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Abstract
Much effort has been directed at developing algorithms for
learning optimal Bayesian network structures from data.
When given limited or noisy data, however, the optimal
Bayesian network often fails to capture the true underlying
network structure. One can potentially address the problem
by finding multiple most likely Bayesian networks (K-Best)
in the hope that one of them recovers the true model. How-
ever, it is often the case that some of the best models come
from the same peak(s) and are very similar to each other; so
they tend to fail together. Moreover, many of these models
are not even optimal respective to any causal ordering, thus
unlikely to be useful. This paper proposes a novel method for
finding a set of diverse top Bayesian networks, called modes,
such that each network is guaranteed to be optimal in a local
neighborhood. Such mode networks are expected to provide
a much better coverage of the true model. Based on a global-
local theorem showing that a mode Bayesian network must be
optimal in all local scopes, we introduce an A* search algo-
rithm to efficiently find top M Bayesian networks which are
highly probable and naturally diverse. Empirical evaluations
show that our top mode models have much better diversity as
well as accuracy in discovering true underlying models than
those found by K-Best.

Introduction
Bayesian networks (BN) (Pearl 1988) are graphical models
that represent probabilistic dependencies between random
variables. While BNs have become one of the most pop-
ular and well-studied probabilistic models, a common bot-
tleneck lies in deciding upon their structure. Exactly learn-
ing the network structures from the data is known to be
NP-hard, even if we restrict each variable to have at most
two parents (Chickering 1996). Despite the difficulty of
structure learning, a variety of algorithms have been pro-
posed to learn optimal Bayesian networks, including dy-
namic programming (Koivisto and Sood 2004; Silander and
Myllymäki 2006), linear programming (Jaakkola et al. 2010;
Cussens 2011), and admissible heuristic search (Yuan, Mal-
one, and Wu 2011; Yuan and Malone 2013). They all take
scores of candidate parent sets of all variables as input, and
use various optimization techniques to find a structure that
is a good predictor of the data.
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However, even the optimal Bayesian network may fail to
capture the true underlying network structure. Such discrep-
ancy is called generalization error of the learning problem,
which may come from the approximation error, due to the
limitations of the models, or estimation error, due to the in-
sufficiencies of the data (Bousquet and Bottou 2008). One
can potentially address the limitation of the optimal model
by finding multiple best Bayesian networks with the highest
scores (K-Best) in hope that one of them recovers the true
model. It is often the case, however, that some of these top
models come from the same peak(s) and are very similar to
each other. For example, one of the top solutions may be ob-
tained from modifying the best Bayesian network a bit by
selecting a slightly worse parent set for one of the variables.
Such a solution should not be considered as a top solution
for two reasons: (1) it is too similar to another better solu-
tion, and (2) it is not even optimal respective to any causal
ordering.

In this paper, we propose a novel method for finding a
set of diverse top Bayesian networks, called modes, such
that each network is guaranteed to be optimal in a local
neighborhood. Such a diverse set of mode models are ex-
pected to provide a much better coverage of true underly-
ing model. This work is inspired by recent success in devel-
oping methods for finding multiple diverse predictions, in-
cluding Diverse M-Best (Batra et al. 2012), joint Diverse M-
Best (Kirillov et al. 2015), and M-Modes (Chen et al. 2013;
2018). Based on a global-local theorem showing that a mode
Bayesian network must be optimal in all local scopes, we in-
troduce an A* search algorithm to efficiently find the top M
Bayesian networks which are highly probable and naturally
diverse. Empirical evaluations show that our top mode mod-
els have much better accuracy in discovering the true causal
model than the most likely models found by K-Best.

Bayesian Network Structure Learning
A Bayesian network is a directed acyclic graph (DAG) that
represents the uncertain relations between a set of random
variables V = { v1, . . . , v|V | }. The relations are quantified
using a set of conditional probability distributions Pr

(
vi |

pa(vi)
)
, where pa(vi) represents the immediate predeces-

sors of vi in the model. The joint probability distribution
over all the variables factorizes as the product of the condi-
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tional probability distributions. We use the terms of variable
and vertex interchangeably.

Bayesian network structure learning is the problem of
learning a structure from a complete discrete dataset D =
{ d1, . . . , d|D| }, where di is a data point consisting of values
of all variables; each variable takes a value from a finite do-
main. Our goal is to find a network structureG that is a good
predictor for the dataD. One of the most popular approaches
to this task is score-based learning. Given a network struc-
ture G, there is a unique score score(G : D ) which evalu-
ates the goodness of fit of G to the data D. For convenience,
we will omit D and just use score(G) instead. The scoring
function is typically assumed to be decomposable, that is,
the global score score(G) can be decomposed into a summa-
tion of local scores as in: score(G) =

∑
i scorei

(
pa(vi)

)
,

where the local score scorei
(

pa(vi)
)

is the score for each
variable vi over its parents pa(vi). Several scoring func-
tions have been proposed; most common are the BIC/MDL
score (Lam and Bacchus 1994) and the BDe score (Hecker-
man, Geiger, and Chickering 1995). Without loss of gener-
ality, we assume score is being minimized in the remainder
of this paper.

For each variable, the total number of potential parent
sets is 2|V |−1, the number of subsets of all other variables.
The parent sets of all variables are placed in a table of local
scores L, with each row containing parent sets of one vari-
able in sorted order. The size of local score tables can be sig-
nificantly reduced by pruning parent sets that are provably
non-optimal (Chen, Choi, and Darwiche 2016), that is, these
parent sets are never used in any optimal network. Similar
to existing research, we also assume that the table of local
scores is given as input to our learning problem. How to cal-
culate and prune local scores can be found in, e.g., (Campos
and Ji 2011).

Given a table of local scores, Bayesian network structure
learning becomes a combinatorial optimization problem of
selecting one parent set for each variable such that all parent-
child relations jointly form a DAG with the minimum score.
In particular, if a causal ordering τ of variables is provided,
there is an optimal Bayesian network that is consistent with
this ordering. Each variable can independently choose the
best parent set from preceding variables in the ordering.

The complexity of the selection is polynomial inO( |L| ).
Since each causal ordering maps to a unique optimal score,
the goal of learning optimal Bayesian networks is thus to
find a causal ordering with the minimum score. There are
|V | ! different causal orderings. The complexity of a brute
force search of the optimal network is O( |L| · |V | ! ).

M-Modes Causal Orderings
We propose to redefine the problem of finding multiple best
Bayesian networks as finding a set of networks that are not
only optimal respective to the best causal orderings but also
diverse. Causal ordering is an inherent property for pruning
worse Bayesian networks; it is especially useful when many
local scores are close to each other. Moreover, because of in-
sufficiencies in the data, different causal orderings may lead
to similar or even the same Bayesian networks. We propose

to only consider top diverse causal orderings that are lo-
cally optimal, that is, they should be better than other causal
orderings in its local neighborhood. This is because local
swapping of the variables only results in marginally differ-
ent models. Instead, we are interested in finding Bayesian
network structures that are qualitatively different from each
other.

In this section, we will start by reviewing an ordering-
based distance measure called Kendall tau rank distance. We
then define mode causal orderings and prove its global-local
property.

Kendall Tau Rank Distance
The Kendall tau rank distance (Kendall 1938) is a metric that
defines the distance between two variable orderings. The
larger the distance, the more dissimilar the two orderings
are. This distance is defined as counting the total number of
discordant pairs for two same length orderings. For exam-
ple, there are two same length orderings: τ1 = 〈 1, 2, 3 〉 and
τ2 = 〈 3, 1, 2 〉. 3 pairs are in these two orderings: 〈 1, 2 〉,
〈 1, 3 〉 and 〈 2, 3 〉. The pair 〈 1, 2 〉’s orders are same in both
orderings, but 〈 1, 3 〉 and 〈 1, 2 〉 are different. So, in all, the
distance is 2. It is easy to see that, if two orderings are iden-
tical, the distance will be 0, and if one ordering is the reverse
of the other, the distance will reach the maximum

(|τ |
2

)
, i.e.

all pairs of the two orderings are reversed.

M-Modes Orderings
We first define precedence relations between causal order-
ings. An ordering τ1 precedes another ordering τ2, i.e. τ1 ≺
τ2, if and only if either (1) the score of τ1 is less than τ2, or
(2) they have the same score, but τ1 is smaller than τ2 in the
lexicographical order. Lexicographical order is used only for
breaking ties in a same local neighborhood. We say τ ≺ T
when an ordering τ has the highest precedence in the set T
(τ precedes all the other orderings in set T ).

We use the Kendall tau rank distance kd(·, ·) as the dis-
tance metric. Given a non-negative integer δ, called the
scale, the δ-neighborhood of τ is defined as Nδ(τ) , { τ ′ |
kd(τ, τ ′) 6 δ }, i.e., a δ-neighborhood of an ordering τ is a
set including all of the orderings which are within distance δ
from τ . Once ordering precedence and δ-neighborhood are
defined, the concepts of local neighborhood and local optima
become clear. We define a δ-mode ordering as:
Definition 1 (δ-Mode). τ is a δ-mode⇔ τ ≺ Nδ(τ).

A δ-mode ordering precedes all the other orderings in its
δ-neighborhood. This definition ensures that there is only
one mode within each given δ-neighborhood. This also en-
sures the set of δ-mode orderings are diverse: any two
modes are at least distance δ away. As δ increases, the
δ-neighborhood of each τ grows, and the set of δ-modes
monotonically shrink until only the global optimum is left:
τ̂ ≺ N∞(τ̂). The τ̂ is the global optimal ordering. Figure 1
illustrates what mode solutions and δ-neighborhoods are and
how the scale δ affects the number of modes.

Finally, we define the problem of finding M-Modes causal
orderings. Hereafter, we omit δ in some notations if the con-
text is clear.
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Figure 1: An illustration of modes under different δ. Each
vertical bar corresponds to an ordering, and the height cor-
responds to its precedence. (Top) When δ = 1, there are
three modes (red). (Bottom) When δ = 4, only two modes
are left. The third mode is no longer locally optimal in its
δ-neighborhood because of the orange solution.

Problem 1 (M-Modes Causal Orderings). Given a scale δ,
compute top M mode causal orderings.

Global-Local Theorem
We cannot rely on Definition 1 in verifying whether a causal
ordering is a mode or not, as there are two many causal
orderings in its δ-neighborhood. Inspired by Theorem 2 in
(Chen et al. 2013) and Theorem 1 in (Chen, Yuan, and Chen
2016), which show a close connection between the mode la-
beling of a graph and the local MAPs of its subgraphs, we
present some theoretical properties of a mode causal order-
ing and its local patterns.

Consider an example ordering τ = 〈 1, 2, 3, 4, 5, 6 〉. We
can create three different orderings with distance 3 via: (a)
reverse adjacent variable pairs — 〈 1, 2 〉, 〈 3, 4 〉, and 〈 5, 6 〉
— resulting in 〈 2, 1, 4, 3, 6, 5 〉; (b) reversing 〈 1, 2, 3 〉, re-
sulting in 〈 3, 2, 1, 4, 5, 6 〉; or (c) moving 1 to between 4
and 5, resulting in 〈 2, 3, 4, 1, 5, 6 〉. The numbers in under-
line represent the scope of variables involved in the change.
However, case (a) above can be considered three separate
changes in smaller scopes independent from each other,
namely, reversing 〈 1, 2 〉, reversing 〈 3, 4 〉, and reversing
〈 5, 6 〉. We call such a scope of change divisible. Both case
(b) and case (c) are indivisible scopes of change. Since the
Kendall tau rank distance is defined as counting reverse
pairs, for a given distance δ, the widest indivisible scope of
change has a size of at most (δ + 1), achieved by moving
only one variable δ distance away. Case (c) is an example of
that.

The concept of indivisibility allows us to exploit the de-
composability of scoring functions. If we can divide a scope
of variables into smaller pieces, we only need to verify
whether each indivisible scope is optimal. Given an order-

ing τ and a scale δ, we define local ordering, τ[:] as a con-
nected part of τ , where [:] indicates slicing a part from τ .
The number of variables in a local ordering is its size. For
example, assuming τ = 〈 4, 3, 2, 1, 5, 6 〉, τ[2:4] represents
the local ordering 〈 3, 2, 1 〉 with size 3. The example also
makes it clear that the orderings with the same distance from
an ordering τ can have different sizes of scope. Therefore,
given a distance δ, we further define δ-scope of a local or-
dering τ[:] as the set of permutations of the local ordering
which are no more than distance δ from τ[:]. More formally,
scopeδ(τ[:]) , { τ ′[:] | kd(τ[:], τ

′
[:]) 6 δ }. The highest prece-

dential local ordering in a δ-scope is called a local optimum,
τ̂[:]. With our previous definition of the precedence rule, a
δ-scope of an ordering must have one and only one local
optimum.

Finally, we have the following theorem about a mode or-
dering.
Theorem 1 (Global-Local). An ordering τ is a δ-Mode if
and only if each of its local ordering τ[:] with size δ + 1 is
optimum in its δ-scope.

Proof. ⇒ (Sufficiency): Suppose τ is a mode and ∃τ[:] is not
a local optimum τ̂[:]. Both τ[:] and τ̂[:] have size δ + 1.

Consider τ ′ is the same as τ except that τ ′[:] = τ̂[:], which
means τ ′ goes along τ̂[:], so that τ̂[:] ⊆ τ ′

∵ scopeδ(τ
′
[:]) = scopeδ(τ[:]) ∴ τ ′ ∈ Nδ(τ).

∵ τ̂[:] ≺ τ[:], τ̂[:] ⊆ τ ′ and τ ′ ∈ Nδ(τ) ∴ τ ′ ≺ τ .
This contradicts the fact that τ is a mode.

⇐ (Necessity): Suppose τ is not a mode but ∀τ[:] ⊆ τ ,
τ[:] = τ̂[:], which means all of its local orderings are optima,
then ∃τ̄ ∈ Nδ(τ), such that τ̄ is a mode.

Consider τd is the maximal difference between τ and
τ̄ of a scope (means connected). So that, scopeδ(τd) =
scopeδ(τ̄d). Let τ̄ ′ is the same as τ̄ except for τd, such that
τ̂d ⊆ τ̄ ′.

∵ τ̂d ≺ τd, τ̂d ⊆ τ̄ ′ and τ̄ ′ ∈ Nδ(τ̄) ∴ τ̄ ′ ≺ τ̄ . So, τ̄ is
not a mode.

This contradicts the fact that τ̄ is a mode. So, τ must be a
mode.

M-Modes Bayesian Networks
We define mode Bayesian networks to be unique networks
generated from the best mode causal orderings. Different
causal orderings may produce the same network structure
because there may not be sufficient data to distinguish be-
tween these orderings. If these orderings are δ distance away
from each other, they are all considered valid mode causal
orderings. In practice, we can alleviate, but not solve com-
pletely, the problem by increasing δ to promote diversity be-
tween the orderings, as shown in our empirical results.

We now introduce an A* search algorithm 1 for finding
M-Modes Bayesian networks based on Theorem 1. We for-

1Although depth-first search can in principle be applied, it is
not easy to find a good initial upper bound for our task of finding
multiple top mode solutions
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Algorithm 1 Finding M-Modes Bayesian Networks
Input: a local scores table L; δ; M

function A*-MODE(L, δ, M )
Initialize Open list with an empty ordering
while Open not empty do

Pops out the best state cur from Open
if cur fails local-optimum test then Continue
else

if cur is a complete ordering then
Extract a mode Bayesian network bn from cur
if bn is unique, and M mode Bayesian networks are found then Exit

else Generate successors of cur and add to Open

mulate our search space as a tree of all causal orderings.
Each node of the search space is called a state which stores
an incomplete ordering with a quality score. The root node
is the empty ordering. Each node at layer l has l variables
in its partial ordering, and can branch to maximally |V | − l
successor nodes. The A* algorithm uses an open list, usually
a priority queue, to keep track of frontier states that have not
been expanded. At each step, the A* algorithm pops out the
best state from the open list. We subject the current state
to a local-optimum test. If the test passes, and if the state
is a complete ordering, a mode causal ordering as well as
the corresponding mode Bayesian network are found. If the
state is not a complete ordering, its successors are generated
and added to the open list, called expanding a state. Other-
wise if the test fails, the current state will be discarded. Note
that because the search space is a tree with no loops, it is un-
necessary to have a closed list for duplicate detection. The
first few solutions found by A* are guaranteed to be the best
mode causal orderings, from which a set of mode Bayesian
networks can be extracted. The search continues until we
find M unique mode Bayesian networks.

Two aspects of the A* algorithm need further explana-
tion. One is the the local-optimum test. The test checks
whether all (δ+1)-local orderings of the current state are op-
timal in their respective δ-scopes. Since the test is done at
each search step, only one new (δ+1)-local ordering needs
to be checked at any step. Let the best state popped up from
the open list represents a partial ordering τ and is at layer
l. We only need to check whether it has a local optimum
on the tail. We slice the (δ+1)-local ordering τ[l−δ:l] from
τ and enumerate its δ-scope containing all permutations of
the same variables which are no more than distance δ from
τ[l−δ:l]. If any of the permutation precedes τ[l−δ:l], τ fails the
local-optimum test and is discarded. Otherwise, τ passes the
test.

For example, if δ = 2, the open list pops out a state rep-
resenting 〈 1, 2, 3, 4 〉. We check whether the local ordering
〈 2, 3, 4 〉 is a local maximum. We enumerate all the mem-
bers in its δ-scope, which contains all permutations except
〈 4, 3, 2 〉 whose distance is 3. In total we get five permuta-
tions to compare with. If 〈 2, 3, 4 〉 precedes all of the five
orderings, it passes the test and is eligible to generate suc-
cessor states. Otherwise, state 〈 1, 2, 3, 4 〉 will be discarded.

The other is the quality score of a state s, f(s). The f(s)

is calculated as the sum of a current score, g(s), and a future
score, h(s). The g(s) is the total score from the start state to
s. The h(s) lower bounds the score from s to a goal and is
estimated from a heuristic function. For Bayesian network
learning, g(s) corresponds to the score of the subnetwork
over the partial ordering, and h(s) estimates a lower bound
score of the remaining variables. We used the static pattern
database-based heuristic function with two random equal-
sized groups presented in (Yuan and Maone 2012). The basic
idea of the heuristic is to enforce the acyclicity within the
predefined groups of variables but relax acyclicity between
groups.

The full search tree has up to |V | ! leaves and 1 +∑|V |
i=1

∏i−1
j=0(|V | − j) nodes. However, because of the local-

optimum test, only mode causal orderings will ever lead
to a leave. Also, only one local ordering in the δ-scope of
each (δ+1)-local ordering passes the test; all others will end
a search branch immediately. Finally, the best-first search
strategy of A* only explores the most promising search
space in finding the top solutions. The practical search space
explored is thus much smaller. Finally, a pseudo code of the
A* algorithm is presented in Algorithm 1.

Experiments
We implemented and tested our proposed method (named
M-Mode-BNs for short) on top of URLearning 2. As com-
monly done in the multiple prediction literature (Batra et
al. 2012), we use K-Best as our baseline. In particular, we
used the K-Best Software 3 described in (Tian, He, and Ram
2012). K-Best takes input a complete table of local scores
(without pruning) and finds top k best-scoring networks via
a dynamic programming algorithm. K-Best uses the BDe
score with a uniform structure prior and an equivalent sam-
ple size of 1. The same local score tables are used in our M-
Mode-BNs method for consistency. Another implicit base-
line is M-Mode-BNs method with δ = 0, in which it re-
turns the M best Bayesian networks that are optimal re-
spective to any causal ordering. In our experiments, we fo-
cus on evaluating exact methods for solving K-Best or M-
Mode-BNs. Comparing to approximate methods for learn-
ing diverse Bayesian networks is interesting but left as future

2www.urlearning.org
3web.cs.iastate.edu/j̃tian/Software/UAI-10/KBest.htm
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Figure 2: The average pairwise SHDs for K-Best and M-
Mode-BNs on 10 data sets (100 data points each) sampled
from Sachs.

work.
We selected several discrete benchmark models from

bnlearn Bayesian Network Repository 4, including Sur-
vey (Scutari and Denis 2014), Asia (Lauritzen and Spiegel-
halter 1988), Sachs (Sachs et al. 2005) and Child (Spiegel-
halter et al. 1993). Our goal is to test the collective capa-
bility of a set of top Bayesian networks in discovering the
true underlying causal model, while the goal in (Tian, He,
and Ram 2012) was to use top models for Bayesian model
averaging. We can also extend our method to perform ap-
proximate model averaging, although the extension is left as
future work as well.

Our experiments were performed on an IBM System with
32 core 2.67GHz Intel Xeon Processors and 512G RAM.
The program was written in C++ using the GNU compiler
G++ on a Linux system. We also used functions from an R
package called bnlearn in some data postprocessing tasks.

Diversity of Top Models
In the first experiment, we compared the diversity of the top
Bayesian networks found by M-Mode-BNs and K-Best. We
define the diversity of a set of Bayesian networks as the av-
erage pairwise structural Hamming distance (SHD) between
the networks. A larger average SHD means higher diversity.
We use the dataset Sachs in this experiment. We randomly
sampled 10 data sets with 100 data points each from the
network. Then we use our method with different δ values
to learn different numbers of top mode Bayesian networks
from each data set. We compared the average diversity of
our models against the same numbers of models found by
K-Best. Figure 2 shows the results. We can see that mode
Bayesian networks found by M-Mode-BNs with δ > 0 are
much more diverse than those of K-Best and M-Mode-BNs
with δ = 0. In general, larger δ results in higher diversity of
learned models, although it is not monotonic. The reason is
that δ measures the distance between causal orderings, but
SHD measures distance between equivalence classes.

Accuracy in Structure Learning
We also compared the ability to recover true models of
M-Mode-BNs and K-Best. We use the minimum struc-
tural Hamming distance (SHD) between a set of candidate

4www.bnlearn.com

Bayesian networks and the ground truth network to mea-
sure the collective capability of the candidate set in dis-
covering the true underlying structure. This is called or-
acle accuracy, i.e., the best one among the top results,
which is commonly used in the literature on multiple di-
verse predictions (Batra et al. 2012; Kirillov et al. 2015;
Chen et al. 2013).

For each benchmark network, we generated three kinds
of data sets, with 10, 100 and 1000 data points respectively;
10 random data sets were sampled for each size and were
enough to show the trends. We allow both K-Best and M-
Mode-BNs to find varying numbers of top solutions; M-
Mode-BNs with different δ values were tested. The average
SHD distances over 10 random data sets for all settings are
shown in Figure 3. K-Best cannot scale to Child network
with 20 variables, because computing complete local score
tables is extremely expensive for larger data sets. There-
fore, we did two experiments on the network. In the first, we
dropped 5 leaf nodes so that we can compare it with K-Best.
In the second, we only ran M-Mode-BNs on the complete
Child network with all 20 variables. M-Mode-BNs is more
scalable than K-Best because it can alternatively take pruned
tables of local scores as input.

The results show that M-Mode-BNs with δ > 0 in gen-
eral has much better oracle accuracies in discovering the
true network structures than K-Best. When the data size is
small, many network structures receive non-negligible prob-
abilities. Many of the top Bayesian networks are structurally
quite different from the true underlying structure, because
there is simply not enough data to distinguish the models.
The average SHD is generally large. When the data size in-
creases, there is a dramatic decrease in the average SHD.
This means the top Bayesian networks become more simi-
lar to the true network. The probability mass also concen-
trates more and more on the likely models. K-Best worked
better when there are more data. Still, M-Mode-BNs can
help to achieve better oracle accuracies in discovering true
networks. It is not always predictable which δ works best
for M-Mode-BNs. Our general observation is that the larger
the δ, the sparser the top mode Bayesian networks. If there
are many mode Bayesian networks, δ can be set higher to
achiever better diversity. But if δ is set too high, only very
few mode Bayesian networks are left; the accuracy results
will suffer as a result. M-Mode-BNs with δ = 0 is all over
the map. Sometimes it has the better accuracy results, such
as on Survey (10, 1000) and Asia (10, 1000), but some other
times it is as bad as K-Best, such as on Sachs (100) and
Child* (100). It means that simply finding Bayesian net-
works corresponding to best causal orderings cannot reli-
ably address the diversity issue of top solutions. We should
explicitly promote diversity by using a positive δ. Note that
δ is a hyper-parameter whose optimal value depends on spe-
cific problems and should be tuned. An optimal δ should
reach a balance between both diversity and scores of modes;
both of which are necessary for high quality solutions. Fig-
ure 3 indicates that the optimal δs are at least correlated with
the data set sizes and the network sizes.

There are a few exceptions in which K-Best outperformed
some of the M-Mode-BNs methods, including Survey (10),
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Figure 3: The average SHD accuracy results for K-Best and M-Mode-BNs on data sets with different sizes (columns) for
different benchmarks (rows). The number after each network shows the network size.
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10 100 1000

K-Best 6.0/10.0 1.5/10.0 1.0/10.0
δ = 0 6.7/10.0 1.4/10.0 1.0/10.0
δ = 1 8.2/10.0 3.3/10.0 1.5/10.0
δ = 3 9.4/10.0 6.1/9.9 1.8/9.5
δ = 5 8.8/9.3 2.5/4.7 2.2/5.3

Table 1: The average numbers of unique equivalence classes/
top models found by K-Best and M-Mode-BNs for data sets
with different sizes on Sachs.

Survey (100) and Asia (1000). On Survey (10), M-Mode-
BNs with δ = 5 only found one mode Bayesian network; all
other likely Bayesian networks are suppressed because of
the large δ. Similarly on Survey (100) and Asia (1000), the
number of data points is large relative to the network size.
Again M-Mode-BNs only found very few mode Bayesian
networks. In comparison, K-Best often has many more top
models to use.

One observation of the results may seem puzzling. Intu-
itively, the very best solution should be the same for both
K-Best and M-Mode-BNs. Therefore, the accuracy curves
of all methods should have the same starting point (when
M = 1). However, in some of the graphs, K-Best has worse
starting accuracies. Upon further investigations into the re-
sults, we found that, although K-Best and M-Mode-BNs al-
ways found top models with the same best score, the mod-
els may come from different equivalence classes, especially
when the amount of data is limited. Therefore, the SHD of
the top models found by K-Best and M-Mode-BNs may be
different. For some unknown reason, M-Mode-BNs found
top models with smaller SHD than K-Best in most cases,
but not always.

As mentioned earlier, M-Mode-BNs is much more scal-
able than K-Best because it can alternatively take pruned
local score tables as input. However, we can see that there
are no results for M-Mode-BNs with δ = 0 on Child* (15,
1000) or on Child (20). It is because, when δ = 0, we are
essentially performing exhaustive search in the search tree.
When δ is too large, M-Mode-BNs can become less efficient
because the local-mode test at each search step is very ex-
pensive. Otherwise, M-Mode-BNs with medium or small δ
values tend to have similar efficiency as K-Best. As a typical
example, K-Best took 9.5s on average on 10 random datasets
of Child*(15, 100) to find the top 10 networks, while M-
Mode-BNs took 10.1s when δ = 1, 5.2s when δ = 3, and
177s when δ = 5.

Effect of Equivalence Classes
In Figure 2, the initial diversity stays at 0.0 until M = 4.
Also in Figure 3, the SHD curves of K-Best often stay flat.
This is because many top Bayesian networks found by K-
Best are from the same equivalence class and lack diver-
sity. As an example, we computed the number of different
equivalent classes out of the top solutions for each setting on
Sachs and present the results in Table 1. Again, we observe
that a larger δ often leads to fewer mode Bayesian networks,
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Figure 4: The average SHD accuracy for unique equivalence
classes found by K-Best and M-Mode-BNs on data sets (100
data points each) sampled from Sachs.

although they tend to be from different equivalence classes.
Addressing such diversity issue was the main motivation

for us to develop the M-Mode-BNs method. Nevertheless,
it is a fair question to ask whether finding top equivalence
classes (Chen and Tian 2014) instead of top Bayesian net-
works can similarly address the diversity issue. In order to
obtain some initial insights, we allowed both K-Best and M-
Mode-BNs to find as many top models as possible, during
which we filtered out models that belong to the same equiv-
alence classes of existing models. In other words, we only
keep top models that belong to unique equivalence classes.
We then compare the oracle accuracies of those filtered mod-
els. The results are shown in Figure 4. The results show that
the equivalence classes found by M-Mode-BNs still have
better oracle accuracies than those of K-Best. The results in-
dicate that diversity in equivalence classes is also desirable.

Concluding Remarks
In this paper, we introduce a novel method called M-Mode-
BNs for finding a diverse set of top mode Bayesian net-
works. Our results show that the top mode Bayesian net-
works found by M-Mode-BNs have much better oracle accu-
racies in discovering the true underlying network structures
in comparison to K-Best, which simply finds the top mod-
els with the best scores. Preliminary results also show that
such diversity cannot be achieved by learning top equiva-
lence classes. Also, we only used oracle accuracy to eval-
uate the quality of mode solutions. In practice, we can ask
an expert to choose a final solution (Flerova, Marinescu, and
Dechter 2016), rank and combine a very large pool (Li, Car-
reira, and Sminchisescu 2010), or even further improve the
solutions in a human-in-the-loop environment.

As future work, we plan to generalize our method to find
top diverse equivalence classes. Open questions include how
to define mode equivalence classes and how to efficiently
search for them. We also want to extend our method to per-
form approximate model averaging and compare to approx-
imate methods for finding diverse Bayesian networks, such
as sampling and local search.
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