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Abstract

Exact marginal inference in continuous graphical models is
computationally challenging outside of a few special cases.
Existing work on approximate inference has focused on ap-
proximately computing the messages as part of the loopy belief
propagation algorithm either via sampling methods or moment
matching relaxations. In this work, we present an alternative
family of approximations that, instead of approximating the
messages, approximates the beliefs in the continuous Bethe
free energy using mixture distributions. We show that these
types of approximations can be combined with numerical
quadrature to yield algorithms with both theoretical guaran-
tees on the quality of the approximation and significantly
better practical performance in a variety of applications that
are challenging for current state-of-the-art methods.

Introduction
Graphical models provide a flexible framework that can be
used to represent joint probability distributions in a variety
of application areas. The primary tool for approximate infer-
ence in these models is a local message-passing algorithm
known as belief propagation (BP) and its myriad variants. In
this work, we will be interested in designing algorithms for
the marginal inference task (computing the partition function
and/or marginal distributions) in continuous graphical models.
Such inference tasks arise naturally in a variety of applica-
tions such as optical flow estimation (Fleet and Weiss 2006),
depth estimation, scientific modeling, etc. As in the discrete
case, inference in continuous and mixed models is an NP-
hard problem that is only known to admit efficient algorithms
in special cases, e.g., Gaussian graphical models (Malioutov,
Johnson, and Willsky 2006) (Ruozzi and Tatikonda 2013).
As a result, approximate inference algorithms such as loopy
BP, and its variants, are typically employed in practice. As
the focus of this work is on inference in graphical models,
we will assume that the potential functions are known in
advance or have already been learned from data using some
other method, e.g., Chow-Liu trees (Chow and Liu 1968) or
kernel BP (Song et al. 2011). Given the potential functions,
our aim is then to approximately compute marginals and/or
the partition function of the model.
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Much of the work on inference in models with continu-
ous variables has focused on extensions of the BP algorithm.
However, efficient computation and representation of the BP
messages turns out to be a challenging problem involving a
variety of trade-offs. There are two primary approaches to
computing the BP message updates in the continuous case.
First, one class of methods approximate the messages, e.g.,
by using Gaussian mixtures (Sudderth et al. 2003), particles
(Ihler and McAllester 2009), finite terms of orthogonal series
expansions (Noorshams and Wainwright 2013), or kernels
(Song et al. 2011). The BP message updates are then reformu-
lated as expectations, and the expectations are calculated us-
ing either a sampling scheme or an inner product, in the case
of the orthogonal series and kernel methods. Alternatively,
the message updates can be approximated via moment match-
ing: The expectation propagation algorithm approximates the
messages using an exponential family and computes approxi-
mate BP message updates via a moment matching procedure
(Minka 2001). In general, these iterative message-passing al-
gorithms are not guaranteed to converge on arbitrary graphs
with arbitrary potentials. In practice, convergent methods
can be designed by exploiting the connection between fixed
points of BP/EP and local optima of the Bethe free energy op-
timization problem. This objective is defined over locally con-
sistent pseudomarginals and can be used to design convergent
methods based on gradient ascent (Welling and Teh 2001;
Heskes and Zoeter 2002). Here, we move the approxima-
tions from the messages to the pseudomarginals and design
convergent methods for approximate inference over pseudo-
marginals that are mixtures of Gaussians. As the Bethe free
energy objective requires the computation of expectations
of the model potentials with respect to the pseudomarginals,
our method will make use of Gauss-Hermite quadrature, a
classical numerical integration method (Golub and Welsch
1969).

Our proposed approach has many advantages over existing
methods in terms of practical performance, scalability, and
flexibility:

• The approximation does not need to form products of mix-
ture distributions such as those required by nonparametric
BP (Sudderth et al. 2003), but it still gains the modeling
advantages that Gaussian mixtures possess.

• The gradient optimization methods proposed here can be
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vectorized to take advantage of modern GPUs. Even with-
out this, our implementation requires a fraction of the time
per iteration as compared to particle methods.

• With additional restrictions, the result of the inference pro-
cedure will not only yield a collection of local marginals
but also a global mixture model. As a result, every marginal
distribution, including conditionals, is essentially approx-
imated using one inference pass. Message-passing algo-
rithms would need to be rerun given evidence and not all
marginal distributions can be easily extracted from the
converged messages.

• Our approach easily extends to hybrid models, i.e., models
with both discrete and continuous variables, with very little
additional work.

• Gaussian quadrature methods come with strong theoretical
guarantees and error bounds. In particular, the integral
approximations can be made exact for any model in which
the potential functions are log-polynomial.

• In practice, gradient methods yield convergent algorithms
while message-passing algorithms, even in the exact case,
can have significant difficulty converging.

We provide support for our claimed advantages from both a
theoretical and a practical perspective: We apply our method
to a variety of problems arising from real and synthetic data
sets, in each case demonstrating the superior performance
of our approach for the marginal inference task. Our experi-
mental results suggest that Gaussian mixtures can produce
pseudomarginals that more accurately reflect the ground truth
(e.g., multimodal marginals) “per particle” than approximate
message-passing schemes. Finally, if the goal is actually to
approximate a high-dimensional integral, i.e., compute logZ,
the variational approach is far superior to approximations
in the message domain. This is a result of the constraints in
the variational approach that yield proper pseudomarginals
and closed form estimates of the marginals as opposed to
particle sampling methods, whose continuous marginals only
approximately have these guarantees.

Preliminaries
A continuous, pairwise graphical model is a graph G =
(V,E) together with a collection of nonnegative potential
functions φi : R → R≥0 for each i ∈ V and ψij : R2 →
R≥0 for each (i, j) ∈ E. A joint probability distribution, p,
factorizes with respect to G if it can be written as

p(xV ) =
1

Z

∏
i∈V

φi(xi)
∏

(i,j)∈E

ψij(xi, xj), (1)

where Z is the normalization constant, sometimes called the
partition function.

In this work, we will restrict our attention to the special
case of strictly positive potential functions that are Riemann
integrable over any compact subset of their domain. This is
not an overly restrictive assumption as many models (e.g.,
Gaussians, Gaussian mixtures, Laplace distributions, etc.)
easily satisfy this requirement. Our goal will be to develop
methods for statistical inference in this class of distributions

(e.g., computing Z or marginal distributions of p). As this
task is NP-hard in general (the discrete case is a limit of
the continuous case), approximations are often necessary
in practice. In the remainder of this section, we review the
current approaches to approximate inference in such models.

Belief Propagation
The BP algorithm, also know as the sum-product algorithm,
is an iterative message-passing algorithm to approximate the
marginals and partition function of graphical models. In BP,
messages are passed along the edges of the graph. For each
edge (i, j) ∈ E, the message passed from i to j is as follows.

mt
i→j(xj) ∝

∫
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

mt−1
k→i(xi)dxi,

(2)

where N(i) is the set of neighbors of node i ∈ G. Once
the message-passing procedure converges, the messages are
used to estimate the marginal probabilities over each variable
and each pair of variables joined by an edge. This is done
by constructing the following beliefs from the converged
messages, m∗.

bi(xi) ∝ φi(xi)
∏

k∈N(i)

m∗k→i(xi) (3)

bij(xi, xj) ∝
bi(xi)bj(xj)ψij(xi, xj)

m∗j→i(xi)m
∗
i→j(xj)

(4)

The BP algorithm is exact, i.e., the beliefs are proportional to
the correct marginal distributions, when the graph is a tree,
but neither convergence nor correctness are guaranteed for
general graphs.

The fixed point messages of BP correspond to local optima
of a constrained optimization problem known as the Bethe
free energy (BFE) (Yedidia, Freeman, and Weiss 2005), see
Ruozzi (2017) for a more detailed discussion of the continu-
ous case. Given a collection of normalized, nonegative beliefs
that satisfy the so-called local marginalization constraints,
that is, ∫

bi(xi)dxi = 1, ∀i ∈ V,∫
bij(xi, xj)dxi = bj(xj), ∀(i, j) ∈ E, xj ∈ R

the Bethe free energy is defined as

F (b) =
∑
i∈V

Ebi [log φi] +
∑

(i,j)∈E

Ebij [logψij ]

+
∑
i∈V

(1− |N(i)|)H(bi) +
∑

(i,j)∈E

H(bij), (5)

where H is the differential entropy. The log-Bethe partition
function is obtained by maximizing F over the local marginal-
ization constraints. While message-passing algorithms are
not guaranteed to converge in general, gradient ascent based
on the BFE yields convergent algorithms and can be made
particularly efficient in special cases, e.g., (Welling and Teh
2001).
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Though popular in the discrete case, in the continuous case,
the message-passing update (2) cannot typically be computed
in closed form outside of special cases (Weiss and Freeman
2001). As a result, alternative message-passing algorithms
have been proposed to approximate BP. The first such ap-
proach, the nonparametric BP algorithm, approximates the
messages as L-component Gaussian mixtures, and uses effi-
cient sampling methods to compute the updates (Sudderth et
al. 2003). However, the algorithm scales poorly as a function
of L, O(Ld) per edge per iteration where d is the maximum
degree of a vertex inG. The particle belief propagation (PBP)
algorithm improves upon nonparametric BP by using a col-
lection of K particles associated with each node in the graph
to approximate the BP messages instead of using Gaussian
mixtures (Ihler and McAllester 2009)(Frank, Smyth, and
Ihler 2009). This reduces the sampling cost to O(K2) per
edge per iteration, but the constant in the big-O depends
crucially on the efficiency of the sampling procedure that
is being used. The expectation particle belief propagation
(EPBP) algorithm is a PBP based algorithm in which the
particles at each node are sampled via importance sampling
(Lienart, Teh, and Doucet 2015). The proposal distributions
are selected to be members of some exponential family, typ-
ically Gaussian distributions, and are computed using the
same kind of moment matching updates as EP. The EPBP
algorithm provides a consistent estimate of the BP messages
as the number of particles increases, and the complexity of
the EPBP algorithm is O(MK) per edge per iteration where
K is the number of particles and M is the number of samples
drawn to approximate the message updates.

Another alternative, the stochastic orthogonal series
message-passing algorithm (SOSMP) approximates the
BP message updates using orthogonal series expansions
(Noorshams and Wainwright 2013). To keep the procedure
tractable, only K basis coefficients in the expansion are
maintained at each iteration. The message update is reformu-
lated as an expectation and then approximated via standard
sampling procedures (e.g., rejection sampling or importance
sampling). Note that this method requires that the potential
functions can be normalized in order to apply the sampling
procedures (this is somewhat limiting as the model may still
be, and often is, normalizable without this restriction). In
addition, before computing the expectations, the messages
must be projected onto the space of nonnegative functions as
the basis expansion may not guarantee nonnegativity. Song
et al. (2011) proposed kernel BP (KBP), a joint learning and
inference procedure that represents the messages as elements
of reproducing kernel Hilbert space (RKHS) so that the mes-
sage updates can be represented as inner products. In this
respect, it is similar to SOSMP, except that training data is
used to generate a representation of the potential functions
in the RKHS. KBP can also return negative beliefs, which
makes it difficult to use for estimating the partition function.

The expectation propagation message-passing algorithm
(EP) is a generalization of BP in which the messages are
restricted to a fixed exponential family and the BP updates
are approximated via a moment matching procedure (Minka
2001). The moment matching step of EP requires approximat-
ing one integral for each sufficient statistic of the exponential

family used in the approximation. Like BP, the EP algorithm
is not guaranteed to converge. However, EP can also be for-
mulated as maximizing the BFE in which the marginalization
constraints are replaced with simpler moment matching con-
straints (Heskes and Zoeter 2002). As a result, convergent
formulations of EP can be obtained by optimizing the BFE
approximation directly.

Finally, recent advances in Stein variational methods pro-
vide an alternative to BFE based methods (Liu, Lee, and
Jordan 2016)(Wang, Zeng, and Liu 2018). Given a continu-
ously differentiable probability distribution, p, these methods
aim to find a collection of particles x(1), . . . , x(n) such that∑n
l=1 f(x

(l)) ≈ Ep[f ]. This can be done via a gradient de-
scent scheme known as Stein variational gradient descent
(SVGD) (Liu, Lee, and Jordan 2016). Recent work has ex-
tended this method to graphical structures in an effort to
take advantage of local structure in the optimization (Wang,
Zeng, and Liu 2018). While this approach is similar in many
ways to what is proposed here, Graphical SVGD optimizes
a different objective and there is no explicit strategy as of
yet to use them for marginal inference (constructing accurate
marginals from the particles would require an appropriate
kernel density estimation method). This makes it difficult
to compare this approach with those above, though it is an
interesting direction of future research to bridge this gap.

Bethe Quadrature Methods
As an alternative to the message-passing algorithms described
above, we propose to approximate the BFE directly by re-
stricting the set of allowable beliefs to a nice family from
which the integrals in equation (5) can be easily approxi-
mated. Such a direct approach circumvents a number of the
difficulties with the above message-passing schemes includ-
ing convergence issues. In particular, the quadrature based
integration methods we will employ come with strong theo-
retical guarantees based on the number of quadrature points
used in the approximation - the quality of approximation
per quadrature point is significantly better than the quality
of approximation per particle. Further, the approximation
will not be dictated by the beliefs that can be obtained from
the potentials multiplied by approximate messages. Consider
a situation in which potential functions over the individual
variables may be unimodal, but the true marginals are highly
multimodal. Gaussian EP can perform poorly here as it can-
not return a multimodal approximation for the marginals.

First, consider restricting the allowable beliefs in the BFE
to Gaussian distributions. That is, for each i ∈ V , bi(xi) =
N (xi;µi, δii) and for each (i, j) ∈ E

bij(xi, xj) = N
(
xi, xj ;

[
µi
µj

]
,

[
δii δij
δij δjj

])
.

Each covariance matrix must be strictly positive definite in
order to yield a Gaussian distribution. However, the set of all
positive definite matrices does not form a closed, convex set
so we relax the constraint to only require positive semidefi-
niteness of the covariance matrices. The log-Bethe partition
function, restricted to Gaussian beliefs, is then found by max-
imizing (5) over the means and variances for each belief
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subject to positive semidefinite constraints. Maximizing this
function via gradient ascent requires computing the integrals
in (5), which in general do not have closed form solutions.
To make this problem more tractable we will approximate
the integrals using quadrature methods. As we are integrating
with respect to normal distributions, Gauss-Hermite quadra-
ture methods (GHQs) are a reasonable choice (Golub and
Welsch 1969). These quadrature methods can be thought of
as deterministic sampling methods in that they approximate
expectations of a function q with respect to a Gaussian dis-
tribution as a weighted sum the function q evaluated at KQ

carefully chosen quadrature points. These methods have also
been applied to approximate the integrals as part of the EP al-
gorithm (Heskes and Zoeter 2005). For a univariate function
f : R→ R, GHQs approximate the expectation with respect
to a normal distribution as

EN (µ,σ2)f(x) ≈
KQ∑
k=1

wk√
π
f
(√

2σ2yk + µ
)
,

where the wk’s and yk’s are determined by the GHQ method
and are independent of the mean and variance. For the multi-
variate case, the integrals are approximated iteratively.
Theorem 1 (Golub and Welsch (1969)) For a positive in-
teger KQ, mean µ ∈ R, and variance σ2 ∈ R>0, GHQ
constructs w1, . . . , wKQ

∈ R and y1, . . . , yKQ
∈ R such

that there exists a ξ ∈ R with

EN (µ,σ2)f(x) =

KQ∑
k=1

wk√
π
f
(√

2σ2yk + µ
)
+
n!
√
π

2n
f (2KQ)(ξ)

(2n)!

As a consequence, using KQ quadrature points, the approxi-
mation is exact whenever f is a polynomial of degree at most
2KQ − 1 in each variable separately.

The BFE over Gaussian beliefs is a non-concave optimiza-
tion problem over δ and µ. Despite this, we can still use
gradient methods to find local optima of this objective. In our
implementation we used projected gradient ascent to keep
the iterates in the space of positive semidefinite matrices.
The gradient can be computed in O(|E|K2

Q) time on a single
machine using the quadrature methods. This per iteration
complexity looks comparable to PBP, but experimentally KQ

can be taken to be much smaller than the number of particles
in PBP. The weights and quadrature points can be precom-
puted for a givenKQ incurring a one time computational cost
at the start of the algorithm. Similar to the message-passing
algorithms, the computation of the gradient can be easily
parallelized across multiple machines.

The drawback of restricting the beliefs to Gaussian distri-
butions is that the resulting beliefs are necessarily unimodal.
In the case that the true beliefs are multimodal, there exist
local optima that fit each of the modes separately. However,
the above approach extends to the case in which the beliefs
are assumed to be Gaussian mixtures. As any nonnegative,
continuous function can be arbitrarily well approximated by
a mixture of Gaussians, this family is very expressive, but
one expects more local optima of the BFE as a result.

Like Gaussians, the family of Gaussian mixture distribu-
tions is closed under marginalization. There are two primary

difficulties in extending from the Gaussian to the Gaussian
mixture case. First, there is an issue of identifiability of Gaus-
sian mixtures. Without any prior information, all L! rela-
belings of an L-component Gaussian mixture will result in
equivalent models. This can cause slow convergence if the
optimization procedure bounces between these identical local
optima. To discourage this behavior, the marginalization con-
ditions are enforced by fixing a single µ(l) and δ(l) for each
l ∈ {1, . . . , L}. This fixes an ordering on the components
of the mixture that is consistent across the individual beliefs.
Second, although the entropy of a Gaussian distribution can
be computed in closed form, the entropy of Gaussian mix-
tures does not admit a closed form solution, and we will need
to approximate it as well. Taylor series expansions have been
shown to work well in this case (Huber et al. 2008). So, we
expect reasonable performance from GHQ.

In addition to the partial derivatives with respect to µ and
δ, partial derivatives must also be computed for the mix-
ture probabilities, and projected gradient methods are used
to enforce the mixture and positive definite constraints. For
Gaussian mixture beliefs, the gradient can be computed in
O(|E|K2

QL
2) time on a single machine. Better per itera-

tion complexity, e.g., O(|E|K2
QL), can be obtained by using

stochastic gradient methods making this approach practi-
cal for large L. The entire method can be formulated using
matrix-vector operations making it efficient to implement in
MATLAB and on modern GPUs. In addition,KQ can be kept
small in practice as long as the log-potential functions can be
well-approximated by low-degree polynomials.

Theorem 2 For any tree-structured graphical model, every
local optimum, with respect to the parameters of the beliefs,
of the BFE in which the beliefs are mixtures of Gaussians
yields a lower bound on the partition function assuming that
sufficiently many quadrature points are used to approximate
the integrals.

Proof sketch: If the model is tree-structured, then the BFE ap-
proximation is exact when optimizing over arbitrary marginal
probability distributions that satisfy the marginalization con-
straints, and the number of quadrature points can be chosen
so that the integrals in the BFE for Gaussian mixtures are
arbitrarily close to the correct answer. Note that, at the maxi-
mum of the BFE, taking the limit as the number of quadrature
points tends to infinity may be necessary to achieve a lower
bound.

Single-Pass Inference
Unlike the beliefs produced by typical message-passing al-
gorithms, under certain conditions, the beliefs produced via
the above variational scheme are actually the marginals of
a proper joint probability distribution. In particular if we
require that, for each mixture component L, the beliefs are
restricted to have diagonal inverse covariance matrices, then
a corresponding joint Gaussian distribution is obtained di-
rectly from the local marginals (i.e., the beliefs lie in the
marginal polytope as there is some joint distribution that has
these beliefs as marginals). This restriction actually simplifies
the algorithm significantly: the projection step only needs to
make sure that the diagonal entries are strictly positive and
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the number of parameters scales as O(|V |L), independent of
the size of the maximum clique in non-pairwise models. This
is reminiscent of both kernel density estimation (Silverman
1986) and more recently nonparametric variational inference
(Gershman, Hoffman, and Blei 2012). The joint probability
distribution of the mixture beliefs is simply a mixture of
independent Gaussian distributions. Given such a mixture
distribution, it is easy to compute any marginal distribution
over any subset of variables without computing a single sum.
Similarly, even if evidence is introduced, the corresponding
conditional marginal distributions are trivial to compute. The
added benefit of this approach is that, in situations where
repeated marginal/conditional marginal inference queries are
desired, this method only requires performing approximate
inference once whereas message-passing approaches would
need to be rerun for each new piece of evidence or desired
subset. One might expect that, in practice, L may need to
be prohibitively large in order to obtain reasonable approx-
imations - it may need to be exponential in the worst case.
However, in the experimental section, we show that these
types of approximations perform well when applied to poten-
tial functions that arise from real data.

The above strategy can also be applied to discrete MRFs
and hybrid discrete/continuous MRFs with very little mod-
ification. In the simplest case, the belief associated to each
discrete variable is represented as a mixture of discrete uni-
variate probability distributions. The Lth component of the
belief over each edge is selected to be the product of the Lth
components of the univariate distributions of its endpoints
(independent of whether they are discrete or continuous). Pro-
jected gradient descent can then be performed as before with
the additional constraint that discrete univariate beliefs are
nonnegative and sum to one.

Beyond Pairwise Models: High-Arity Cliques

One potential drawback of the proposed scheme is that if the
model involves potential functions of arity r, then a naı̈ve
application of iterated quadrature schemes (one for each di-
mension as described above) for approximating the integrals
in the BFE, would require a sum of size Kr

Q. This isn’t sur-
prising as it matches the scaling in the discrete cases. By way
of contrast, the particle methods can determine the number
of particles independent of the arity.

In practice, we may hope to approximate these integrals
with alternative methods. One possible solution is to use sam-
pling methods to approximate the integrals. In this case, sam-
pling from a mixture of independent Gaussian distributions
can be done efficiently. An alternative strategy could make
use of SVGD to select good particles to approximate the ap-
propriate expectations in the BFE. In either case, the number
of samples/particles could be chosen to be independent of r,
and as is the case for quadrature methods, we can hope that
a small number of particles is sufficient to guarantee a good
approximation in practice. With the above modifications, our
approach is likely to be applicable on a wide variety of graph-
ical models that would be computationally prohibitive for
existing methods.

(a) Original (b) Noisy (c) EP

(d) PBP (e) EPBP (f) QBethe

Figure 1: Approximate denoising of the 50× 50 image (b).

Experimental Results
In the following experiments, we evaluate our method on
a variety of UCI datasets, an image denoising task, and a
synthetic problem over a three node cycle. As the aim is
to showcase performance on inference tasks, for all prob-
lems the potentials are assumed to be known in advance or
have been learned using a separate method. We implemented
our approach that approximates the beliefs as independent
Gaussian mixtures, dubbed QBethe, using standard projected
gradient ascent with a diminishing step size rule in MATLAB
without parallelization. We compare against the Gaussian EP,
EPBP, and PBP methods (also implemented in MATLAB) as
other methods either cannot perform inference with arbitrary
potentials (e.g., kernel BP) or require the potential functions
to be normalizable (e.g., SOSMP). For consistency with prior
work, PBP and EPBP were implemented to match Lienart,
Teh, and Doucet (2015) and Ihler and McAllester (2009). For
PBP, this means that the current belief is used as a proposal
and MCMC is used for sampling. Initial means and particle
points are sampled independently from a normal distribution
with mean and standard deviation determined by data.

Approximate Inference in Chow-Liu Trees
Our aim in this section is to experimentally evaluate the per-
formance of the proposed method for the marginal inference
task in tree-structured, continuous MRFs. While we will re-
strict to trees so that we can evaluate the performance of
each method against an accurate ground truth, we note that
this problem is highly non-trivial for arbitrary continuous
potential functions. This is also a best-case scenario for the
particle methods as convergence of the message-updates is
not problematic on trees. We will show that QBethe, despite
making additional approximations, compares favorably to the
particle methods on tree-structured models arising from real
data.

For this set of experiments, we selected a variety of data
sets from the UCI Machine Learning Repository (Dheeru
and Karra Taniskidou 2017) with between 4 and 30 vari-
ables. For each data set, we first learned a Chow-Liu tree
representation (Chow and Liu 1968) over the continuous
variables using Parzen windows, e.g., (Ni et al. 2017)1.

1The probabilities produced by this method do not necessarily
marginalize to each other due to slightly different variances. We
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Average Z Average Univariate KL divergence
Dataset PBP EPBP QBethe PBP EPBP QBethe

Iris 0.20± 0.17 0.37± 0.16 0.97± 0.02 0.35± 0.33 0.25± 0.14 0.00± 0.00
B.N. 0.15± 0.18 0.00± 0.00 0.87± 0.01 0.62± 0.59 0.83± 0.01 0.06± 0.00
I.S.E. 0.00± 0.01 0.06± 0.00 0.54± 0.02 0.78± 0.37 0.30± 0.00 0.21± 0.05
Seeds 0.12± 0.12 0.49± 0.15 0.84± 0.05 0.29± 0.18 0.12± 0.03 0.02± 0.01
Yeast 0.04± 0.12 0.00± 0.00 0.67± 0.07 3.31± 3.61 1.18± 0.09 0.24± 0.05
Wdbc 0.05± 0.18 0.27± 0.20 0.21± 0.06 0.10± 0.07 0.58± 0.14 0.18± 0.19
Letter 0.00± 0.00 0.00± 0.00 0.26± 0.05 0.57± 0.26 0.73± 0.01 0.07± 0.02
Poker 0.62± 0.12 0.01± 0.00 0.63± 0.05 0.02± 0.01 0.32± 0.00 0.06± 0.01
CMSC 0.32± 0.08 0.47± 0.01 0.56± 0.02 0.03± 0.01 0.02± 0.00 0.02± 0.00

Table 1: Inference on tree-structured models. All numbers are rounded to two decimal places. In all cases, Z = 1.

This yields a tree G = (V,E), a collection of probabil-
ities, pi∈V , for each variable in the model, and a collec-
tion of probabilities, p(i,j)∈E , for each pair of variables
joined by an edge in the model. We construct potential func-
tions from these probabilities as follows: for each i ∈ V ,
φi(xi) = pi(xi)

∏
k∈N(i)Mki(xi), and for each (i, j) ∈ E,

ψij(xi, xj) = pij(xi, xj)/(pi(xi)pj(xj)Mij(xj)Mji(xi)),
where each message Mij : R→ R>0 is an arbitrary continu-
ous function. By construction, the partition function of each
of these reparameterizations is always equal to one and the
exact marginal probabilities are given by the probabilities
learned from the Chow-Liu tree procedure. In the simplest
case, the messages are constant functions in which case PBP,
which uses the univariate beliefs as proposal distributions,
would be initialized with the true distributions. In order to
make the inference problem slightly more realistic, we chose
an edge only factorization: Mij(xj) , pj(xj)

−1/dj , where
dj is the degree of node j ∈ G. In this case, φi(xi) = 1 for all
xi and ψij(xi, xj) = pij(xi, xj)/(pi(xi)

1−dipj(xj)
1−dj ).

Other factorizations were also considered, but we found that
the performance of all of the methods to be roughly indepen-
dent of the simple reparameterizations we considered.

For these experiments, QBethe was run from a random
intialization with KQ = 4 quadrature points and L = 5 mix-
ture components. PBP and EPBP were run with 20 particles
to ensure that all three methods have roughly the same per
iteration complexity and use the same number of points in
the integral approximations. The resulting estimates of the
continuous marginals were plugged into the BFE to estimate
the log-partition function. The EP algorithm was not used
in these experiments as it tended to produce poor estimates
of the partition function in nearly all cases. Note that in all
models, the exact Z value is equal to one and KL divergence
values closer to zero indicate better approximations.

Each method was run 20 times, and the average Z value
and the average KL divergence values between the exact and
approximate node beliefs over all variables are reported in
Table 1. For EPBP and PBP, the KL divergence is calculated
based on continuous beliefs obtained from the converged par-
ticles. QBethe significantly outperforms both PBP and EPBP
on average on most data sets both in terms of the estimate
of logZ and in terms of the KL divergence on univariate
marginals. This isn’t completely surprising as all methods are

ensure the marginalizatinon conditions are satisfied for purposes of
this evaluation.
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Figure 2: Estimate of the partition function and mean square
error of EPBP and QBethe for the image denoising problem.

using the same number of points for approximate integration
and QBethe selects optimal points in the sense of Theorem 1.
Note also that even when the particle methods do a reason-
able job of estimating the marginal distributions, they do not
guarantee that the approximate beliefs marginalize to each
other over the entire real line. As a result, the corresponding
estimate of the partition function may be inaccurate when the
approximate beliefs are plugged into the BFE. As an example
consider the EPBP results for Wdbc in Table 1. While EPBP
appears to have the best estimate of the partition function
on average, its KL divergence is significantly worse than
QBethe, which suggests that the EPBP beliefs likely did not
satisfy the marginalization conditions.

In summary, while all methods seem to return some-
what reasonable univariate KL divergences on average, accu-
rate estimation of logZ from the corresponding continuous
marginals requires converged marginals that satisfy the local
marginalization conditions. PBP only has these guarantees
at the converged particle points. As a result, if the aim is to
compute logZ, QBethe appears to be preferable in practice.
Increasing the number of particles improves accuracy at sig-
nificant cost, e.g., PBP requires more than 100 particles (25×
slower) to be comparable, on average, to QBethe on Iris.

Image Denoising
As a second application, we consider a simple image de-
noising problem (Lienart, Teh, and Doucet 2015). Of par-
ticular note is that the edge potentials in this model are not
integrable by themselves. The aim of this experiment is to
demonstrate that the proposed method is practical on medium
sized models with thousands of variables, and it still out-
performs the particle methods in terms of maximizing the
BFE in this setting. For the denoising task, the input is a
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50× 50 image that has been corrupted with Gaussian noise.
The model is a 50 × 50 grid graph in which each pixel in
the image corresponds to a node in the graph and neigh-
boring pixels in the image are joined by an edge. For this
problem, the node and edge potentials are selected to bias
node u to take the value in the noisy image yu such that
neighboring nodes are encouraged to have the same denoised
value subject to a cutoff: φu(xu) = N (xu− yu; 0, 0.01) and
ψuv(xu, xv) = Lλ(xu − xv; 0, 0.03), where Lλ(x;µ, ν) is
a truncated Laplace distribution.

Lλ(x;µ, ν) =

{
L(x;µ, ν), |x| ≤ λ
L(λ;µ, ν), otherwise

.

In our experiments, λ was set to 0.2 to maintain consistency
with prior work (Lienart, Teh, and Doucet 2015). The number
of particles for the sampling methods was set to 100. QBethe
was run with L = 1 and three quadrature points. For all al-
gorithms, the mean value of the approximate node marginals
was selected as the denoised value for the corresponding
pixel. PBP is slow to converge on the model - we tried dif-
ferent proposals, but were unable to improve convergence
or quality dramatically. Figure 1 shows the results in which
the values for all pixels were scaled into the interval [0, 1]
and plotted as a grayscale image. QBethe and EPBP both
produce reasonable looking denoisings while EP produces
a poor estimate of the ground truth, suggesting that the true
marginal distributions are possibly multimodal and that EP
converges to a poor local optimum. Figure 2 compares the
per iteration quality of the particle methods and QBethe in
terms of the value of the log-partition function and the mean-
squared error (MSE). While QBethe starts at a significantly
worse solution, it quickly surpasses EPBP and PBP both in
terms of approximation of the log-partition function and in
terms of MSE. While more iterations of QBethe are necessary
to achieve comparable performance, note that QBethe can be
implemented extremely efficiently using matrix-vector oper-
ations in MATLAB. The average per iteration complexities
for each method are quite different: QBethe (.02s), EPBP
(50s), PBP (305s). As a result, even though one iteration of
EPBP yields a reasonable solution, QBethe can perform 2500
iterations in the same amount of time. While all methods can
be sped up with parallel processing, QBethe is likely to be
much more practical on medium/large scale problems.

Message Passing Convergence Issues
One advantage of the variational approach is that it does not
suffer from the types of convergence issues that arise even for
standard BP. Using a simple model on a 3-cycle, we demon-
strate that convergence issues can result in poor estimates of
the partition function with the continuous message-passing
algorithms while the variational approach is unaffected.For
this experiment, the node and edge potentials are chosen so
that the true univariate marginal distributions are trimodal
with three well-separated peaks:

φu(xu) = e−.1|xu|, ψuv(xu, xv) = (f10 + f−10)(xu, xv)

fa(xu, xv) = e−.1(xu−a)2−.1(xv+a)
2

We examined the estimate of the partition function produced
by QBethe, with different numbers of mixture components

(a) Ground Truth (b) QBethe

Figure 3: Performance of QBethe on an optical flow estima-
tion task.

using three quadrature points, and the particle methods for
varying numbers of particles. We computed the average log-
partition function using 50 trials of 150 iterations of each
method. For reference, logZ = −16.17 for this model.
QBethe returns accurate approximations of the log-partition
function even with a small number of mixture components,
and as L increases, QBethe returns better answers on aver-
age: −17.94± 0,−17.56± 0.36,−17.32± 0.42,−17.07±
0.45,−16.88 ± 0.41,−16.78 ± 0.42, for L = 1, . . . , 6 re-
spectively. Selecting more mixture components increases the
chance that the algorithm converges to an approximation
that correctly identifies all three peaks. Contrast this with
the estimates of logZ generated by PBP where the partition
function estimates can be orders of magnitude more extreme:
−47.34±38.03,−25.57±31.05,−22.24±19.05,−20.64±
19.34,−10.61 ± 12.62, for M ∈ {5, 25, 50, 75, 100}. Al-
though the variance does appear to decrease as the number of
particles increases, it is still over 12 orders of magnitude with
100 particles. Closer inspection shows that the messages pro-
duced by PBP do not appear to be converging for this model.
Changing to a rejection sampling procedure using a Gaussian
proposal reduced the variance, but did not appear to result
in convergence. The average KL-divergence of PBP is also
poor: 154 even with 100 particles. EPBP produces similarly
poor estimates of logZ and an average KL-divergence of 147
indepedent of the number of particles.

Discussion
In summary, the proposed method outperforms the state-of-
the-art message-passing algorithms on standard marginal in-
ference tasks both in terms of speed and accuracy: the method
scales well to larger models and does not suffer from the kinds
of convergence issues that are common for message-passing
algorithms on loopy graphs. To further demonstrate the scala-
bility of the method, we applied it to optical flow estimation.
For this demonstration, we extended the standard discrete
formulation (Sun, Roth, and Black 2010) to the continuous
case using a bicubic interpolation. Consider Hydrangea from
the Middlebury Optical Flow data set (Baker et al. 2011).
The flow model for this image is a 584× 388 grid graph with
over 200, 000 random variables. Max-product versions of the
particle message-passing schemes have been applied for this
problem, but they reduce the number of nodes to around 9000
using superpixels (Pacheco and Sudderth 2015). Even with
this reduction, the methods require roughly 50 seconds per
iteration with 10 particles. We applied our method directly
on the pixel level with L = 1 and KQ = 11 near the zero
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temperature limit with a GPU implementation on an NVIDIA
Tesla V100. Our method completed 5,000 iterations in just
under 200 seconds (.04 sec/iteration) and returned an average
end-point error of 0.273. The ground truth and our approxi-
mate result can be found in Figure 3. Given the practicality
and flexibility of our approach, we plan to apply these meth-
ods to inference and learning problems in computer vision
and relational models with both discrete and continuous vari-
ables, especially on models for which existing methods are
difficult to apply due to scale or other limitations.
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