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Abstract

In this paper, we study the following robust optimization
problem. Given an independence system and candidate ob-
jective functions, we choose an independent set, and then
an adversary chooses one objective function, knowing our
choice. The goal is to find a randomized strategy (i.e., a prob-
ability distribution over the independent sets) that maximizes
the expected objective value in the worst case. This problem
is fundamental in wide areas such as artificial intelligence,
machine learning, game theory and optimization. To solve
the problem, we propose two types of schemes for design-
ing approximation algorithms. One scheme is for the case
when objective functions are linear. It first finds an approx-
imately optimal aggregated strategy and then retrieves a de-
sired solution with little loss of the objective value. The ap-
proximation ratio depends on a relaxation of an independence
system polytope. As applications, we provide approximation
algorithms for a knapsack constraint or a matroid intersec-
tion by developing appropriate relaxations and retrievals. The
other scheme is based on the multiplicative weights update
(MWU) method. The direct application of the MWU method
does not yield a strict multiplicative approximation algorithm
but yield one with an additional additive error term. A key
technique to overcome the issue is to introduce a new con-
cept called (η, γ)-reductions for objective functions with pa-
rameters η and γ. We show that our scheme outputs a nearly
α-approximate solution if there exists an α-approximation al-
gorithm for a subproblem defined by (η, γ)-reductions. This
improves approximation ratios in previous results. Using our
result, we provide approximation algorithms when the objec-
tive functions are submodular or correspond to the cardinality
robustness for the knapsack problem.

1 Introduction
Optimization under uncertainty about the objective is a fun-
damental task in artificial intelligence and machine learn-
ing. For example, consider the problem of controlling
pan-tilt-zoom cameras to protect against adversarial intru-
sions (Krause, Roper, and Golovin 2011). We need to choose
where to point the cameras under some scenarios of intru-
sions. Thus, we aim to maximize the chance of detecting
intrusions in the worst case. See also (Chen et al. 2017) for

∗A full version appears in (Kawase and Sumita 2018).
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

another example. Krause, Roper, and Golovin (2011) and
Chen et al. (2017) formulated such problems as the follow-
ing robust combinatorial optimization problem; given an in-
dependence system (E, I) (where I ⊆ 2E) and set func-
tions f1, . . . , fn : 2E → R+, the goal is to find a minimax
randomized strategy p that maximizes the worst case per-
formance, i.e., mink∈{1,...,n}

∑
X∈I pXfk(X). Throughout

this paper, we denote [n] = {1, . . . , n} for a positive inte-
ger n. An independence system is a set system generaliz-
ing families of knapsack solutions and matroids; we give the
formal definition in the preliminaries. The above problem
is regarded as the problem of computing the game value in
a two-person zero-sum game where one player (Algorithm)
selects a feasible solution and the other player (Adversary)
selects an objective function.

The robust optimization problem has also widespread ap-
plication in game theory and combinatorial optimization.

One is the problem of computing the Stackelberg equilib-
rium of the (zero-sum) security games. This game models
the interaction between a system defender (Algorithm) and
a malicious attacker (Adversary) to the system. The model
and its game-theoretic solution have various applications in
the real world (Tambe 2011).

Another application is the problem of maximizing the
cardinality robustness for the maximum weight indepen-
dent set problem (Hassin and Rubinstein 2002; Fujita,
Kobayashi, and Makino 2013; Kakimura and Makino
2013; Matuschke, Skutella, and Soto 2018; Kobayashi and
Takazawa 2016). The goal is to choose an independent set
of size at most k with as large total weight as possible, but
the cardinality bound k is not known in advance. We refer
this problem to the maximum cardinality robustness prob-
lem (MCRP). We can regard MCRP as the game where Al-
gorithm chooses an independent set X and then Adversary
chooses k knowing X . We will describe details of these ap-
plications in the preliminaries.

One most standard way to solve the robust optimization
problem is to use the linear programming (LP). In fact,
it is known that we can compute the exact game value in
polynomial time with respect to the numbers of determin-
istic (pure) strategies for both players (see, e.g., Nisan et
al.; Bowles (2007; 2009) for more details). However, in our
setting, direct use of the LP formulation is not effective. The
set of deterministic strategies for the algorithm has exponen-
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tially large cardinality in general, and hence the number of
the variables in the LP formulation is exponentially large.

For another way, we can use the multiplicative weights
update (MWU) method to solve the problem. The MWU
method is an algorithmic technique which maintains a dis-
tribution on a certain set of interest and updates it iteratively
by multiplying the probability mass of elements by suitably
chosen factors based on feedback obtained by running an-
other algorithm on the distribution (Kale 2007). MWU is
simple but so powerful that it is widely used in game the-
ory, machine learning, computational geometry, optimiza-
tion, and so on. Freund and Schapire (1999) apply the MWU
method to calculate the approximate value of a two-person
zero-sum game, and showed that if (i) the set of deter-
ministic strategies for Adversary is polynomially sized, and
(ii) Algorithm can compute a best response, then MWU
gives a polynomial-time algorithm to compute the game
value up to an additive error of ε for any fixed constant
ε > 0. Krause, Roper, and Golovin (2011) and Chen et
al. (2017) extended this result for the case when the algo-
rithm can compute only an approximately best response.
They provided a polynomial-time algorithm that finds an
α-approximation of the game value up to additive error of
ε ·maxk∈[n], X∈I fk(X) for any fixed constant ε > 0. This
result leads no theoretical guarantee in general because the
maximum objective value can be arbitrarily large compared
with the optimal value. Moreover, obtaining an (α − ε′)-
approximation solution for a fixed constant ε′ > 0 by
their algorithms requires pseudo-polynomial time. Recently,
Hellerstein, Lidbetter, and Pirutinsky (2018) provided an
(α−ε)-approximation algorithm with the MWU method for
the case when the minimizer has exponentially many strate-
gies. However, in our problem, it is hard to obtain a similar
result by applying their technique.

In this paper, to solve the robust optimization prob-
lem, we provide two general schemes based on LP and
MWU. As consequences, we develop (approximation) al-
gorithms that works when the objective functions and the
constraint that defines I belong to well-known classes in
combinatorial optimization, such as submodular functions,
knapsack/matroid/µ-matroid intersection constraints.

Related work While there exist still few papers on random-
ized strategies of the robust optimization problems, algo-
rithms to find a deterministic strategy have been intensively
studied in various setting. See survey papers (Aissi, Bazgan,
and Vanderpooten 2009; Kasperski and Zieliński 2016) and
references therein for details. Adopting a randomized strat-
egy provides us two merits: the randomization improves the
worst case value dramatically, and the optimal randomized
strategy can be found easier than the deterministic one. We
will describe these later in the preliminaries.

Since Hassin and Rubinstein (2002) introduced the no-
tion of the cardinality robustness, many papers have been
investigating the value of the maximum cardinality ro-
bustness (Hassin and Rubinstein 2002; Fujita, Kobayashi,
and Makino 2013; Kakimura and Makino 2013; Kobayashi
and Takazawa 2016; Kakimura, Makino, and Seimi 2012).
Kakimura, Makino, and Seimi (2012) proved that the de-

terministic version of MCRP is weakly NP-hard but ad-
mits an FPTAS. Matuschke, Skutella, and Soto (2018) intro-
duced randomized strategies for the cardinality robustness,
and they presented a randomized strategy with (1/ ln 4)-
robustness for a certain class of independence system. How-
ever, they did not consider the computational aspect of the
cardinality robustness.

When n = 1, the deterministic version of the robust opti-
mization problem is exactly the classical optimization prob-
lem maxX∈I f(X). For the monotone submodular function
maximization problem, there exist (1− 1/e)-approximation
algorithms under a knapsack constraint (Sviridenko 2004) or
a matroid constraint (Calinescu et al. 2007; Filmus and Ward
2012), and there exists a 1/(µ + ε)-approximation algo-
rithm under a µ-matroid intersection constraint for any fixed
ε > 0 (Lee, Sviridenko, and Vondrák 2010). For the uncon-
strained non-monotone submodular function maximization
problem, there exists a 1/2-approximation algorithm, and
this is best possible (Feige, Mirrokni, and Vondrák 2011;
Buchbinder et al. 2015). As for the case when the objective
function f is linear, the knapsack problem admits an FP-
TAS (Kellerer, Mansini, and Speranza 2000).

Main results and technique
LP-based algorithm We provide a two-step scheme for the
case when all the objective functions f1, . . . , fn are linear.
The first step solves the LP that finds an aggregated strat-
egy for the original problem, and the second step retrieves
a randomized strategy. In the both steps, we make use of
a separation problem for the polytope of the feasible re-
gion in the LP, which consists of the independence system
polytope. We show that if we can solve the separation prob-
lem efficiently, then we can also solve the robust optimiza-
tion problem efficiently (Theorem 3). Consequently, the ro-
bust optimization problem can be solve in polynomial-time
when I comes from a matroid, a matroid intersection, or s–t
paths. This is a standard application of techniques obtained
by Grötschel, Lovász, and Schrijver (2012). However, the
scheme is not directly available when I comes from a knap-
sack or a µ-matroid intersection (µ ≥ 3) because the corre-
sponding separation problems are NP-hard. A key point to
resolve the issue is to use a slight relaxation of the feasible
region. We show that if we can efficiently solve the separa-
tion problem for the relaxed polytope, then we can know an
approximate optimal value (Theorem 4). The most difficult
point is the retrieval step, because the LP optimal solution
may not belong to the original feasible region. Instead we
compute a randomized strategy by slightly shrinking the ag-
gregated strategy vector. We prove the approximation ratio
of the randomized strategy (Theorem 4). By developing ap-
propriate relaxations and retrievals, we show a PTAS and a
2/(eµ)-approximation algorithm for the knapsack constraint
and the µ-matroid intersection constraint, respectively.

The merit of the LP-based algorithm compared with
MWU is that the LP-based one is applicable to the case when
the set of possible objective functions is given by a half-
space representation of a polytope. In the original problem,
objective functions are given by a vertex representation, i.e.,
a convex hull of linear functions conv{f1, . . . , fn}. Both a
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half-space and a vertex representation of a polytope have
different utility, and hence it is important that the LP-based
algorithm can deal with both.

MWU-based algorithm We improve the technique of
(Krause, Roper, and Golovin 2011; Chen et al. 2017) to ob-
tain a better approximation algorithm based on the MWU
method. Their algorithm adopts the value of fk(X) (k ∈
[n]) for update, but this may lead the slow convergence when
fk(X) is too large for some k. In fact, the direct application
of the MWU method does not yield a strict multiplicative
approximation algorithm but a multiplicative approximation
algorithm with an additional additive error term. To over-
come this drawback, we make the convergence rate per it-
eration faster by introducing a novel concept called (η, γ)-
reduction of objective functions (Definition 1). We assume
that the algorithm can find an α-best response in the game
where objective functions are (η, γ)-reductions of original
ones, for any η and some polynomially bounded γ ≤ 1. We
use the procedure as a subroutine. Then we show that by
appropriately setting η, for any fixed constant ε > 0, our
scheme gives an (α − ε)-approximation solution in polyno-
mial time with respect to n and 1/ε (Theorem 8). For exam-
ple, we give an (η, 1/|E|)-reduction for submodular func-
tions through submodular minimization. We remark that the
support size of the output may be equal to the number of it-
erations. Without loss of the objective value, we can find a
sparse solution whose support size is at most n by using LP.

The merit of the MWU-based algorithm is applicabil-
ity to a wide class of the robust optimization problem. We
also demonstrate our scheme for various optimization prob-
lems. For any η ≥ 0, we show that a linear function has
an (η, 1/|E|)-reduction to a linear function, a monotone
submodular function has an (η, 1)-reduction to a mono-
tone submodular function, and a non-monotone submod-
ular function has an (η, 1/|E|)-reduction to a submodular
function. Therefore, we can construct subroutines owing to
existing work. Consequently, for the linear case, we obtain
an FPTAS subject to the knapsack constraint (Theorem 13)
and a 1/(µ − 1 + ε)-approximation algorithm subject to
the µ-matroid intersection constraint (Theorem 11). For the
monotone submodular case, there exist a (1 − 1/e − ε)-
approximation algorithm for the knapsack or matroid con-
straint (Theorem 9), and a 1/(µ + ε)-approximation for
the µ-matroid intersection constraint (Theorem 10). For the
non-monotone submodular case without a constraint, we de-
rive a (1/2− ε)-approximation algorithm (Theorem 12).

Moreover, by applying our MWU-based scheme, we
demonstrate an FPTAS for MCRP where I is defined
from the knapsack problem (Theorem 14). To construct
the subroutine for computing an approximate best re-
sponse, we give a gap-preserving reduction of the subprob-
lem to maxX∈I v≤k(X) for any k, which admits an FP-
TAS (Caprara et al. 2000). We also show that MCRP is NP-
hard.

We remark that both schemes produce a randomized strat-
egy, but the schemes themselves are deterministic. Our re-
sults are summarized in Table 1.

2 Preliminaries
Linear and submodular functions Throughout this paper,
we consider set functions f with f(∅) = 0. We say that a
set function f : 2E → R is submodular if f(X) + f(Y ) ≥
f(X ∪ Y ) + f(X ∩ Y ) holds for all X,Y ⊆ E (Fujishige
2005; Krause and Golovin 2014). In particular, a set function
f : 2E → R is called linear (modular) if f(X) + f(Y ) =
f(X ∪ Y ) + f(X ∩ Y ) holds for all X,Y ⊆ E. A lin-
ear function f is represented as f(X) =

∑
e∈X we for

some (we)e∈E . A function f is said to be monotone if
f(X) ≤ f(Y ) for all X ⊆ Y ⊆ E. A linear function
f(X) =

∑
e∈X we is monotone if and only if we ≥ 0

(e ∈ E).

Independence system Let E be a finite ground set. An in-
dependence system is a set system (E, I) with the following
properties: (I1) ∅ ∈ I, and (I2) X ⊆ Y ∈ I implies X ∈ I.
A set I ⊆ I is said to be independent, and an inclusion-
wise maximal independent set is called a base. The class of
independence systems is wide and it includes matroids, µ-
matroid intersections, and families of knapsack solutions.

A matroid is an independence system (E, I) satisfying
that (I3) if X,Y ∈ I and |X| < |Y | then there exists
e ∈ Y \X such thatX∪{e} ∈ I. All bases of a matroid have
the same cardinality, which is called the rank of the matroid
and is denoted by ρ(I). An example of matroids is a uniform
matroid (E, I), where I = {S ⊆ E | |S| ≤ r} for some
r. Note that the rank of this uniform matroid is r. Given
two matroids M1 = (E, I1) and M2 = (E, I2), the ma-
troid intersection ofM1 andM2 is defined by (E, I1∩I2).
Similarly, given µ matroidsMi = (E, Ii) (i = 1, . . . , µ),
the µ-matroid intersection is defined by (E,

⋂µ
i=1 Ii).

Given an item set E with size s(e) and value v(e) for
each e ∈ E, and the capacity C ∈ Z+, the knapsack prob-
lem is to find a subset X of E that maximizes the total value∑
e∈X v(e) subject to a knapsack constraint

∑
e∈X s(e) ≤

C. Each subset satisfying the knapsack constraint is called
a knapsack solution. Let I = {X |

∑
e∈X s(e) ≤ C} be

the family of knapsack solutions. Then, (E, I) is an inde-
pendence system.

Robust optimization problem Let E be a finite ground set,
and let n be a positive integer. Let ∆(I) and ∆n denote the
set of probability distributions over a family I ⊆ 2E and [n],
respectively. Given n set functions f1, . . . , fn : 2E → R+

and an independence system (E, I), our task is to solve

max min
k∈[n]

∑
X∈I

pX · fk(X) s.t. p ∈ ∆(I). (1)

For each k ∈ [n], we denote X∗k ∈ arg maxX∈I fk(X) and
assume that fk(X∗k) > 0. We assume that the functions are
given by an oracle, i.e., for a givenX ⊆ E, we can query an
oracle about the values f1(X), . . . , fn(X).

By von Neumann’s minimax theorem, it holds that

max
p∈∆(I)

min
k∈[n]

∑
X∈I

pXfk(X) = min
q∈∆n

max
X∈I

∑
k∈[n]

qkfk(X). (2)

This leads the following proposition, which is used later.
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Table 1: The approximation ratios for robust optimization problems shown in the present paper.
objective functions constraint approx. ratio ref.

L
P-

ba
se

d linear (polytope) matroid (intersection) P Theorem 3
linear (polytope) shortest s–t path P Theorem 3
linear (polytope) knapsack PTAS Theorem 6
linear (polytope) µ-matroid intersection 2

eµ -approx. Theorem 7
M

W
U

-b
as

ed

monotone submodular matroid/knapsack (1− 1
e − ε)-approx. Theorem 9

monotone submodular µ-matroid intersection 1
µ+ε -approx. Theorem 10

linear µ-matroid intersection 1
µ−1+ε -approx. Theorem 11

submodular free ( 1
2 − ε)-approx. Theorem 12

linear knapsack FPTAS Theorem 13
cardinality knapsack FPTAS Theorem 14

Proposition 1. Let ν∗ denote the optimal value of (1). It
holds that mink∈[n] fk(X∗k)/n ≤ ν∗ ≤ mink∈[n] fk(X∗k).

This implies that we can find a 1/n-approximate solution
by just computing X∗k (k ∈ [n]).

We describe two merits to adopt a randomized strat-
egy rather than a deterministic one for (1). One is that
the randomization improves the worst case value dra-
matically. Suppose that I = {∅, {a}, {b}}, f1(X) =
|X ∩ {a}|, and f2(X) = |X ∩ {b}|. Then, the maxi-
mum worst case value among deterministic strategies is
maxX∈I mink∈{1,2} fk(X) = 0, while that for randomized
ones is maxp∈∆(I) mink∈{1,2}

∑
X∈I pX · fk(X) = 1/2.

The other merit is that the optimal randomized strategy can
be found easier. It is known that finding an optimal determin-
istic solution is hard even in a simple setting (Aissi, Bazgan,
and Vanderpooten 2009; Kasperski and Zieliński 2016). In
particular, we see in the following that even for an easy case,
computing the optimal worst case value among deterministic
solutions is strongly NP-hard even to approximate.
Theorem 1. It is NP-hard to compute X ∈ I maxi-
mizing mink∈[n] fk(X) even when the objective functions
f1, . . . , fk are linear and I is given by a uniform matroid.
Moreover, there exists no approximation algorithm for the
problem unless P=NP.

Note that we will show that the randomized version of this
problem is polynomial-time solvable (Theorem 3).

Application 1: security game In a security game, we are
given n targets E. The defender selects a set of targets X ∈
I ⊆ 2E , and then the attacker selects a facility i ∈ E. The
utility of defender is ri if i ∈ X and ci if i 6∈ X . Then,
we can interpret the game as the robust optimization with
fi(X) = ci +

∑
j∈X wij where wij = ri − ci if i = j and

0 if i 6= j for i, j ∈ E. Then the problem of computing the
Stackelberg equilibrium is equivalent to (1).

Application 2: MCRP Consider that given an indepen-
dence system (E, I) with weights of elements in E, we
choose X ∈ I of size at most k with as large total
weight as possible, but k is not known in advance. For
each X ∈ I, we denote the total weight of the k heav-
iest elements in X by v≤k(X). For α ∈ [0, 1], an inde-

pendent set X ∈ I is said to be α-robust if v≤k(X) ≥
α · maxY ∈I v≤k(Y ) for any k ∈ [n]. Then, MCRP
is to find a randomized strategy that maximizes the ro-
bustness α, i.e., maxp∈∆(I) mink∈[n]

∑
X∈I pX · v≤k(X)/

maxY ∈I v≤k(Y ). This is formulated as (1) by setting
fk(X) = v≤k(X)/maxY ∈I v≤k(Y ).

3 LP-based Algorithms
In this section, we propose a computation scheme for
the robust optimization problem (1) with linear functions
f1, . . . , fn, i.e., fk(X) =

∑
e∈X wke. Here, wke ≥ 0 holds

for k ∈ [n] and e ∈ E since we assume fk(X) ≥ 0.
A key technique is the separation problem for an indepen-
dence system polytope. An independence system polytope
of (E, I) is a polytope defined as P (I) = conv{χ(X) |
X ∈ I} ⊆ [0, 1]E , where χ(X) is a characteristic vector in
{0, 1}E , i.e., χ(X)e = 1 if and only if e ∈ X . For a prob-
ability distribution p ∈ ∆(I), we can get a point x ∈ P (I)
such that xe =

∑
X∈I: e∈X pX (e ∈ E). Then, xe (e ∈ E)

means a probability that e is chosen when we select an inde-
pendent set according to the probability distribution p. Con-
versely, for any x ∈ P (I), there exists p ∈ ∆(I) such
that

∑
X∈I pX χ(X) = x by the definition of P (I). Given

x ∈ RE , the separation problem for P (I) is to either assert
x ∈ P (I) or find a vector d such that d>x < d>y for all
y ∈ P (I).

The rest of this section is organized as follows. In Sec-
tion 3.1, we prove that we can solve (1) in polynomial time
if there is a polynomial-time algorithm to solve the separa-
tion problem for P (I). In Section 3.2, we tackle the case
when it is hard to construct a separation algorithm for P (I).
We show that we can obtain an approximation solution when
we can slightly relax P (I). Moreover, we deal with a set-
ting that objective functions are given by a polytope in Sec-
tion 3.3.

3.1 Basic scheme
We observe that the optimal robust value of (1) is equal to
the optimal value of the following linear programming (LP):

max ν s.t. ν ≤
∑
e∈E

wiexe (∀i ∈ [n]), x ∈ P (I). (3)
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Lemma 1. When f1, . . . , fn are linear, the optimal value of
(3) is equal to that of (1).

Thus the optimal solution of (1) is obtained by the follow-
ing two-step scheme.
1. compute the optimal solution of LP (3), which we denote

as (ν∗, x∗),
2. compute p∗ ∈ ∆(I) such that x∗ =

∑
X∈I p

∗
X χ(X).

It is trivial that if |I| is bounded by a polynomial in
|E| and n, then we can obtain p∗ by replacing x with∑
X∈I pXχ(X) in (3) and solving it. In general, we can

solve the two problems in polynomial time by the ellipsoid
method when we have a polynomial-time algorithm to solve
the separation problem forP (I). This is due to the following
theorems given by Grötschel, Lovász, and Schrijver (2012).
Theorem 2 (Grötschel, Lovász, and Schrijver). Let P ⊆
RE be a polytope and suppose that the separation problem
for P can be solved in polynomial time. Then we can solve a
linear program over P in polynomial time. In addition, there
exists a polynomial time algorithm that, for any vector x ∈
P , computes affinely independent vertices x1, . . . , x` of P
(` ≤ |E|+ 1) and positive reals λ1, . . . , λ` with

∑`
i=1 λi =

1 such that x =
∑`
i=1 λixi.

Therefore, we have the following general result.
Theorem 3. If f1, . . . , fn are linear and there is a
polynomial-time algorithm to solve the separation problem
for P (I), then we can solve the linear robust optimization
problem (1) in polynomial time.

Hence, there exists a polynomial-time algorithm for (1)
when I is a matroid (intersection) or the set of s–t paths,
because a matroid (intersection) polytope and the dominant
of an s–t path polytope admit a polynomial-time separation
algorithm.

3.2 Relaxation of the polytope
We present an approximation scheme for the case when the
separation problem for P (I) is hard to solve. Recall that
fk(X) =

∑
e∈X wke where wke ≥ 0 for k ∈ [n] and e ∈ E.

We modify the basic scheme as follows. First, instead of
solving the separation problem for P (I), we solve the one
for a relaxation of P (I). For a polytope P and a positive
number (1 ≥)α > 0, we denote αP = {αx | x ∈ P}. We
call a polytope P̂ (I) ⊆ [0, 1]E α-relaxation of P (I) if it
holds that αP̂ (I) ⊆ P (I) ⊆ P̂ (I). Then we solve

maxx∈P̂ (I) mink∈[n]

∑
e∈E wkexe (4)

instead of LP (3), and obtain an optimal solution x̂.
Next, we compute a convex combination of x̂ using

χ(X) (X ∈ I). Here, if x̂ ∈ P̂ (I) is the optimal solu-
tion for (4), then αx̂ ∈ P (I) is an α-approximate solution
of LP (3), because

max
x∈P (I)

min
k∈[n]

∑
e∈E

wkexe ≤ max
x∈P̂ (I)

min
k∈[n]

∑
e∈E

wkexe

= min
k∈[n]

∑
e∈E

wkex̂e =
1

α
· min
k∈[n]

∑
e∈E

wke(αx̂e).

As αx̂ ∈ P (I), there exists p ∈ ∆(I) such that αx̂ =∑
X∈I pX χ(X). However, the retrieval of such a prob-

ability distribution may be computationally hard, because
the separation problem for P (I) is hard to solve. Hence,
we relax the problem and compute p∗ ∈ ∆(I) such that
βx̂ ≤

∑
X∈I p

∗
X χ(X), where (α ≥) β > 0. Then, p∗ is a

β-approximate solution of maxp∈∆(I) mink∈[n]

∑
X∈I p

∗
X ·

fk(X), because

max
p∈∆(I)

min
k∈[n]

∑
X∈I

pX · fk(X) ≤ min
k∈[n]

∑
e∈E

wkex̂e

≤ 1

β
· min
k∈[n]

∑
X∈I

p∗X · fk(X).

Thus the basic scheme is modified as the following ap-
proximation scheme:

1. compute the optimal solution x̂ ∈ P̂ (I) for LP (4),
2. compute p∗ ∈ ∆(I) such that β · x̂e ≤

∑
X∈I: e∈X p

∗
X

for each e ∈ E.
Theorem 4. Suppose that f1, . . . , fn are linear. If there
exists a polynomial-time algorithm to solve the separation
problem for an α-relaxation P̂ (I) of P (I), then an α-
approximation of the optimal value of (1) is computed in
polynomial-time. In addition, if there exists a polynomial-
time algorithm to find p ∈ ∆(I) such that β · x̂e ≤∑
X∈I: e∈X pX for any x ∈ P̂ (I), then a β-approximate

solution of (1) is found in polynomial-time.
We remark that we can combine the result in Section 3.3

with this theorem.
In the following, we apply Theorem 4 to two important

cases when I is defined from a knapsack constraint or a µ-
matroid intersection. For this end, we develop appropriately
relaxations of P (I) and retrieval procedures for p∗.

Relaxation of a knapsack polytope Let E be a set of
items with size s(e) for each e ∈ E. Without loss of general-
ity, we assume that a knapsack capacity is one, and s(e) ≤ 1
for all e ∈ E. Let I be a family of knapsack solutions, i.e.,
I = {X ⊆ E |

∑
e∈X s(e) ≤ 1}.

It is known that P (I) admits a polynomial size relaxation
scheme, i.e., there exists a (1−ε)-relaxation of P (I) through
a linear program of polynomial size for a fixed ε > 0.
Theorem 5 (Bienstock). Let 0 < ε ≤ 1. There ex-
ist a polytope P ε(I) and its extended formulation with
O(ε−1n1+d1/εe) variables and O(ε−1n2+d1/εe) constraints
such that (1− ε)P ε(I) ⊆ P (I) ⊆ P ε(I).

Thus, the optimal solution x̂ to maxx∈P ε(I) mink∈[n]∑
e∈E wkexe can be computed in polynomial time. The re-

maining task is to compute p∗ ∈ ∆(I) such that (1−ε)·x̂e ≤∑
X∈I: e∈X p

∗
X for each e ∈ E. We give an algorithm for

this task.
Lemma 2. There exists a polynomial-time algorithm that
computes p∗ ∈ ∆(I) such that (1−ε)·x̂e ≤

∑
X∈I: e∈X p

∗
X

for each e ∈ E.
Theorem 6. There is a PTAS to compute the linear robust
optimization problem (1) subject to a knapsack constraint.

7880



Finally, we remark that the existence of a fully polyno-
mial size relaxation scheme (FPSRS) for P (I) is open (Bi-
enstock 2008). The existence of an FPSRS leads an FPTAS
to compute the optimal value of the linear robust optimiza-
tion problem (1) subject to a knapsack constraint.

Relaxation of a µ-matroid intersection polytope Let us
consider the case where I is defined from a µ-matroid inter-
section. It is NP-hard to maximize a linear function subject
to a µ-matroid intersection constraint if µ ≥ 3 (Garey and
Johnson 1979). Hence, it is also NP-hard to solve the linear
robust optimization subject to a µ-matroid intersection con-
straint if µ ≥ 3. For i = 1, . . . , µ, let (E, Ii) be a matroid
whose rank function is ρi. Let (E, I) = (E,

⋂
i∈[µ] Ii). We

define P̂ (I) =
⋂
i∈[µ] P (Ii). We see that P̂ (I) is a (1/µ)-

relaxation of P (I).

Lemma 3. 1
µ P̂ (I) ⊆ P (I) ⊆ P̂ (I).

As we can solve the separation problem for P̂ (I) in
strongly polynomial time (Cunningham 1984), we can ob-
tain an optimal solution x̂ ∈ P̂ (I) for the relaxed problem
maxx∈P̂ (I)

∑
e∈E w(e)xe. Since x̂/µ ∈ P (I), the value∑

e∈E w(e)x̂e/µ is a µ-approximation of the optimal value.
To obtain a µ-approximate solution, we need to compute

p∗ ∈ ∆(I) such that x̂e/µ ≤
∑
X∈I: e∈X p

∗
X for each

e ∈ E. Unfortunately, it seems hard to obtain such a dis-
tribution. With the aid of the contention resolution (CR)
scheme (Chekuri, Vondrák, and Zenklusen 2014), we can
compute p∗ ∈ ∆(I) such that (2/eµ)·x̂e ≤

∑
X∈I: e∈X p

∗
X

for each e ∈ E. We describe its procedure in the full ver-
sion (Kawase and Sumita 2018). We can summarize our re-
sult as follows.
Theorem 7. We can compute a µ-approximate value of the
linear robust optimization problem subject to a µ-matroid
intersection in polynomial time. Moreover, we can imple-
ment a procedure that efficiently outputs an independent set
according to the distribution of a 2/(eµ)-approximate solu-
tion.

3.3 Linear functions in a polytope
We consider the following variant of (1). Instead of n func-
tions f1, . . . , fn, suppose that we are given a set of functions

F =

{
f

∣∣∣∣∣ f({e}) = we (∀e ∈ E),
Aw +Bψ ≤ c,
w ≥ 0,
ψ ≥ 0

}

for some A ∈ Rm×|E|, B ∈ Rm×d, and c ∈ Rm. Now, we
aim to solve

maxp∈∆(I) minf∈F
∑
X∈I pXf(X). (5)

Note that for linear functions f1, . . . , fn, (1) is equivalent to
(5) in which

F = conv{f1, . . . , fn}

=

 f

∣∣∣∣∣∣
f({e}) = we (e ∈ E),
we =

∑
k∈[n] qkfk({e}),∑

k∈[n] qk = 1, w, q ≥ 0

 .

We observe that (5) is equal to maxx∈P (I) min{x>w |
Aw+Bψ ≤ c, w ≥ 0, ψ ≥ 0} by using a similar argument
to Lemma 1. The LP duality implies that min{x>w | Aw+
Bψ ≤ c, w ≥ 0, ψ ≥ 0} = max{c>y | A>y ≥ x, B>y ≥
0, y ≥ 0}. Thus the optimal value of (5) is equal to that of
the LP maxx∈P (I) maxy:A>y=x, B>y≥0, y≥0

∑
i∈[m] biyi.

Hence, Theorem 2 implies that if the separation problem for
P (I) can be solved in polynomial time, then we can solve
(5) in polynomial time.

4 MWU-based Algorithm
In this section, we present an algorithm based on the MWU
method (Arora, Hazan, and Kale 2012). This algorithm is
applicable to general cases. We assume that fk(X) ≥ 0 for
any k ∈ [n] and X ∈ I.

We describe the idea of our algorithm. Let us focus on
the right hand side of the minimax relation (2). We define
weights ωk for each function fk, and iteratively update them.
Intuitively, a function with a larger weight is likely to be cho-
sen with higher probability. At the first round, all functions
have the same weights. At each round t, we set a probability
qk (k ∈ [n]) that fk is chosen by normalizing the weights.
Then we compute an (approximate) optimal solutionX(t) of
maxX∈I

∑
k∈[n] qk ·fk(X). To minimize the right hand side

of (2), the probability qk for a function fk with a larger value
fk(X) should be decreased. Thus we update the weights ac-
cording to fk(X). We repeat this procedure, and set a ran-
domized strategy p ∈ ∆(I) according to X(t)’s.

Krause, Roper, and Golovin (2011) and Chen et al. (2017)
proposed the above algorithm when f1, . . . , fn are functions
with range [0, 1]. They proved that if there exists an α-
approximation algorithm to maxX∈I

∑
k∈[n] qkfk(X) for

any q ∈ ∆n, then the approximation ratio is α − ε for
any fixed constant ε > 0. This implies an approximation
ratio of α − ε · maxk∈[n], X∈I fk(X)/ν∗ when f1, . . . , fn
are functions with range R+, where ν∗ is the optimal value
of (1). Here, maxk∈[n], X∈I fk(X)/ν∗ could be large in
general. To remove this term from the approximation ra-
tio, we introduce a novel concept of function transforma-
tion. We improve the existing algorithms (Chen et al. 2017;
Krause, Roper, and Golovin 2011) with this concept, and
show a stronger result later in Theorem 8.
Definition 1. For positive reals η and γ (≤ 1), we call
a function g is an (η, γ)-reduction of f if (i) g(X) ≤
min{f(X), η} and (ii) g(X) ≤ γ ·η implies g(X) = f(X).

Intuitively, the condition (i) is useful for speeding up
MWU and the condition (ii) is important for the purpose that
the optimal value does not change significantly.

We fix a parameter γ > 0, where 1/γ is bounded by
polynomial. The smaller γ is, the wider the class of (η, γ)-
reduction of f is. We set another parameter η later. We
denote (η, γ)-reduction of f1, . . . , fn by fη1 , . . . , f

η
n , re-

spectively. In what follows, suppose that we have an α-
approximation algorithm to

maxX∈I
∑
k∈[n] qkf

η
k (X) (6)

for any q ∈ ∆n and η ∈ R+ ∪ {∞}. In our proposed al-
gorithm, we use fηk instead of the original fk. The smaller
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η is, the faster our algorithm converges. However, the limit
outcome of our algorithm as T goes to infinity moves over a
little from the optimal solution. We overcome this issue by
setting η to an appropriate value.

Our algorithm is summarized in Algorithm 1. Note that
f∞k = fk (k ∈ [n]). We remark that when the parameter
γ is small, there may exist a better approximation algorithm
for (6), but the running time of Algorithm 1 becomes longer.

Algorithm 1: MWU for the robust optimization
input : positive reals η, δ (≤ 1/2), and an integer T
output: randomized strategy p∗ ∈ ∆(I)

1 Let ω(1)
k ← 1 for each k ∈ [n];

2 for t = 1, . . . , T do
3 q

(t)
k ← ω

(t)
k /

∑
k∈[n] ω

(t)
k for each k ∈ [n];

4 let X(t) be an α-approximate solution of
maxX∈I

∑
k∈[n] q

(t)
k · f

η
k (X) ;

5 ω
(t+1)
k ← ω

(t)
k (1− δ)f

η
k (X(t))/η for each k ∈ [n];

6 return p∗ ∈ ∆(I) such that
p∗X = |{t ∈ {1, . . . , T} | X(t) = X}|/T ;

The main result of this section is stated below.
Theorem 8. If there exists an α-approximation algorithm to
solve (6) for any q ∈ ∆n and η ∈ R+ ∪ {∞}, then Algo-
rithm 1 is an (α− ε)-approximation algorithm to the robust
optimization problem (1) for any fixed ε > 0. In addition,
the running time of Algorithm 1 is O(n

2 lnn
αε3γ θ), where θ is

the running time of the α-approximation algorithm to (6).
To show this, we use the following lemma, which can be

proved by standard analysis of the MWU method (see, e.g.,
Arora, Hazan, and Kale (2012)). In the following, we denote
by ν∗ the optimal value of (1).
Lemma 4. For any δ ∈ (0, 1/2], it holds that

T∑
t=1

∑
k∈[n]

q
(t)
k · f

η
k (X(t)) ≤ η lnn

δ
+ (1 + δ) · min

k∈[n]

T∑
t=1

fηk (X(t)).

Next, we see that the optimal value of (1) for f1, . . . , fn
and the one for fη1 , . . . , f

η
n are close if η is a large number.

Lemma 5. If η ≥ n
δγ · ν

∗, we have

ν∗ ≥ min
q∈∆n

max
X∈I

∑
k∈[n]

qk · fηk (X) ≥ (1− δ)ν∗.

By Lemmas 4 and 5, we have the following lemma, which
implies Theorem 8.
Lemma 6. For any fixed ε > 0, the output p∗ of Algorithm
1 is an (α−ε)-approximate solution of (1) when we set T =

dn
2 lnn
αδ3γ e,

n2

αδγ ν
∗ ≥ η ≥ n

δγ ν
∗, and δ = min{ε/3, 1/2}.

As applications of Theorem 8, we can obtain the follow-
ing theorems.

When f1, . . . , fn are monotone submodular, fηk (X) =
min{fk(X), η} is an (η, 1)-reduction of fk, and fηk is a

monotone submodular function (Lovász 1983; Fujito 2000).
Thus,

∑
k∈[n] qkf

η
k (X) is monotone submodular for any

q ∈ ∆n. Because there exist (1 − 1/e)-approximation al-
gorithms for maximizing a monotone submodular function
under a knapsack constraint (Sviridenko 2004) and under a
matroid constraint (Calinescu et al. 2007; Filmus and Ward
2012), we can obtain the following theorems.

Theorem 9. For any positive real ε > 0, there exists a
(1 − 1/e − ε)-approximation algorithm for the robust op-
timization problem (1) when f1, . . . , fn are monotone sub-
modular and I is given by a knapsack constraint or a ma-
troid.

Theorem 10. For any fixed positive real ε > 0, there exists a
1/(µ+ ε)-approximation algorithm for the robust optimiza-
tion problem (1) when f1, . . . , fn are monotone submodular
and I is given by a µ-matroid intersection.

A monotone linear maximization subject to a µ-matroid
intersection can be viewed as a monotone submodular max-
imization subject to a (µ−1)-matroid intersection. Thus, we
also obtain the following theorem.

Theorem 11. For any fixed positive real ε > 0, there ex-
ists a 1/(µ− 1 + ε) for the robust optimization problem (1)
when f1, . . . , fn are monotone linear and I is given by a
µ-matroid intersection.

When f1, . . . , fn are (non-monotone) submodular,
min{fk, η} may not a submodular function. In this case, we
define fηk (X) = min{f(Z) + η · |X − Z|/|E| | Z ⊆ X}.
Then, fηk is an (η, 1/|E|)-reduction of fk. Since fηk (X) is a
submodular function (Fujishige 2005), we can evaluate the
value fηk (X) in strongly polynomial time by a submodular
function minimization algorithm. Thus, the following
theorem holds.

Theorem 12. For any fixed positive real ε > 0, there ex-
ists a (1/2− ε)-approximation algorithm for the robust op-
timization problem (1) when f1, . . . , fn are submodular and
I = 2E .

When fk(X) =
∑
e∈X wke for each k ∈ [n], where

wke ≥ 0 and e ∈ E, fηk (X) =
∑
e∈X min{wke, η/|E|}

is an (η, 1/|E|)-reduction of fk. In addition, we can con-
struct an FPTAS to compute maxX∈I

∑
k∈[n] qkf

η
k (X) for

any q ∈ ∆n.

Theorem 13. There exists an FPTAS for the robust opti-
mization problem (1) when f1, . . . , fn are monotone linear
and I is given by a knapsack constraint.

Finally, we apply Theorem 8 to MCRP for the knap-
sack problem. Recall that the objective functions are given
as fk(X) = v≤k(X)/maxY ∈I v≤k(Y ) for i ∈ [k]. Note
that the evaluation of fk(X) for a given solution X is
already NP-hard. We provide an FPTAS to evaluate the
value of fk’s and then we develop an FPTAS to solve
maxX∈I

∑
k∈[n] qkf

η
k (X). Therefore, we can obtain the

following theorem.

Theorem 14. There exists an FPTAS to solve the maximum
cardinality robustness problem for the knapsack problem.
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