
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Polynomial-Time Probabilistic Reasoning with Partial
Observations via Implicit Learning in Probability Logics

Brendan Juba∗

Washington University in St. Louis
bjuba@wustl.edu

Abstract

Standard approaches to probabilistic reasoning require that
one possesses an explicit model of the distribution in ques-
tion. But, the empirical learning of models of probability dis-
tributions from partial observations is a problem for which
efficient algorithms are generally not known. In this work
we consider the use of bounded-degree fragments of the
“sum-of-squares” logic as a probability logic. Prior work has
shown that we can decide refutability for such fragments in
polynomial-time. We propose to use such fragments to decide
queries about whether a given probability distribution satis-
fies a given system of constraints and bounds on expected val-
ues. We show that in answering such queries, such constraints
and bounds can be implicitly learned from partial observa-
tions in polynomial-time as well. It is known that this logic is
capable of deriving many bounds that are useful in probabilis-
tic analysis. We show here that it furthermore captures key
polynomial-time fragments of resolution. Thus, these frag-
ments are also quite expressive.

Introduction
Most scientific reasoning is probabilistic. It is quite rare for a
conclusion to hold categorically. Informal conclusions such
as “smoking causes cancer” correspond to formally proba-
bilistic claims that the rate of incidence of cancer is higher in
a population of smokers than another in which participants
are forbidden from smoking. Likewise, our knowledge of the
specific cases that comprise a study is almost necessarily in-
complete. We are often interested in latent variables, such as
whether or not a patient has a specific disease, that we seek
to infer based on some observed attributes, e.g., the mani-
fested symptoms. Unfortunately, if we do not already under-
stand the processes that connect the observed attributes to
the latent factors of interest, e.g., in the sense of possessing
a probabilistic graphical model (Pearl 1988) of the system,
the situation is quite challenging.

Indeed, the currently dominant approach to reasoning
from data in such problems, as embodied for example by
Markov Logic Networks (Richardson and Domingos 2006),
is to first learn such a probabilistic graphical model, and
then apply weighted model counting on translations of
∗Supported by NSF Award CCF-1718380.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this model (Gogate and Domingos 2011; Domingos and
Webb 2012). The problem lies in the first stage, in the
“structure learning” problem. When the examples are not
fully specified, existing approaches based on Expectation-
Maximization (“E-M”) do not scale well (Koller and Fried-
man 2009, Section 19.4). Although there are a variety of
proposals for learning, for example, models with bounded
tree-width (Narasimhan and Bilmes 2004; Sesh Kumar and
Bach 2013), the networks encountered in practice often do
not feature low tree-width (Chavira and Darwiche 2008). In
a similar spirit, Poon and Domingos (2011) proposed sum-
product networks as an alternative model for probability dis-
tributions. While sum-product networks provide some ad-
vantages over standard graphical models, ultimately just as
with standard graphical models, structure learning has been
accomplished by using the E-M meta-algorithm over the
model likelihood. Thus, it falls prey to the same issues.

In this work we will consider techniques for reasoning
under partial information that bypass the structure learning
problem and indeed the whole framework of probabilistic
graphical models. The structure learning problem under par-
tial information remains out of reach, so what we achieve
will necessarily be incomparable to what can be achieved
given such a graphical model. Instead, we extend probability
logics, e.g., as proposed by Nilsson (1986) or the generaliza-
tion to expectation proposed by Halpern and Pucella (2007),
in two ways: First, we observe that these logics that only
consider linear inequalities can be strengthened to logics
that consider polynomial inequalities on the support and mo-
ments. For this, we will observe that the “sum-of-squares”
(a.k.a., “Positivstellensatz refutation”) logic introduced by
Grigoriev and Vorobjov (2001) can be interpreted as a prob-
ability logic, following work by Lasserre (2001) on deciding
whether or not a probability distribution can be consistent
with a given set of moments (aka, “moment problems”). We
note that this logic has a rather powerful polynomial-time
fragment: in addition to being able to derive and use a wide
variety of standard analytic inequalities and represent con-
ditional probability bounds as considered by Grosof (1986),
we also show that these fragments can simulate some of the
strongest fragments of resolution known to be decidable in
polynomial time. And second, we show how learning from
partial examples can be integrated into answering queries
in such a logic using implicit learning (Juba 2013).

7866

Relationship to Other Work
The second extension will distinguish our approach both
from Nilsson’s logic, which does not consider how the input
probabilistic bounds are obtained, and from approaches such
as reasoning directly about the maximum entropy distribu-
tion that is consistent with the given constraints (Bacchus
et al. 1996). Meanwhile, it is of course distinguished from
the work on PAC-semantics and learning to reason (Khardon
and Roth 1997; Valiant 2000; Juba 2013; Michael 2014) in
that it can estimate general probabilities and expected val-
ues, and is not restricted to only drawing conclusions about
what is true with high probability.

The qualitatively most similar relative to our approach
is probabilistic logic programming (De Raedt and Kersting
2008), and in particular, Bayesian logic programming from
interpretations (Kersting and De Raedt 2008). In this latter
problem, we suppose that an unknown distribution is speci-
fied by some Bayesian logic program, and we would like to
synthesize it from a collection of observations drawn from
the distribution. In order for this to be feasible, it must be that
the distribution has a nice description as a Bayesian logic
program and so on. The distinction between our approach
and Bayesian logic programming is roughly that in the set-
ting we will consider, the distribution will not be restricted,
but we will therefore necessarily give up hope of being able
to generate a complete, compact description of the distribu-
tion (which in general may require more than 22

n

bits to rep-
resent even if it is supported on n propositional attributes).
Instead, we will only be able to infer some relationships be-
tween the moments and support of the distribution, depend-
ing on how much information the examples provide. Sim-
ilarly, Khot et al. (2015) proposed to learn explicit models
of the data distribution, and to use these models to perform
inference in cases where the data has been masked at ran-
dom. In addition to not relying on the ability to represent
the distribution by such models, our approach does not as-
sume that the data-hiding process is independent of the data
distribution. But, our inferences will be relatively limited.

Our work relies on the close connection between frag-
ments of the sum-of-squares logic and hierarchies of
semidefinite program relaxations of (probability distribu-
tions supported on) systems of polynomial inequalities pi-
oneered independently by Lasserre (2001), Parrilo (2000),
Nesterov (2000), and Shor (1987). These works proposed
the use of these semidefinite programming hierarchies as a
way of relaxing polynomial optimization problems, which
captures many discrete optimization problems, especially
those using 0-1 integer optimization. These techniques have
been quite successful at giving new algorithms for many
machine learning problems, including many state-of-the-art
algorithms (Barak, Kelner, and Steurer 2015; Rakhlin and
Sridharan 2015; Hopkins, Shi, and Steurer 2015; Barak and
Moitra 2016; Ma, Shi, and Steurer 2016; Arora et al. 2017).
The difference is that these approaches take the view that
we are seeking to find a specific representation by solving
a semidefinite program relaxation in which the distributions
are over candidate solutions to the program. Of particular
interest in this vein is work by Hopkins and Steurer (2017),
who propose this approach as a way of solving general kinds

of maximum likelihood/maximum a posteriori (MAP) infer-
ence problems, and demonstrate it on a community detec-
tion problem. Hopkins and Steurer’s work is most notable
for making the connection between such an approach and
Bayesian inference quite explicit. The main distinction here
is that we are interested in deciding queries about the dis-
tribution under partial information, whereas Hopkins and
Steurer are interested in obtaining explicit estimates of latent
parameters. Meanwhile, Erdogdu et al. (2017) showed that
such semidefinite programming techniques with a carefully
engineered solver can similarly obtain high-quality MAP es-
timates in Markov random fields faster than (generalized)
belief propagation in practice. We don’t consider MAP in-
ference here, but we also don’t restrict ourselves to Markov
random fields.

We stress, however, that Lasserre (2001) in particular
viewed these programs as a means to decide “moment prob-
lems,” i.e., whether or not there may exist a probability dis-
tribution consistent with a given set of moments. This is like-
wise how we use these programs. The main distinction be-
tween our work and Lasserre’s is two-fold. First, Lasserre
was primarily interested in establishing that the hierarchy of
relaxations contain some tight relaxation, i.e., for each sys-
tem, for some sufficiently high degree, the program can only
have actual probability distributions as its feasible solutions.
By contrast, like the subsequent work in the algorithms com-
munity, we are interested in the power of the sum-of-squares
programs at fixed, finite levels of the hierarchy for proba-
bilistic inference. Second, we are interested in how to learn
additional constraints by incorporating empirical estimates
of the moments from partial observations into the programs.

The Sum-of-Squares Probability Logic

For motivation, we will first briefly recall Nilsson’s proba-
bility logic (Nilsson 1986), based on linear programming,
or perhaps more accurately, the reconstruction of Nilsson’s
work by Fagin et al. (1990), and the generalization of this
to reasoning about expected value by Halpern and Pu-
cella (2007). We then recall the sum-of-squares formulation
for a system of polynomial inequalities and the connection
to these logics via the “pseudo-expectation” view introduced
by Barak et al. (2011; 2014) (relaxing Lasserre (2001)).

Probability Logics Based on Linear Programming

In the propositional case of Nilsson’s logic, we have a vari-
able p(ϕ) representing the likelihood of each propositional
formula ϕ under consideration. Naturally, p(ϕ) ∈ [0, 1]. We
have a number of constraints that we know hold in general
among such variables,such as p(¬ϕ) + p(ϕ) = 1. Or, more
generally, p(ψ ∧ ϕ) + p(¬ψ ∧ ϕ) = p(ϕ), where p(>) = 1
and for any equivalent formulas ψ and ϕ, p(ψ) = p(ϕ). In
Nilsson’s logic, the basic relationships between these vari-
ables are given by a system of linear inequalities, of the form∑
ϕ a(ϕ)p(ϕ) ≥ c, where the coefficients a(ϕ), c ∈ R. We

can encode all of the above relationships as linear inequali-
ties, as well as relationships such as p(ψ) ≤ p(ϕ) if ψ |= ϕ.

7867

Now, given such a system of linear inequalities,∑
ϕ

a(1)(ϕ)p(ϕ) ≥ c(1) · · ·
∑
ϕ

a(m)(ϕ)p(ϕ) ≥ c(m)

for any α(1), . . . , α(m) ∈ R+, the linear combination
m∑
i=1

α(i)
∑
ϕ

a(i)(ϕ)p(ϕ) ≥
m∑
i=1

α(i)c(i)

is also true. Nilsson’s logic also allows us to infer this.
Now, given that Nilsson’s logic includes propositional

reasoning in its axioms, it is naturally NP-hard and Fagin et
al. (1990) show that when we restrict our attention to mea-
surable probabilities, it is in fact NP-complete. We will con-
sider a weaker starting point that is tractable. All of the initial
constraints can be written as a system of linear inequalities;
suppose that some subset of such inequalities is given. Now,
given an additional linear inequality constraint, the ques-
tion of whether or not it is consistent with our initial sub-
set is merely linear feasibility. And, it follows from Farkas’
lemma (Boyd and Vandenberghe 2004, p.263, e.g.) that the
system is infeasible if and only if we can derive 0 ≥ 1 from
the linear inequality inference rule. So, the linear combi-
nation inference rule gives refutation-completeness for this
(admittedly weak) logic, and algorithms for linear program-
ming give a method for deciding feasibility in polynomial
time. By binary search on lower and upper bounds for the
p(ϕ), we can search for the tightest upper and lower bounds
entailed by this system by adding the inequalities one at a
time and testing for feasibility.

Indeed, essentially the same line of reasoning carries over
to the generalization of Nilsson’s logic to reasoning about
expectations by Halpern and Pucella (2007), in which we
replace the p(ϕ) variables with e(xi) variables indicating
the expected value of some random variable xi. We remark
that in Halpern and Pucella’s logic, one can treat the orig-
inal propositional variables ϕ as random variables, and re-
cover Nilsson’s logic. The main defect to the use of linear
programming for inference is again that we drop most of the
powerful propositional reasoning capabilities of the logic,
reducing them to a handful of chosen inequalities.

Example 1. We now give an example of these logics. Let’s
consider a medical domain where we wish to reason about
the level of some protein X. We can represent the expression
level of X with the positive real quantity Xlevel. Let’s sup-
pose X is said to be “elevated” when its expression level is
greater than 10, and we have a Boolean indicator highX
for this event. Finally, suppose we know that the X level is
elevated for at least 10% of the population. Now, can it be
that the average expression level of X is less than 1? No: the
average is at least 10 · .1 + 0 · .9 = 1. A proof of this, in the
style of Halpern and Pucella is to first use the additivity ax-
iom to infer e(Xlevel) = e(Xlevel · highX) + e(Xlevel ·
(1 − highX)). We then use the distributivity axiom to infer
e(Xlevel·highX) ≥ e(10highX) (sinceXlevel·highX ≥
10highX always) and e(Xlevel · (1 − highX)) ≥ e(0)
(since Xlevel · (1 − highX) ≥ 0 always). By the ho-
mogeneity axiom, e(10highX) ≥ 10e(highX). Similarly,

by the total probability axiom, e(0) = 0. We are given
e(highX) ≥ .1, so by the linear inequality axioms, we can
thus obtain e(Xlevel) ≥ 10 · .1 + 0 = 1.

The Sum-of-Squares Semidefinite Programs
We will adopt the perspective of Halpern and Pucella, as our
logic will be most naturally viewed as a logic of expected
value. Let us now consider, for some fixed degree parameter
d ∈ N, a set of variables corresponding to the expected val-
ues of all monomials over our random variables x1, . . . , xn
of total degree at most d, which we denote e(x~α), with the
interpretation that x~α =

∏n
i=1 x

αi
i where

∑n
i=1 αi ≤ d (~α

is thus the vector of exponents of the monomial). We will
enforce e(1) = 1 (for the “empty monomial” 1).

We will consider both discrete, propositional variables
and bounded, continuous-valued variables. We will use the
following standard set of constraints for propositional vari-
ables: for each propositional variable, we will include vari-
ables xi and x̄i encoding the variable xi and its negation, re-
lated by the complementarity axiom, xi − x̄i + 1 = 0. Each
will also be constrained by the Boolean axiom, x2i − xi = 0
(and x̄2i−x̄i = 0). For other, continuous variables xi, we will
usually assume that there is an upper and lower bound on the
range Bi, Li ∈ R, and we will include explicit bounding in-
equalities: for each monomial x~α of total degree up to d, we
give an upper and lower bound, B~α and L~α, on the mono-
mial as follows: we compute the largest and smallest magni-
tude positive and negative values consistent with the bounds
on the range of each variable in the monomial. These may be
computed in linear time by a simple dynamic programming
algorithm that iteratively considers only the bounds for the
product of the first k attributes. We finally take the largest
of these values for B~α and the smallest for L~α. We then in-
clude B~α − x~α ≥ 0, and x~α − L~α ≥ 0 in our constraints.
Any additional constraints on the distribution’s support in
the background knowledge and query system will be added
to the system of defining polynomial constraints.

Now, consider the matrix in which rows and columns are
indexed by the monomials of degree up to d/2 in some stan-
dard way, and the (~α, ~β) entry of this matrix is the variable
e(x~α+

~β). That is, for the vector ~v of variables indexed in the
same order, the matrix is E[~v~v>], which is certainly positive
semidefinite. We refer to this as a moment matrix. Using a
semidefinite program, we can strengthen our original linear
program formulation by adding the constraint that this mo-
ment matrix must be positive semidefinite.

We can interpret this as follows. We note that for any real
vector ~p again indexed by the monomials, ~p>~v gives the ex-
pected value of the polynomial with coefficients given by
~p:
∑

~α p~αe(x
~α) = E[

∑
~α p~αx

~α]. So, the positive semidefi-
niteness of this moment matrix corresponds to requiring that
in any feasible solution, the square of any polynomial has a
nonnegative expected value.

Another family of constraints that we will use is the fol-
lowing. Suppose that we know the polynomial constraint
g(~x) ≥ 0 holds for all ~x in the support of the distribu-
tion. Then surely, E[p(~x)2g(~x)] ≥ 0 for any polynomial
p(~x). We can capture such a constraint as follows: again,

7868

we consider a matrix in which the rows and columns are in-
dexed by the monomials ~α up to degree (d − d′)/2 where
g(~x) has total degree d′, such that in position (~α, ~β) we have∑
~γ g~γe(x

~α+~β+~γ). If we then assert that this “localizing ma-
trix” for g is positive semidefinite, it indeed imposes the de-
sired constraint on the possible values for the e(x~α).

Finally, similarly, if h(~x) = 0 holds for all ~x in the distri-
bution’s support, then E[p(~x)h(~x)] = 0 for all polynomials
p. We can add a linear constraint

∑
~γ hγx

~α+~γ = 0 for all x~α

of degree at most d− d′ when h has total degree d′.
The resulting semidefinite program given by this system

of moment matrix and localizing matrix constraints is re-
ferred to as the degree-d sum-of-squares relaxation of the
system of polynomial inequalities (Shor 1987; Nesterov
2000; Parrilo 2000; Lasserre 2001). We can test the feasi-
bility of this system in polynomial time using semidefinite
program solvers. As we will recall next, analogous to our
earlier consequence of Farkas’ Lemma, the feasibility of the
resulting semidefinite programs is captured by a simple al-
gebraic logic under some general conditions—in particular
given we included explicit bounds on the range of the ran-
dom variables among the defining polynomial inequalities.

Sum-of-Squares Refutations for Probabilities
For polynomials g1, . . . , gr and h1, . . . , hs in R[x1, . . . , xn],
consider the set of ~x ∈ Rn satisfying gj(~x) ≥ 0 (for
j = 1, . . . , r) and hk(~x) = 0 (for k = 1, . . . , s). A sum-
of-squares is, as the name suggests, a polynomial σ(~x) =∑t
`=1 q`(~x)2 for polynomials q1, . . . , qt ∈ R[x1, . . . , xn]. It

is easy to see that a sum-of-squares σ must be non-negative
for every ~x ∈ Rn. Thus, if we can find sums-of-squares
σ0, σ1, . . . , σr and polynomials u1, . . . , us such that

σ0(~x) +

r∑
j=1

σj(~x)gj(~x) +

s∑
k=1

uk(~x)hk(~x) = −1 (1)

the set defined by the inequalities g1(~x) ≥ 0, . . . , gr(~x) ≥ 0
and h1(~x) = 0, . . . , hs(~x) = 0 must be empty (or else we
would reach a contradiction). The sum-of-squares proof sys-
tem of Grigoriev and Vorobjov (2001) is to show that such
systems are unsatisfiable by finding such polynomials:
Definition 2 (Sum-of-squares refutation: syntax). A sum-
of-squares refutation of a system of equalities h1(~x) =
0, . . . , hs(~x) = 0 and inequalities g1(~x) ≥ 0, . . . , gr(~x) ≥
0 consists of σ0, . . . , σr and u1, . . . , us satisfying Equa-
tion 1. The degree of the sum-of-squares refutation is degree
of the resulting formal expression, while the size is the num-
ber of monomials in σ0, . . . , σr and u1, . . . , us. The system
is explicitly compact if the variables are either all explicitly
Boolean (the constraint x2i −xi = 0 is included) or bounded
(x2i ≤ Bi is included for some Bi ≥ 0).
This is a formal language of polynomial expressions. The
semantics of these expressions are given by assigning an ex-
pectation operator: we map each monomial to an expected
value, and extend these to polynomial expressions by linear-
ity. Now, noting that the program capturing the existence of
a sum-of-squares refutation is the dual to the sum-of-squares
relaxation, one obtains the following theorem:

Theorem 3 (Soundness (Shor 1987; Nesterov 2000; Par-
rilo 2000; Lasserre 2001)). Let g1(~x) ≥ 0, . . . , gr(~x) ≥ 0,
h1(~x) = 0, . . . , hs(~x) = 0 be a system of constraints that
is explicitly compact. Then either there is a degree-d sum-
of-squares refutation or there is a solution to the degree-d
sum-of-squares relaxation.

Note that this means that if there is a sum-of-squares
refutation, then there cannot be any probability distributions
consistent with the given support constraints, or else these
would give a feasible solution to the semidefinite program
we developed in the previous section. Thus, for any degree,
sum-of-squares is a sound, but possibly incomplete refuta-
tion system for expectation operators, and hence for the as-
sociated probability distributions.

We can furthermore add prior knowledge of constraints
on the moments of the distribution to the semidefinite pro-
gram, and read off an extended kind of sum-of-squares proof
from the dual: If we add the constraint e(x~α) ≤ γ to the
semidefinite program, this corresponds to adding nonnega-
tive multiples of the polynomial (γ−x~α). A sum-of-squares
derivation of −1 yields a contradiction now by considering
the expected value of the derived expression for a distribu-
tion additionally satisfying the moment constraints: the ex-
pression is equal to−1, but E[γ−xα] ≥ 0 by definition and
the rest of the expression is again nonnegative on the distri-
bution’s support. Indeed, for any polynomial p(~x), we can
incorporate knowledge that E[p(~x)] ≤ γ by adding nonneg-
ative multiples of (γ − p(~x)) in the dual.

Example 4. Let’s return to our medical example and see
how sum-of-squares can capture the same style of reasoning
and infer the same bound on E[Xlevel]. We first express that
highX is Boolean with the constraint highX2−highX = 0
and that Xlevel is nonnegative with Xlevel ≥ 0. Next, we
can encode the relationship between Xlevel and highX
with the following pair of inequalities: highX(Xlevel −
10) ≥ 0 and (1 − highX)(10 − Xlevel) ≥ 0. Then when
highX = 1, Xlevel ≥ 10 and when highX = 0, 10 ≥
Xlevel, as desired. (In general, multiplying by a Boolean
variable has this effect of making a constraint conditional.)
Finally, we include the bound E[highX] ≥ .1. Now, we
can use these constraints to infer the expression Xlevel− 1
is nonnegative as follows. In general, one builds up these
expressions by a series of substitutions. Starting from the
total probability expression from the Halpern-Pucella style
proof, we first substitute the conditional bounds for the ex-
pression e(Xlevel · highX) + e(Xlevel · (1 − highX)),
i.e., (Xlevel− 10)highX +Xlevel(1− highX). The first
part is given, but we can obtain the second by multiply-
ing Xlevel ≥ 0 by a sum-of-squares expression, and us-
ing the fact that highX is Boolean to rewrite the result
like so: Xlevel(1 − highX) = (1 − highX)2Xlevel +
(−Xlevel)(highX2 − highX). Now, to use our bound on
Pr[highX] ≥ .1, we add 10(highX − .1) to the expres-
sion. Overall, we thus obtain the following sum-of-squares
expression, which simplifies to Xlevel − 1:

10(highX − .1) + 1 · highX(Xlevel − 10)+

(−Xlevel)(highX2 − highX) + (1− highX)2Xlevel.

7869

Since this is an expression of degree 3, Theorem 3 says that
the degree-3 sum-of-squares program will detect infeasibil-
ity with the constraint E[Xlevel] ≤ 1− δ for any δ > 0.

Putinar’s Positivstellensatz (Putinar 1993) asserts that
such proofs exist in general, i.e., the system is complete if
one considers expressions of sufficiently large degree.
Theorem 5 (Completeness, a corollary of Putinar 1993).
There exists a probability distribution with expected val-
ues {e(x~α)}~α∈Nn supported on a set given by an explic-
itly compact system g1(~x) ≥ 0, . . . , gr(~x) ≥ 0, h1(~x) =
0, . . . , hs(~x) = 0 iff every moment matrix is positive
semidefinite, every localizing matrix for each gj is postive
semidefininte, and every localizing matrix for each hk is zero
(i.e., solutions exist for all degrees d).

Polynomial-time solvability. We can decide the existence
of such refutations in polynomial time (in the number of at-
tributes and size of the coefficients in the proofs) by finding
solutions to the corresponding “dual” semidefinite program.
The sum-of-squares refutation that we are supposing to ex-
ist is itself simply a way of interpreting such solutions to
this “dual” program (Lasserre (2010, Section 4.2) gives a
nice review), and indeed we observe that it suffices to find
such an expression that attains a negative value. So, it suf-
fices to show that we can find a dual solution with negative
value, given that there exists a dual solution in which the co-
efficients have polynomial size and each primal variable has
explicit (polynomial-magnitude) bounds on its range.

Technically, it is only known how to solve semidefinite
programs when a solution is known to lie in a ball of ex-
ponential radius, up to a polynomial number of bits of nu-
merical precision using algorithms such as the ellipsoid
method (Grötschel, Lovász, and Schrijver 2012), and in gen-
eral this may cause difficulty for finding sum-of-squares
refutations (O’Donnell 2017; Raghavendra and Weitz 2017).
Nevertheless, our assumptions on the bounds on the size of
the coefficients and ranges of the attributes ensure that, in-
deed a solution to polynomial accuracy suffices. Note that
the assumed bound on the coefficients expressly rules out
the problems observed by O’Donnell for the applications
in optimization, so the only issue is the additive error suf-
fered by the ellipsoid solutions. The degree-d program has
at most nd coefficient variables, and if we know that each
monomial is explicitly bounded to have magnitude at most
S, then so long as each coordinate is estimated to within ac-
curacy 1/2ndS, then substituting our bounds for the remain-
ing variables (using these explicit bounds) suffices to give us
a dual expression that has value at most −1/2, which is still
adequate for a refutation.

Indeed, our bound on the proof’s coefficients ensures that
the positive semidefinite matrix variable of the dual program
has a polynomially bounded trace. This matrix variable is
obtained from

∑
i ~pi~p

>
i if

∑
~α pi,~αx

~α (i = 1, 2, . . .) are the
polynomials used in the proof, which has trace

∑
i

∑
~α p

2
i,~α.

Together with the bound on the input coefficients, the range
of values each expression in the dual program may take
is thus constrained, and hence its width is polynomially
bounded. Thus, as we tolerate a polynomial additive error, if

we only use inequality constraints then even the fast method
of Arora et al. (2005) suffices.

The Expressive Strength of Sum-of-Squares
We now briefly review the surprising strength of these
proofs, and establish some new results on their Boolean rea-
soning ability. As with the logics of Nilsson (1986) and
Halpern and Pucella (2007), by searching over feasible in-
equality constraints, we can use sum-of-squares queries
to compute upper and lower bounds on probabilities (of
Boolean expressions) and more generally expectations of
polynomials of real-valued variables, thus bounding the
variance and so on. Along the lines of Grosof’s extension to
Nilsson’s logic (Grosof 1986), we can express bounds (and
thus also queries) on conditional probabilities Pr[xa|xb] ≤ p
by rewriting: as Pr[xa ∧ xb] = E[xaxb], it is equivalent to
E[xaxb] ≤ E[pxb], or E[xaxb − pxb] ≤ 0. The key question
is how tight these bounds are.

Much of the excitement about sum-of-squares in algo-
rithms stems from the power of even low-degree (e.g.,
degree-4) sum-of-squares proofs to capture a surprisingly
strong fragment of probabilistic reasoning. In particular,
Barak et al. (2012) show that such sum-of-squares proofs ex-
ist for key analytic inequalities such as the Cauchy-Schwarz
and Hölder inequalities and hypercontractivity bounds.
O’Donnell and Zhou (2013) and Kauers et al. (2014) fur-
ther established that low-degree sum-of-squares can derive
reverse hypercontractivity bounds, and thus also the KKL
Theorem (Kahn, Kalai, and Linial 1988) and an invariance
principle (generalizing the central limit theorem) (Mossel,
O’Donnell, and Oleszkiewicz 2010). These theorems were
used previously to analyze instances of optimization prob-
lems that were hard for existing algorithms. These works
then observed that the sum-of-squares relaxation can actu-
ally then derive tight bounds that solve these very same in-
stances since sum-of-squares refutations capture all of these
constraints. We thus observe that sum-of-squares is quite
powerful for probabilistic analysis.

We now turn to consider the Boolean reasoning abil-
ity of sum-of-squares. Note that the logics of both Nilsson
and Halpern-Pucella included all propositional tautologies
in their axioms, and this Boolean reasoning is an important
part of the logics. Since sum-of-squares does not directly
include a set of axioms to handle Boolean reasoning, we
need to demonstrate that it is capable of a significant set
of inferences, ideally simulating known tractable fragments
of other Boolean logics. Indeed, we now observe that sum-
of-squares simulates a variety of fragments of systems for
which polynomial-time algorithms were already known.

Notably, Berkholz (2018) has shown that degree-2d sum-
of-squares simulates the degree-d fragment of Polynomial
Calculus when we include the Boolean axioms x2i − xi = 0
for all variables xi. Polynomial calculus is a system that al-
lows us to derive new polynomial equations by taking linear
combinations of previous lines, or by multiplying a previ-
ous line by an indeterminate (variable). In particular, if we
include a variable for each literal and the complementarity
axiom xi + x̄i − 1 = 0, the degree-d fragment easily sim-
ulates width-d resolution (Alekhnovich et al. 2002), where

7870

recall the width is the maximum number of literals in any
clause. This is accomplished by representing the clauses as
a system of single monomial constraints of degree at most
d: for the clause `1 ∨ · · · ∨ `k, we have ¯̀

1 · · · ¯̀k = 0 is an
equivalent constraint of degree at most d.

We further show that sum-of-squares simulates space-
bounded treelike resolution without the bounded-width re-
quirement. Although the encoding used in the above works
cannot express wide clausal constraints on the support, we
can instead use a constraint

∑
i `i ≥ 1 on the support to

encode the clause
∨
i `i (with each `i also constrained by

`2i − `i = 0). We will use the following characterization
of space-bounded treelike resolution given by Ansótegui et
al. (2008): For a partial assignment to propositional vari-
ables x1, . . . , xn, ρ ∈ {0, 1, ∗}n (where ∗ means “unas-
signed”) the partial evaluation or restriction of a formula
ϕ by ρ, denoted ϕ|ρ, is obtained by plugging in ρi for xi
when ρi 6= ∗, and simplifying the Boolean connectives in
the natural way: we delete true inputs to ANDs, false in-
puts to ORs, and replace ANDs and ORs respectively with
false and true if they have, respectively, a false or true in-
put. (Negations are simply evaluated if their input is.) Recall
that unit propagation on a set of clauses C and a partial as-
signment ρ is the inference rule that, if some clause C ∈ C
simplifies to a single literal ` under partial evaluation by ρ
then we can infer the setting that satisfies ` and add it to ρ.
If we ever obtain an empty clause, C|ρ = ⊥, then this is a
unit propagation refutation. Ansótegui et al. (2008) essen-
tially observe that unit propagation captures “clause space
1” treelike resolution refutations, and can be generalized to
space s by allowing s − 1 levels of the following failed lit-
eral rule: inductively, supposing we have defined the system
with s− 1 levels (where 0 levels is unit propagation), s lev-
els of the failed literal rule is as follows: if, when we add
an assignment xi = b to our partial assignment ρ, we can
obtain a level-s− 1 refutation, then we can infer xi = 1− b,
and add this to ρ instead. A level s refutation then occurs
if we can eventually obtain a level-s − 1 refutation with-
out asserting any additional literals (thus, eventually, a unit
propagation refutation). Ansótegui et al. found that instances
of resolution that are easy in practice are refutable with rel-
atively small s. Note that unit propagation alone (s = 1)
already simulates chaining, e.g. in Horn KBs.

Theorem 6. The degree-s+ 1 sum-of-squares relaxation of
the linear inequality encoding of a CNF is infeasible if there
exists a level-s refutation.

Proof. By induction on s: First, for level-0, we argue that
degree-1 sum-of-squares detects unit propagation refuta-
tions among the input system. We argue this by induction
on the number of steps of unit propagation inference. In
0 steps, if there is an empty clause in the input, we have
the constraint −1 ≥ 0 in the input system, which is a
trivial contradiction. Now, after i steps, suppose we have
`i ≤ 0 (or `i = 0) for i 6= i∗ in some clause. Then we
can derive `i∗ ≥ 1 in degree 1 (and hence, ¯̀

i∗ ≤ 0) from∑
i `i− 1 +

∑
i 6=i∗ −`i = `i∗ − 1. Observe that these linear

combinations do not increase the degree. Thus, finally, if we

derived `i ≤ 0 for all literals in some clause, we can simi-
larly derive −1 ≥ 0 to obtain our contradiction in degree-1.

Now, given that the program detects level-s − 1 refuta-
tions in degree s, we argue that it detects level s refuta-
tions in degree s + 1: indeed, we will argue that if ¯̀ can
be inferred by an application of the failed literal rule and
if there is a feasible solution to the degree s + 1 sum-of-
squares relaxation, that for all monomials xα, e(`x~α) = 0.
Indeed, suppose not. Consider the Cholesky factorization of
the (positive semidefinite) moment matrix into UU>. We
know that we must have that for the row indexed by `,
~u` 6= 0, so e(`) = e(`2) > 0. It follows then that we can
perform the following “conditioning operation” (from Kar-
lin et al. 2011): for the minor of the moment and localizing
matrices consisting of all index monomials with a factor of
`, we know that this is a positive semidefinite minor. If we
rescale each by 1/e(`2), then indeed it further satisfies the
constraint that the entry we obtained from the (`, `) position
takes value 1. We thus see that this is a solution to the sum-
of-squares program of degree s in which moreover it may
be shown that by the localizing constraints for the Boolean
axiom on `, for any monomial x~α, e(`x~α) = e(x~α). More
generally by the localizing constraints on the complemen-
tarity axiom, e(¯̀) = 0 in this solution, as is any monomial
containing ¯̀. Thus, we obtain a solution in which ` = 1 and
¯̀ = 0. But since we are supposing that we can infer ¯̀ by
an application of the level-s failed literal rule, this means
that there is a level-s − 1 refutation of this system. By IH,
therefore, this system must be infeasible, a contradiction. It
must be then that indeed e(`x~α) = 0 for all monomials x~α

as claimed and therefore also e(¯̀x~α) = e(x~α); in particular,
then, e(¯̀) = e(1) = 1 in any feasible solution. Finally if
some input clause simplifies to the empty clause, we again
obtain that −1 · e(1) ≥ 0 in contradiction to our constraint
that e(1) = 1. Thus, if there is a level-s refutation, the de-
gree s+1 sum-of-squares relaxation must be infeasible.

Weaknesses. So we see how we can use sum-of-squares
to compute estimates on probabilities and bounds on ex-
pected values, using the complexity of deriving the bound
rather than the form of the distribution as our “bias.” Com-
pared to, e.g., graphical models, this approach circumvents
some fundamental difficulties, but has some other inherent
weaknesses. The main weakness is that we cannot express
prior knowledge about the independence of random vari-
ables in our distribution. Indeed, this would lead to quadratic
(or worse) constraints in the “primal” optimization problem,
preventing us from solving it in polynomial time. Only if
some probabilities are given explicitly can we assert inde-
pendence with respect to those events, e.g., E[xa] = p and
E[xaxb] = pE[xb] for p ∈ [0, 1]. A second weakness is
that in our tractable fragments, we can only infer values for
marginal distributions that refer to at most O(1) variables at
a time. (That is, we must “sum out” all but O(1) variables.)
We may have constraints on more variables as long as these
are expressed by a low-degree polynomial, such as our lin-
ear inequality encodings of clauses, but this only captures a
limited family of the possible constraints.

7871

Implicit Learning From Partial Examples
We now suppose that we have access to partial examples
drawn from the distribution D we are seeking to reason
about. We would like to use these examples to empirically
learn additional constraints that the distribution satisfies. We
will develop a notion of implicit learning of constraints for
use in answering queries in our probability logic, analogous
to Juba (2013) for Boolean logics.

Masking and Testability
We will use a model of learning under partial information
adapted from prior works (Michael 2010; Rubin 1976). In
such models, the distribution over partial examples is pro-
duced as follows. First, a “ground truth” example ~x is drawn
from the distribution D. Then there is a second random pro-
cess M that independently selects a function m that takes
complete examples ~x and produces a partial example ~ρ by
replacing any number of coordinates of ~x with the value ∗
meaning “unknown” or “missing.” We denote the distribu-
tion on partial examples by M(D). Note that the choice of
which coordinates to hide may depend on all of the actual
values of ~x. M , like D, is arbitrary in general. Indeed, m(~x)
may even hide the entire example. Thus, we can only hope
to learn constraints from the partial examples ~ρ it produces
that are revealed by M to be obeyed with high probability.

A family of such constraints is as follows. Again, we sup-
pose that each ith attribute is known to have some upper
and lower bound Bi and Li, and that the corresponding con-
straints are included in the program. For a given partial ex-
ample ~ρ, there also exists an upper and lower bound,B~α and
L~α, on the monomial x~α given ~ρ as follows: first, for each
xαii , if ρi 6= ∗, then we substitute ραii for ρi. Then we com-
pute the largest and smallest magnitude positive and nega-
tive values consistent with the bounds on the range of each
variable (if any) in the monomial as before.
Definition 7. We will say that a polynomial inequality∑

~α p~αx
~α ≥ 0 is witnessed under ~ρ if, when we plug in

the upper bound for each x~α under ~ρ for every p~α < 0 and
the lower bound when p~α > 0, the inequality is still sat-
isfied. We will say that a system of polynomial constraints
p1(~x) ≥ 0, . . . , p`(~x) ≥ 0 is (1− γ)-testable with respect to
M and D if with probability at least (1 − γ) over ~ρ drawn
from M and D, every pi(~x) ≥ 0 in the system is witnessed
under ~ρ.

We will show that knowledge encoded by all such testable
systems of constraints can be efficiently learned implicitly,
even though there may be many such constraints, as long as
γ is small enough. In support of the empirical estimation of
such expressions, we will need the following two definitions.
Definition 8. The upper bound of a polynomial expression∑

~α p~αx
~α is given by substituting the upper bound on x~α

(for the empty partial assignment) for each monomial x~α if
p~α > 0, and substituting the lower bound on x~α for p~α <
0. The lower bound is similarly given by substituting lower
bounds on x~α for p~α > 0 and upper bounds on x~α for p~α <
0. The naı̈ve norm of the polynomial expression is then given
by the maximum of its upper bound and the absolute value
of its lower bound.

Definition 9. For a polynomial p(~x), we will let p|~ρ(~x) de-
note the polynomial with ρi plugged in for xi whenever
ρi 6= ∗, and collecting terms with the same monomial. We
refer to this as the partial evaluation of p under ~ρ.
Note that both can be computed in linear time in the size of
the expression, given our bounds on the individual monomi-
als and the partial assignment, respectively.
Example 10. As an example, p(x, y, z) = 3x2yz − xy2 +
2z − 1 partially evaluated at ρ = (10, ∗, 2) is p|ρ(y) =
−10y2 + 600y + 3. If −1 ≤ y ≤ 1, the lower bound is
−607, so p(x, y, z) ≥ 0 is not witnessed under ρ in this
case, but if 0 ≤ y ≤ .1, then the lower bound is 2.9, so then
p(x, y, z) ≥ 0 would be witnessed under ρ. Note that the
substitutions of bounds are done monomial-by-monomial,
as otherwise deciding validity of the polynomial inequalities
would be intractable in general. Similarly, the naı̈ve norms
of p|ρ(y) are, respectively, 607 and 63.

Deciding Queries With Implicit Learning
Given a degree bound d, a collection of partial exam-
ples ~ρ(1), . . . , ~ρ(m), an input system of support constraints,
gj(~x) ≥ 0 (for j = 1, . . . , r, that we assume includes
the upper and lower bound constraints for each attribute)
and hk(~x) = 0 (for k = 1, . . . , s), and an input system
of moment constraints, p`(~x) ≥ 0 (for ` = 1, . . . , t), we
write the following semidefinite program to decide if our
input bounds and constraints are consistent with the dis-
tribution from which the examples were drawn. For each
i = 1, . . . ,m, we create a set of variables ~x(i) for those
variables unfixed in ~ρ(i). We add a degree-d moment ma-
trix constraint for ~x(i), a degree-d localizing matrix con-
straint for each gj |~ρ(i)(~x(i)), and a degree-d localizing ma-
trix constraint for each hk|~ρ(i)(~x(i)).1 Finally, we write for
each monomial x~α of degree up to d, the constraints

1

m

m∑
i=1

(x(i)~α)|~ρ(i) −
(B~α − L~α)

√
ln(
(
2n
≤d
)
/δ)

√
2m

≤ x~α

x~α ≤ 1

m

m∑
i=1

(x(i)~α)|~ρ(i) +
(B~α − L~α)

√
ln(
(
2n
≤d
)
/δ)

√
2m

and add the constraints p`(~x) ≥ 0. We then accept the sys-
tem if and only if the semidefinite program is feasible.

We now state our guarantee for this approach. In the the-
orem statement, for simplicity we use a single common size
parameter S ∈ R.
Theorem 11. For m = Ω(S2(d log n + log 1

δ)) partial ex-
amples drawn from M(D) where for all ~α of degree at most
d, B~α − L~α ≤ S, with probability 1− δ:
• if D satisfies the input system of bounds and constraints

the semidefinite program is feasible
1We implicitly add the constraint that for i 6= i′, any monomial

containing variables from the variables for examples i and i′ gets
value 0. But since the moment matrix then has a block-diagonal
structure, it is equivalent to simply impose the constraint that each
ith block has a positive semidefinite moment matrix.

7872

• if there is a system of constraints that is (1− 1
2S)-testable

under M and D and, together with the input system,
completes a sum-of-squares refutation with naı̈ve norm at
most S, then the semidefinite program is infeasible.

Note that for a Boolean system, the naı̈ve norm closely cor-
responds to the size of the proof (in number of monomials).

Overview. We first describe the proof at a high level for in-
tuition. For the first case, we argue that since the range of the
values is bounded by S, the empirical constraints are valid
with probability 1− δ overall using Hoeffding’s inequality:

Theorem 12 (Hoeffding’s inequality). Let X1, . . . , Xm be
i.i.d. [0, 1]-valued random variables. Let X̄ = 1

m

∑m
i=1Xi.

Then for γ > 0, Pr[X̄ − E[Xi] > γ] ≤ e−2mγ2

.

Thus, since we have otherwise assumedD satisfies the given
bounds and constraints, the program is feasible in this case.
For the second case, we consider the hypothetical sum-of-
squares refutation. We plug in each of the m partial exam-
ples, and average the resulting expressions; we note that this
is still formally equal to −1. We will break the averaged ex-
pression into two parts: the part that can be written using
the known bounds and constraints by using the empirical
inequalities, and the parts using the unknown but testable
constraints. If we can show that the combined slack in the
empirical ineqalities and the total size of the unknown part
can be bounded by −(1 − ∆) for some constant ∆ > 0,
then the known part of the expression can be bounded by
−1 + (1−∆) = −∆, so scaling the expression by 1/∆ will
give −1 and hence a refutation. We can use the empirical
moment expressions to derive the moment bounds, where m
is sufficiently large that the total error in these expressions is
bounded by a constant, less than 1/6. So it only remains to
show how we bound the unknown, testable part of the sys-
tem by another constant, say 1/2. For this last part, we note
that we have assumed that these constraints are (1− 1/2S)-
testable. This means that the entire expression is bounded by
0 except in a 1/2S-fraction of the examples, where the size
of the remaining expression can be bounded by the naı̈ve
norm, which is at most S. Thus, the total size of these non-
vanishing expressions can be bounded by 1/2 as needed. We
now give the full proof.

Proof. We first analyze the first case. Since the distribu-
tion is assumed to satisfy the support constraints, for any
~ρ = m(~x) drawn from M and D, since ~x is in the support
of D, the completion of ~ρ to ~x is an assignment that satisfies
all of the support constraints. Moreover, since for each mo-
ment, x~α has B~α − L~α ≤ S, we see that 1

S (x~α − L~α) is a
random variable in the range [0, 1]; therefore, by Hoeffding’s
inequality, for our choice of m the moment constraints hold
with probability 1−δ/

(
2n
≤d
)

for each ~α. So, by a union bound
over these moments, with probability 1− δ, 1

m

∑m
i=1(x(i))~α

(using the ground truth examples) is feasible in these con-
straints, as therefore is 1

m

∑m
i=1(x(i)~α)|~ρ(i) . So our empiri-

cal upper and lower bound constraints on x~α are satisfied.
We also know that E[x~α], by assumption, satisfies the given

polynomial constraints on our moments. Thus the sum-of-
squares relaxation is feasible and so our algorithm accepts
with probability 1− δ in this case as needed.

Now, for the second case. We assume that there is a set
of (1 − 1/2S)-testable support constraints, g̃j̃(~x) ≥ 0 for
j̃ = 1, . . . , r̃ and h̃k̃(~x) = 0 for k̃ = 1, . . . , s̃, and mo-
ment constraints, p̃˜̀(~x) ≥ 0 for ˜̀ = 1, . . . , t̃, that com-
plete a degree-d sum-of-squares refutation with naı̈ve norm
at most S. Suppose we substitute x(i)~α|~ρ(i) for x~α for each
~α in this proof. Observe that it remains formally identical
to −1, the degree does not increase, and the sum-of-squares
expressions remain sum-of-squares expressions (on ~x(i)).

Now, suppose we average over these m refutations.
Again, we obtain an expression formally identical to −1
of the same degree. The final sum-of-squares term σ0(~x)
becomes another sum-of-squares, 1

m

∑m
i=1 σ0(~x(i))|~ρ(i) , of

the same degree, so we can find an analogous expression
in our program. For portions of the expression derived from
the support constraints, for example the term σj(~x)gj(~x), we
have

∑m
i=1(1

mσj(~x
(i))gj(~x

(i)))|~ρ(i) . So, we see that this can
still be written using the support constraints for the individ-
ual examples included in our program. The equality support
constraints can be similarly transformed.

Next, we consider the moment bounds, which we know
can only be multiplied by positive constants. We find that the
expressions λ`p`(~x), i.e., of the form λ`

∑
~α p~αx

~α. We see
again that under this substitution we obtain an expression
that may be rewritten as

∑m
i=1

λ`
m

∑
~α p~αx

(i)~α|~ρ(i) . Now,
our program provides us with the moment constraint p`(~x)
and the upper and lower empirical bounds on each mo-

ment, 1
m

∑m
i=1 x

(i)~α|~ρ(i) +
B~α

√
ln((2n

≤d)/δ)√
2m

− x~α ≥ 0 and

L~α

√
ln((2n

≤d)/δ)√
2m

− 1
m

∑m
i=1 x

(i)~α|~ρ(i) + x~α ≥ 0. By choosing
the appropriate bound (the first if p~α > 0 and the second if
p~α < 0), multiplying by |p~α| > 0 in each case, and summing
these up, we can obtain an expression of the form

1

m

m∑
i=1

p`(~x
(i))|~ρ(i) − p`(~x) +

∑
~α |p`,~αC~α|

√
ln

(2n
≤d)
δ√

2m

where C~α is at most our bound on x~α. We can add a λ`-
multiple of this to λ`p`(~x) to obtain 1

m

∑m
i=1 λ`p`(~x

(i))|~ρ(i)
as in the averaged refutation, plus a bounded error term.

Finally we consider the testable constraints in the expres-
sion. Note that without the terms from these constraints, the
original sum-of-squares refutation sums to

−1−

 r̃∑
j̃=1

σ̃j̃(~x)g̃j̃(~x) +

s̃∑
k̃=1

ũk̃(~x)h̃k̃(~x) +

t̃∑
˜̀=1

λ˜̀p̃˜̀(~x)

where of course, the σ̃j̃(~x) are sums of squares and the
ũk̃(~x) are arbitrary polynomials. Now, for our choice of m,
with probability 1 − δ, for all but 2

3Sm of the partial ex-
amples, our constraints are simultaneously witnessed under
~ρ(i). By the definition of witnessing, the lower bounds under

7873

each such ~ρ(i) on the corresponding witnessed terms in the
assumed sum-of-squares refutation are at least 0, and these
can be derived from our support bounds for each ~ρ(i). Thus,
using our bounds on monomials, we can bound the averaged
formal expression by

−1− 1

m

∑
~ρ(i) not

witnessed

 r̃∑
j̃=1

(σ̃j̃(~x
(i))g̃j̃(~x

(i)))|~ρ(i)+

t̃∑
k̃=1

(ũk̃(~x(i))h̃k̃(~x(i)))|~ρ(i)+

t̃∑
˜̀=1

λ˜̀p̃˜̀(~x
(i))|~ρ(i)

 ≤ −1 +
2

3

since the testable portion of the proof has lower bound at
least −S. Note, moreover, that we can derive the upper
bound on the unwitnessed expressions using our bounds on
the empirical monomials, obtaining some additional error
terms. Summing over all of the error terms, we find that
since the overall proof has naı̈ve norm at most S, we can
obtain that the total error term is at most 1/6 by an appropri-
ate choice of m. Thus, overall, we see that we can construct
a sum-of-squares derivation of −1/6, and hence also of −1
since we can multiply each coefficient by 6 and still obtain
a valid sum-of-squares expression for the system. Therefore
we detect that the system is infeasible and reject with prob-
ability 1− δ as needed in this case.

Directions for Future Work
An important shortcoming of our approach is that it is propo-
sitional so far. One can make use of “independently quanti-
fied expressions” (Valiant 2000) to extend it to some frag-
ments of first-order logic via propositionalization. But, an
interesting question is whether or not we can employ richer
representations by making use of the symmetries in such
instances, along the lines of work on relational linear pro-
gramming by Kersting et al. (2017). Finally, we required the
implicitly learned constraints to be testable with probability
1 − 1/2S where S is the naı̈ve norm of the proof. It would
be desirable to make use of 1− ε-testable constraints for ar-
bitrary ε, perhaps only establishing that the portion of the
distribution satisfying the query system has total probability
at most ε.

Acknowledgements
We thank the anonymous reviewers for their detailed com-
ments.

References
Alekhnovich, M.; Ben-Sasson, E.; Razborov, A. A.; and
Wigderson, A. 2002. Space complexity in propositional cal-
culus. SIAM J. Comput. 31(4):1184–1211.
Ansótegui, C.; Bonet, M. L.; Levy, J.; and Manyá, F. 2008.
Measuring the hardness of SAT instances. In Proc. AAAI’08,
222–228.

Arora, S.; Ge, R.; Ma, T.; and Risteski, A. 2017. Provable
learning of noisy-OR networks. In Proc. 49th STOC, 1057–
1066.
Arora, S.; Hazan, E.; and Kale, S. 2005. Fast algorithms for
approximate semidefinite programming using the multiplicative
weights update method. In Proc. 46th FOCS, 339–348.
Bacchus, F.; Grove, A. J.; Halpern, J. Y.; and Koller, D. 1996.
From statistical knowledge bases to degrees of belief. Artificial
intelligence 87(1-2):75–143.
Barak, B., and Moitra, A. 2016. Noisy tensor completion via
the sum-of-squares hierarchy. In Proc. 29th COLT, volume 49
of JMLR W&CP. 1–29.
Barak, B.; Brandão, F. G. S. L.; Harrow, A. W.; Kelner, J.;
Steurer, D.; and Zhou, Y. 2012. Hypercontractivity, sum-of-
squares proofs, and their applications. In Proc. 44th STOC,
307–326. Extended version available as arXiv:1205.4484.
Barak, B.; Kelner, J.; and Steurer, D. 2014. Rounding sum of
squares relaxations. In Proc. 46th STOC, 31–40.
Barak, B.; Kelner, J.; and Steurer, D. 2015. Dictionary learning
and tensor decomposition via the sum-of-squares method. In
Proc. 47th STOC, 143–151.
Barak, B.; Raghavendra, P.; and Steurer, D. 2011. Rounding
semidefinite programming hierarchies via global correlation. In
Proc. 52nd FOCS, 472–481.
Berkholz, C. 2018. The relation between polynomial calcu-
lus, Sherali-Adams, and sum-of-squares proofs. In Proc. 35th
STACS, LIPIcs, 11:1–11:14.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Cambridge university press.
Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence
172(6–7):772–799.
De Raedt, L., and Kersting, K. 2008. Probabilistic inductive
logic programming. In De Raedt, L.; Frasconi, P.; Kersting,
K.; and Muggleton, S., eds., Probabilistic Inductive Logic Pro-
gramming: Theory and Applications, volume 4911 of LNCS.
Springer. 1–27.
Domingos, P., and Webb, W. A. 2012. A tractable first-order
probabilistic logic. In Proc. 26th AAAI, 1902–1909.
Erdogdu, M. A.; Deshpande, Y.; and Montanari, A. 2017. In-
ference in graphical models via semidefinite programming hi-
erarchies. In Proc. 31st NIPS, 417–425.
Fagin, R.; Halpern, J. Y.; and Megiddo, N. 1990. A logic
for reasoning about probabilities. Information and computation
87(1-2):78–128.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem prov-
ing. In Proc. 27th UAI, 256–265.
Grigoriev, D., and Vorobjov, N. 2001. Complexity of null-
and positivstellensatz proofs. Ann. Pure and Applied Logic
113(1):153–160.
Grosof, B. N. 1986. An inequality paradigm for probabilis-
tic knowledge: the logic of conditional probability intervals. In
Machine Intelligence and Pattern Recognition, volume 4. Else-
vier. 259–275.
Grötschel, M.; Lovász, L.; and Schrijver, A. 2012. Geomet-
ric algorithms and combinatorial optimization. Springer, 2nd
edition.

7874

Halpern, J. Y., and Pucella, R. 2007. Characterizing and rea-
soning about probabilistic and non-probabilistic expectation. J.
ACM 54(3):15.
Hopkins, S. B., and Steurer, D. 2017. Efficient Bayesian es-
timation from few samples: community detection and related
problems. In Proc. 58th FOCS, 379–390.
Hopkins, S.; Shi, J.; and Steurer, D. 2015. Tensor principal
component analysis via sum-of-square proofs. In Proc. 28th
COLT, volume 40 of JMLR W&CP. 956–1006.
Juba, B. 2013. Implicit learning of common sense for reason-
ing. In Proc. 23rd IJCAI, 939–946.
Kahn, J.; Kalai, G.; and Linial, N. 1988. The influence of
variables on Boolean functions. In Proc. 29th FOCS, 68–80.
Karlin, A. R.; Mathieu, C.; and Nguyen, C. T. 2011. Integral-
ity gaps of linear and semi-definite programming relaxations
for knapsack. In International Conference on Integer Program-
ming and Combinatorial Optimization, 301–314. Springer.
Kauers, M.; O’Donnell, R.; Tan, L.-Y.; and Zhou, Y. 2014. Hy-
percontractive inequalities via SOS, and the Frankl-Rödl graph.
In Proc. 25th SODA, 1644–1658.
Kersting, K., and De Raedt, L. 2008. Basic principles of learn-
ing bayesian logic programs. In De Raedt, L.; Frasconi, P.;
Kersting, K.; and Muggleton, S., eds., Probabilistic Inductive
Logic Programming: Theory and Applications, volume 4911 of
LNCS. Springer. 189–221.
Kersting, K.; Mladenov, M.; and Tokmakov, P. 2017. Relational
linear programming. Artificial Intelligence 244:188–216.
Khardon, R., and Roth, D. 1997. Learning to reason. J. ACM
44(5):697–725.
Khot, T.; Natarajan, S.; Kersting, K.; and Shavlik, J. 2015.
Gradient-based boosting for statistical relational learning: the
Markov logic network and missing data cases. Mach. Learn.
100:75–100.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models. Cambridge, MA: MIT Press.
Lasserre, J. B. 2001. Global optimzation with polynomials and
the problem of moments. SIAM J. Optimization 11(3):796–817.
Lasserre, J. B. 2010. Moments, Positive Polynomials, and Their
Applications. London: Imperial College Press.
Ma, T.; Shi, J.; and Steurer, D. 2016. Polynomial-time ten-
sor decompositions with sum-of-squares. In Proc. 57th FOCS,
438–446.
Michael, L. 2010. Partial observability and learnability. Artifi-
cial Intelligence 174(11):639–669.
Michael, L. 2014. Simultaneous learning and prediction. In
Proc. 14th KR, 348–357.
Mossel, E.; O’Donnell, R.; and Oleszkiewicz, K. 2010. Noise
stability of functions with low influences: invariance and opti-
mality. Ann. Math. 171(1):295–341.
Narasimhan, M., and Bilmes, J. A. 2004. PAC-learning
bounded tree-width graphical models. In Proc. 20th UAI, 410–
417.
Nesterov, Y. 2000. Squared functional systems and optimiza-
tion problems. High performance optimization 13:405–440.
Nilsson, N. J. 1986. Probabilistic logic. Artificial Intelligence
28:71–87.

O’Donnell, R., and Zhou, Y. 2013. Approximability and proof
complexity. In Proc. 24th SODA, 1537–1556.
O’Donnell, R. 2017. SOS is not obviously automatizable, even
approximately. In Proc. 8th Innovations in Theoretical Com-
puter Science, volume 67 of LIPIcs.
Parrilo, P. A. 2000. Structured semidefinite programs and
semialgebraic geometry methods in robustness and optimiza-
tion. Ph.D. Dissertation, California Institute of Technology.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Poon, H., and Domingos, P. 2011. Sum-product networks: a
new deep architecture. In Proc. 27th UAI, 337–346.
Putinar, M. 1993. Positive polynomials on compact semi-
algebraic sets. Indiana U. Math. J. 42:969–984.
Raghavendra, P., and Weitz, B. 2017. On the bit complexity
of sum-of-squares proofs. In Proc. 44th International Collo-
quium on Automata, Languages, and Programming, volume 80
of LIPIcs.
Rakhlin, A., and Sridharan, K. 2015. Hierarchies of relax-
ations of online prediction problems with evolving constraints.
In Proc. 28th COLT, volume 40 of JMLR W&CP. 1–23.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Mach. Learn. 62:107–136.
Rubin, D. B. 1976. Inference and missing data. Biometrika
63(3):581–592.
Sesh Kumar, K. S., and Bach, F. 2013. Convex relaxations
for learning bounded treewidth decomposable graphs. In Proc.
30th ICML, 525–533.
Shor, N. 1987. An approach to obtaining global extremums in
polynomial mathematical programming problems. Cybernetics
and Systems Analysis 23(5):695–700.
Valiant, L. G. 2000. Robust logics. Artificial Intelligence
117:231–253.

7875

