon et al. 2013a; Meel 2014;
Chakraborty et al. 2015a; Meel 2017; Dutra et al. 2018;
Sharma et al. 2018; Achlioptas, Hammoudeh, and Theodor-
opoulos 2018)). On the other hand, there is a less rigorous
evaluation of the quality of generated samples. The hardness
of testing properties of distribution is a major contributor to
such a trend.

In most of the published articles, whenever the quality of
the of the output distribution DG(.) (for a given probabilis-
tic generator G is tested), the standard techniques applied
are various versions of χ2-tests. That is, the tests involve
studying various parameters about the frequency vector of
the outputs of the algorithms when run on various bench-
mark data. For example, in (Kitchen and Kuehlmann 2007;
Dutra et al. 2018) the authors look at the number of unique
outputs from various samplers to argue about the quality of
the distribution. All these standard tests run the generator on
a benchmark test input ϕ and collect a number of outputs of
the generator on that particular formula ϕ and then analyses
the output. Or in other words, the tester draws a number of

7779

samples according to the distribution DG(ϕ), for a particular
ϕ, and then analyses the samples to come up with a decision
on the quality of the distribution. The testers might run this
test on multiple differentϕ. Unfortunately, (Batu et al. 2013)
proved that any test that uses only random samples from the
distribution and would with probability at least (1 − δ), ac-
cept the distribution if it is ε-close to the uniform distribution
and, with probability at most δ accept if the distribution is η-
far from uniform would need Ω(

√
|Rϕ| log(δ−1)/(η − ε)2)

samples. Since, for most benchmark input ϕ the set Rϕ is
large, typically larger than 250, the number of samples that
is used to prove the quality of the distribution is usually not
sufficient to provide rigorous guarantees.

Since testing whether a distribution is a uniform by draw-
ing samples from the distribution is very expensive (and
hence impractical), a number of other sophisticated ways
to access the distribution has been studied in the subject of
property testing (Batu et al. 2005; Batu, Kumar, and Rubin-
feld 2004; Chakraborty et al. 2010). Either the models were
very theoretical (and not practically implementable) or the
models did not help in significantly reducing the number of
samples needed.

Recently, (Chakraborty et al. 2016) and (Canonne, Ron,
and Servedio 2015) proposed a new model called condi-
tional sampling They showed that in this new model if one
has access to conditional sampling from the distribution then
the number of samples needed to test if a distribution is ε-
close to uniform or η-far from uniform is O(log(δ−1)/(η −
ε)2), that is, it is independent of the size of the domain on
which the distribution is supported. Since then, the condi-
tional sampling model has been used to show significant the-
oretical improvements for testing various properties of dis-
tributions, but, no one has used the model to implement a
tester in real life. The primary challenge is to draw condi-
tional samples from a distribution, which we address in the
next Section.

4 Barbarik Algorithm
We now discuss the primary contribution of this paper: a
novel algorithmic framework, Barbarik that verifies whether
a sampler is an almost-uniform generator (AAU). The pseu-
docode of Barbarik is presented in Algorithm 1.

If G is a probabilistic generator then AG(., ., .) is a sub-
routine that takes a formula ϕ, a set S ⊆ Supp(ϕ) and a
number τ and uses G to generate τ satisfying assignments of
ϕ and outputs the τ assignments of the variables in S. For
simplicity, in the rest of the section and in the pseudocodes
we would use A(., ., .) instead of AG(., ., .). If Gu is a uni-
form generator then we rename the subrountineAG(., ., .) as
U(., ., .).
Barbarik takes in a sampler G, a uniform generator U , a

tolerance parameter ε > 0, an intolerance parmaeter η > ε,
a guarantee parameter δ and a CNF formula ϕ and returns
ACCEPT or REJECT with the following guarantees:

• if the generator G(ϕ, .) is an ε-additive almost-uniform
generator then Barbarik ACCEPTS with probability at
least (1− δ).

• if G(ϕ, .) is η-far from a uniform generator then Barbarik
REJECTS with probability at least 1− δ.

• if Barbarik outputs REJECT it also outputs a witness in
the form of a CNF formula ϕ̂ such that there are exactly
two assignments of variable in S ⊆ Supp(ϕ) that can
be extended to a satisfying assignment of ϕ̂ and it can be
easily tested, emperically, that the distribution DG(ϕ̂) is
η-far from uniform.

As discussed in the previous section, the primary chal-
lenge The core idea of Barbarik is that for evaluating quality
of the distribution DG(ϕ) we not only draw samples from
DG(ϕ) but also from another distribution DG(ϕ̂) where ϕ̂ is
obtained from ϕ. Therefore, Barbarik is able to beat the
lower bound on the sample complexity of the standard χ2-
based test,

The main idea of the algorithm Barbarik is that if we draw
one sample σ1 according to the distribution DG(ϕ) and one
sample σ2 according to the uniform distribution overRϕ and
let T = {σ1, σ2} then is the following happens:

• if DG(ϕ) is close to the uniform distribution over Rϕ then
the conditional distribution DG(ϕ)|T is also close to uni-
form over the set T .

• ifDG(ϕ) is far from the uniform distribution over Rϕ then
the conditional distribution DG(ϕ)|T is also far from the
uniform over the set T .

And sinceDG(ϕ)|T is a distribution over a two element set it
is easy to estimate the distance of DG(ϕ)|T from uniform if
we can draw random samples from DG(ϕ)|T . The algorithm
then repeats the subroutine appropriate number of times to
ensure the completeness, soundness, and accuracy of the fi-
nal algorithm.

Barbarik assumes access to two subroutines, Bias and
Kernel. While the Bias is a simple subroutine to esti-
mate the distance of DG(ϕ)|T from uniform, the subroutine
Kernel ensures a way to access samples from the distribution
DG(ϕ)|T .

Bias takes in two lists L1, L2 of assignments and a sam-
pling set S as input and returns the cardinality of the in-
tersection of the L1 and L2, where elements are compared
under projection over the sampling set S.

Kernel takes in a Boolean formula ϕ, two assignments
σ1 and σ2, and desired number of solutions τ and returns a
formula ϕ̂ such that the following hold true:

1. |Rϕ̂| = 2τ

2. Supp(ϕ) ⊆ Supp(ϕ̂)

3. |{x ∈ Rϕ̂ | x↓S = σ1}| = |{x ∈ Rϕ̂ | x↓S = σ2}|,
where S = Supp(ϕ).

4. ϕ and ϕ̂ has similar structure

Barbarik has two for loops - one outer (line 2-14) and one
inner (line 6 - 14). The outer for loop has dlog(2/ε + η)e
rounds. In the inner for loop, in each round, the algorithm
draws one sample σ1 according to the distribution DG(ϕ)
(line 8) and one sample σ2 according to the uniform distri-
bution on Rϕ (line 9). In line 10, the subroutine Kernel uses
ϕ, the two samples σ1 and σ2, and a number Nj to output

7780

a new formula ϕ̂ such that Supp(ϕ) ⊆ Supp(ϕ̂). In line
11, Barbarik draws a list, L3, of Nj samples accoding to the
distribution DG(ϕ̂). Kernel ensures that for all σ ∈ L3, σ↓S
is either σ1 or σ2. In line 12 Barbarik uses Bias to compute
the fraction of Nj samples that is equal to σ1 (on the vari-
able set S = Supp(ϕ)), and if the fraction is not between
(1− cj)/2 and (1 + cj)/2 then Barbarik REJECTS (in line
14).

Algorithm 1 Barbarik(A, U , S, ε, η, δ, ϕ)
1: S ← Supp(ϕ)
2: for j = 1 to dlog(4

ε+η)e do
3: tj ← d2j (η+ε)

(η−ε)2 log(4(ε+ η)−1)(4e
(e−1)) ln(δ−1)e

4: βj ← (2j−1+1)(ε+η)
4+(ε+η)(2j−1−1) ; cj ← (βj + ε)/2

5: Nj ← dM(
βj−ε

4
) log

(
24e
e−1

δ−1

(η−ε)2 log(4
ε+η

) ln(1
δ
)
)
e

6: for i = 1 to tj do
7: while L1 = L2 do
8: L1 ← A(ϕ, S, 1); σ1 ← L1[0]
9: L2 ← U(ϕ, S, 1); σ2 ← L2[0]

10: ϕ̂← kernel(ϕ, σ1, σ2, Nj)
11: L3 ← A(ϕ̂, S,Nj)
12: b← Bias(σ1, L3, S)
13: if b < 1

2 (1− cj) or b > 1
2 (1 + cj) then

14: return REJECT
15: return ACCEPT

Algorithm 2 Bias(σ̂, L, S)
1: count = 0
2: for σ ∈ L do
3: if σ↓S = σ̂ then
4: count← count +1
5: return count

|L|

Algorithm 3 presents the pseudocode of subroutine
Kernel. As stated above, Kernel takes in a Boolean formula
ϕ, two assignments σ1, σ2, and a desired number of solu-
tions τ . Kernel assumes access to subroutine NewV ars
which takes in two parameters, a formula ϕ and a number
M , and returns a set of M variables that do not appear in ϕ.
Kernel first constructs two sets of literals, denoted by Lits1
(resp. Lits2), which appear in σ1 (resp. σ2) but not σ2 (resp.
σ1). Then, we construct two lists of factors of τ ,K1 andK2,
such that τ =

∏|Lits1|
i=1 K1[i] and τ =

∏|Lits2|
i=1 K2[i] (lines 3

and 4).
We then construct the formula ϕ̂ in the code block from

line 7 to line 16. First, we conjunct ϕ with σ1 ∨ σ2 where
σ1 ∨ σ2 represents the formula that has exactly two satis-
fying assignments σ1 and σ2. The loop in lines 8– 11 con-
structs ϕ̂ by conjuncting ϕ with subformulas of the form
l ↔ ψk,m(a), where ψk,m is a chain formula over variables
a1, a2, · · · am which has exactly k satisfying assignments.
Therefore, at the end of the second loop, i.e. line 16, ϕ has
K2 × K1 × 2 solutions. The subroutine allows random-
ization in the subroutine ComputeFactor because (i) if the

Algorithm 3 kernel(ϕ, σ1, σ2, τ)

1: Lits1 ← (σ1 \ σ2)
2: Lits2 ← (σ2 \ σ1)
3: K1 ← ComputeFactors(Lits1, τ)
4: K2 ← ComputeFactors(Lits2, τ)

5: M ←
∑|Lits1|
i=1 dlogK[i]e

6: a← NewV ars(ϕ,m); index← 0
7: ϕ̂← ϕ ∧ (σ1 ∨ σ2)
8: for (l, k) ∈ (Lits1,K1) do
9: m← dlog ke

10: ϕ̂← (ϕ̂ ∧ (l↔ ψk,m(a[index : index+m]))
11: index← index+m
12: currIndex← 0
13: for (l, k) ∈ (Lits2,K2) do
14: m← dlog ke
15: ϕ̂← (ϕ̂ ∧ (l↔ ψk,m(a[index : index+m]))
16: index← index+m
17: return ϕ̂

sampler under test is an almost-uniform generator, then the
randomization would not affect the distribution generated by
A over ϕ̂, (ii) on the contrary, if the sampler under test is
not an almost-uniform generator, then we would not want to
construct a formula that can be easily guessed by A and the
sampler be somehow optimized for the formula we construct
and be able to fool Barbarik by behaving as almost-uniform
sampler over ϕ but without being an almost uniform sampler
over ϕ.

4.1 Theoretical Analysis
In this section, we present theoretical analysis of Barbarik.
We first show completeness of Barbarik and then demon-
strate soundness under certain assumption, which is shown
to hold true in practice in our experimental analysis.

Completeness

Theorem 1. If the generator G is an ε-additive almost-
uniform generator -approximates any CNF formula ϕ then
Barbarik ACCEPTS with probability at least (1− δ).

The proof Theorem 1 uses multiple applications of the
Chernoff and Union Bound. For lack of space we defer the
proof of Theorem 1 to extended version.

Soundness

Definition 8. The non-adversarial sampler assumption
states that if A(ϕ, S, 1) outputs a sample by drawing ac-
cording to a distribution D then the (ϕ̂, Ŝ) obtained from
kernel(ϕ,L1, L2, N) has the property that:

• S ⊂ Ŝ,
• There are only two set of assignments to variables in S

that can be extended to a satisfying assignment for ϕ̂
• The restriction of the set L3 to the variable set S is ob-

tained by drawing N samples from the distribution D |R,
where R = L1 ∪ L2.

7781

The following theorem states that if non-adversarial sam-
pler assumption holds then Barbarik is sound. Note that
completeness does not require non-adversarial sampler as-
sumption to hold.

Theorem 2. If non-adversarial sampler assumption holds
and if the distribution DG(ε) is η-far from uniform on the
sampling set S then Barbarik REJECTS with probability at
least 1− δ.

Proof. Let define the set H as follows (let N = |Rϕ|):H =
{x ∈ Rϕ : pG(ϕ, x) ≥ 1

N }. Since G(ϕ, .) is η-far from
uniform generator, so

∑
x∈H

(
pG(ϕ, x)− 1

N

)
≥ η

2 .
Let us further subdivide H into H0, H1, . . . ,Hr (with

r = dlog(4/(η + ε))e) as follows, H0 = {x :
p(x) <

(
1 + η+ε

4

)
1
N }, and, Hr = {x : pG(ϕ, x) ≥

2
N } And for all 1 ≤ j ≤ (r − 1), Hj ={
x :
(
1 + 2j−1 η+ε4

)
≤ NpG(ϕ, x) <

(
1 + 2j η+ε4

)}
Thus

∑
x∈H0

(pG(ϕ, x)− 1
N) < (η+ ε)/4. So there exist

1 ≤ j(H) ≤ r such that
∑
x∈Hj(H)

(
pG(ϕ, x)− 1

N

)
≥ η−ε

4r

Claim 1. In the iteration j = j(H) if we had picked at
least r 2

j(ε+η)
η−ε pairs of samples (x, y) such that x is sampled

according to DG(ϕ) and y is sampled uniformly from U then
with probability at least (1− 1

e)(η−ε4) we would have picked
a pair (xi, yi) such that

• xi ∈ Hj(H), and

• pG(ϕ, yi) ≤ (1− ε+η
4) 1

N

Proof. Since
∑
x∈Hj(H)

(
pG(ϕ, x)− 1

N

)
≥ η−ε

4r and for

all x in Hj(H), pA(ϕ, x) is at most (1 + 2j η+ε4) 1
N so we

have
∑
x∈Hj(H)

((
1 + 2j η+ε4

)
1
N −

1
N

)
≥ η−ε

4r and, hence

|Hj(H)| is at least N
2jr

(
η−ε
ε+η

)
. So if we pick 2jr

(
ε+η
η−ε

)
pairs from DG(ϕ) with probability at least (1 − 1/e) one of
the picked sample would be from Hj(H).

On the other hand, note that since∑
y∈Rϕ\H

(
1
N − pG(ϕ, y)

)
= η

2 so, by averaging argument,
the number of y ∈ Rϕ such that pG(ϕ, yi) ≤ (1 − ε+η

4) 1
N

is at least N(η − ε)/4. So when y is drawn uniformly
from the set Rϕ then, the probability that y is such that
pG(ϕ, y) ≤ (1− ε+η

4) 1
N , is at least (η − ε)/4.

Since x and y are drawn independently so probability
that (x, y) satisfies the condition of the claim is the prod-
uct of the probability that x ∈ Hj(H) and the probability
that pG(ϕ, yi) ≤ (1− ε+η

4) 1
N . And hence our claim.

Once we have a pair of samples (xi, yi) such that xi ∈
Hj(H) and p(yi) ≤ (1 − ε+η

2) 1
N , if we draw samples

from DTi
(where Ti = {xi, yi}) then, assuming the non-

adversarial sampler assumption, the probability of getting xi
is pG(ϕ, xi)/ (pG(ϕ, xi) + pG(ϕ, yi)), by simple calculus it
is easy to see that the probability of getting xi is at least

(1 + 2j−1
η + ε

2
)/((1 + 2j−1

η + ε

2
) + (1− ε+ η

2
))

which is 1
2 (1 + βj).

So if we can measure the probabilities upto an additive
error of βj−ε

4 with confidence at least 1/2 then we can reject
if xi appears less than 1

2 (1− βj+η
2) fraction of times or more

than 1
2 (1 +

βj+η
2) fraction of times. And the algorithm is

REJECTED (during the run of (xi, yi)) with probability at
least 1

2 (1 − 1
e)(η−ε2). The number tj is set such that the

success probability is at least (1− δ).

Query Complexity
Theorem 3. Given ε, η and δ, Barbarik need at most
Õ
(

1
(η−ε)4

)
samples for any input formulaϕ, where the tilde

hides a poly logarithmic factor of 1/δ and 1/(η − ε).

Proof. The proof is deferred to extended version.

5 Evaluation
To evaluate the runtime performance of Barbarik and test the
uniformity of the state of the art samplers, we implemented
a prototype of Barbarik and employed SPUR (Achliop-
tas, Hammoudeh, and Theodoropoulos 2018) as the ideal
uniform sampler, i.e., U in the Algorithm 1. Note that
Barbarik allows choice of any other available samplers such
as KUS (Sharma et al. 2018). The experiments were con-
ducted on a high-performance computer cluster, where each
node consists of E5-2690 v3 CPU with 24 cores and 96GB
of RAM.

We set tolerance parameter ε, intolerance parameter η,
and confidence δ for Barbarik to be 0.6, 0.9, and 0.1 re-
spectively. The chosen setting of parameters implies that
for a given Boolean formula ϕ, if the sampler under test
G(ϕ, ε) is an additive almost-uniform generator (AAU), then
Barbarik returns ACCEPT with probability at least 0.9, oth-
erwise Barbarik returns REJECT with probability at least
0.9. Note that, the number of samples required for ACCEPT
depends only on ε and η, and for our chosen values of ε and
η, the number of samples is 1.72975× 106.

We choose the three state of the art samplers,
Quicksampler (Dutra et al. 2018), UniGen2 (Chakraborty
et al. 2015a), and SearchTreeSampler (Ermon, Gomes,
and Selman 2012). We use the default parameters for
Quicksampler, UniGen2, and SearchTreeSampler, which
were also employed in previous case studies for uniformity.
Quicksampler and SearchTreeSampler provides theoretical
guarantees that are weaker than that of near-uniform gener-
ator. In contrast, UniGen2 is multiplicative almost-uniform
generator (MAU), which is still weaker than additive almost-
uniform generator (AAU) (Chakraborty et al. 2015a; Meel
et al. 2016). Therefore, apriori we expect Barbarik to re-
turn REJECT for Quicksampler and SearchTreeSampler for
most of the benchmarks within reasonable samples while re-
turn ACCEPT for UniGen2 for some of the benchmarks.

We employed publicly available benchmark suite used
in the evaluation of Quicksampler (Dutra et al. 2018) and
UniGen2, which included bit-blasted versions of constraints
arising in bounded model checking of circuits, bit-blasted

7782

Instances #Solutions UniGen2 SearchTreeSampler Quicksampler
Output #Solutions Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250 R 250
blasted case49 1.00× 261 A 1729750 R 250 R 250
blasted case50 1.00× 262 A 1729750 R 250 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250 R 250

36 1.00× 272 A 1729750 R 250 R 250
30 1.73× 272 A 1729750 R 250 R 250
110 1.09× 276 A 1729750 R 250 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250 R 250
107 1.52× 276 A 1729750 R 250 R 250

blasted case211 1.00× 280 A 1729750 R 250 R 250
blasted case210 1.00× 280 A 1729750 R 250 R 250
blasted case212 1.00× 288 A 1729750 R 250 R 250
blasted case209 1.00× 288 A 1729750 R 250 R 250

54 1.15× 290 A 1729750 R 250 R 250

Table 1: The output and analysis of the number of samples consumed by Barbarik for different samplers. ”A” and ”R” in the
Output columns indicate ACCEPT and REJECT respectively.

versions of SMTLib benchmarks, constraints arising from
automated program synthesis, and constraints arising from
ISCAS89 circuits with parity conditions on randomly cho-
sen subsets of outputs and next-state variables. In total, our
benchmark suite consisted of 101 instances with the count
of the solutions for instances ranging to 290. It is worth
noting that the benchmark suite was also used in an em-
pirical evaluation of the uniformity of SearchTreeSampler,
Quicksampler, and UniGen2 in (Dutra et al. 2018). The pri-
mary objective of our experimental evaluation was to seek
an answer to the following questions:
1. Does Barbarik return ACCEPT for the distributions gen-

erated by the various state of the art samplers?
2. How does the required number of samples vary with dif-

ferent benchmarks?
In summary, we observe that Barbarik returns REJECT

for SearchTreeSampler and Quicksampler for all the 101 in-
stances requiring only less than 250 samples for all the in-
stances. In contrast, Barbarik returns ACCEPT for UniGen2
on all the 101 instances. These results offer strong support
for our non-adversarial sampler assumption over the formu-
las generated by Kernel and offer support for the claim that
the theoretical analysis of UniGen2 may indeed be conser-
vative. Furthermore, these results demonstrate that Barbarik
requires only a few samples to catch a non-uniform sam-
pler in practice.The low requirement of the number of sam-
ples should be viewed in the context of observations of
Duatra et al. (2018), who employed Pearson’s chi-squared
test with more than tens of thousands of samples gener-
ated by each sampler. Despite using more samples for
SearchTreeSampler and Quicksampler than Barbarik, Dua-
tra et al. concluded the confidence in their conclusions with
“. However, this result should be taken with care, since the
uniformity test is not very reliable on benchmarks....when
the number of produced samples is too low”.

5.1 Analysis of Benchmarks
To analyze whether it is possible to have standard sampling
techniques to test the uniformity of samplers reliably, we
computed the distribution of the number of solutions for our
benchmark suite. Figure 1 presents the scatter plot of the
number of solutions vis-a-vis different benchmarks. The y-
axis represents the count of the number of solutions on log
scale while the x-axis represents the ID of the benchmark.
For ease of presentation, assign a unique ID to our bench-
marks from 1 to 101. Since our counts vary to 290, the re-
quirement of statistical techniques in terms of the number of
samples is infeasible.

20 40 60 80 100
Instance ID

10

20

30

40

50

60

lo
g(
#S

ol
ut
io
ns

)

Figure 1: Scatter plot of the count of benchmarks

5.2 Sample requirement of Barbarik
Table 1 presents the number of samples consumed by
Barbarik to return ACCEPT or REJECT for a subset of
benchmarks. The column 1 and 2 represents the id and the
number of solutions of the benchmark. The columns 2 and
3 present the output of Barbarik and the number of sam-
ples generated by UniGen2 for the corresponding bench-

7783

mark while column 4 and 5 represent the output and the
number of samples generated by SearchTreeSampler. Fi-
nally, columns 6 and 7 present the output and the number
of samples generated by Quicksampler. First, Barbarik re-
turns the same answers, i.e. ACCEPT for UniGen2 and
REJECT for SearchTreeSampler and Quicksampler for all
the 101 benchmarks. Furthermore, the number of samples
generated by SearchTreeSampler and Quicksampler is 250
for all the benchmarks. It is worth noting that that guar-
antees provided by UniGen2 are weaker than that of an
almost-uniform sampler with ε = 0.6. These results may
be viewed as another support for the claim of authors of
UniGen2 that the theoretical analysis of UniGen2 is conser-
vative and could perhaps be improved. On the other hand,
while SearchTreeSampler and Quicksampler do not claim
to have theoretical guarantees of almost-uniformity, the low
number of samples required by Barbarik to return REJECT
may indicate SearchTreeSampler and Quicksampler have
significant weaknesses in their algorithmic approach. These
results also demonstrate strong support for non-adversarial
sampler assumption of underlying samplers for the formulas
generated by Kernel.

6 Conclusion
Sampling techniques form the core of the state of the art
inference engines. The computational intractability of sam-
pling forces the usage of heuristics which may nullify the
theoretical gurantees of the underlying algorithms. In this
context, there is strong need for techniques that can test
whether a sampler under test generates samples close to the
desired distribution for a given formula. In this work, we
design, to the best of our knoweldge, the first algorithmic
framework, Barbarik, to test wehther the distribution gen-
erated is ε− close or η− far from the uniform distribution.
We demonstrated that Barbarik is able to REJECT samplers,
which do not have theoretical guarantees while accepts the
sampler UniGen2, which have theoretical guarantees of uni-
formity.

Acknowledgments We are grateful to Mate Soos for his
insights on workings of modern SAT solver and Alexis de
Colnet for several insightful suggestions on the earlier draft.
This work was supported in part by NUS ODPRT Grant R-
252-000-685-133 and AI Singapore Grant R-252-000-A16-
490. The computational work for this article was performed
on resources of the National Supercomputing Centre, Singa-
pore https://www.nscc.sg.

References
Achlioptas, D.; Hammoudeh, Z.; and Theodoropoulos, P. 2018.
Fast sampling of perfectly uniform satisfying assignments. In Proc.
of SAT.
Batu, T.; Dasgupta, S.; Kumar, R.; and Rubinfeld, R. 2005.
The complexity of approximating the entropy. SIAM J. Comput.
35(1):132–150.
Batu, T.; Fortnow, L.; Rubinfeld, R.; Smith, W. D.; and White,
P. 2013. Testing closeness of discrete distributions. J. ACM
60(1):4:1–4:25.

Batu, T.; Kumar, R.; and Rubinfeld, R. 2004. Sublinear algorithms
for testing monotone and unimodal distributions. In Proc. of STOC,
381–390.
Canonne, C. L.; Ron, D.; and Servedio, R. A. 2015. Testing prob-
ability distributions using conditional samples. SIAM J. Comput.
44(3):540–616.
Chakraborty, S.; Fischer, E.; Matsliah, A.; and de Wolf, R. 2010.
New results on quantum property testing. In Proc. of FSTTCS,
145–156.
Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.; and
Vardi, M. Y. 2015a. On parallel scalable uniform sat witness gen-
eration. In Proc. of TACAS, 304–319.
Chakraborty, S.; Fried, D.; Meel, K. S.; and Vardi, M. Y. 2015b.
From weighted to unweighted model counting. In Proc. of IJCAI,
689–695.
Chakraborty, S.; Fischer, E.; Goldhirsh, Y.; and Matsliah, A. 2016.
On the power of conditional samples in distribution testing. SIAM
J. Comput. 45(4):1261–1296.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A Scalable
and Nearly Uniform Generator of SAT Witnesses. In Proc. of CAV,
608–623.
Dutra, R.; Laeufer, K.; Bachrach, J.; and Sen, K. 2018. Efficient
sampling of sat solutions for testing. In Proc. of ICSE.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B. 2013a.
Embed and project: Discrete sampling with universal hashing. In
Proc. of NIPS, 2085–2093.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B. 2013b.
Taming the curse of dimensionality: Discrete integration by hash-
ing and optimization. In Proc. of ICML, 334–342.
Ermon, S.; Gomes, C. P.; and Selman, B. 2012. Uniform solution
sampling using a constraint solver as an oracle. In Proc. of UAI.
Gilks, W. R., and Wild, P. 1992. Adaptive rejection sampling for
gibbs sampling. Applied Statistics 337–348.
Jerrum, M. R., and Sinclair, A. 1996. The Markov Chain Monte
Carlo method: an approach to approximate counting and integra-
tion. Approximation algorithms for NP-hard problems 482–520.
Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; and Saul, L. K.
1999. An introduction to variational methods for graphical models.
Machine learning 37(2):183–233.
Kitchen, N., and Kuehlmann, A. 2007. Stimulus generation for
constrained random simulation. In Proc. of ICCAD, 258–265.
Koller, D., and Friedman, N. 2009. Probabilistic graphical models:
principles and techniques. MIT press.
Meel, K. S.; Vardi, M. Y.; Chakraborty, S.; Fremont, D. J.; Seshia,
S. A.; Fried, D.; Ivrii, A.; and Malik, S. 2016. Constrained sam-
pling and counting: Universal hashing meets sat solving. In Proc.
of Beyond NP Workshop.
Meel, K. S. 2014. Sampling Techniques for Boolean Satisfiability.
Rice University. M.S. Thesis.
Meel, K. S. 2017. Constrained Counting and Sampling: Bridging
the Gap between Theory and Practice. Ph.D. Dissertation, Rice
University.
Neal, R. M. 2001. Annealed importance sampling. Statistics and
computing 11(2):125–139.
Seshia, S. A.; Sadigh, D.; and Sastry, S. S. 2016. Towards Verified
Artificial Intelligence. ArXiv e-prints.
Sharma, S.; Gupta, R.; Roy, S.; and Meel, K. S. 2018. Knowledge
compilation meets uniform sampling. In Proc. of LPAR-22, 620–
636.

7784

