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Abstract

Conventional topic models suffer from a severe sparsity prob-
lem when facing extremely short texts such as social media
posts. The family of Dirichlet multinomial mixture (DMM)
can handle the sparsity problem, however, they are still very
sensitive to ordinary and noisy words, resulting in inaccu-
rate topic representations at the document level. In this paper,
we alleviate this problem by preserving local neighborhood
structure of short texts, enabling to spread topical signals
among neighboring documents, so as to correct the inaccurate
topic representations. This is achieved by using variational
manifold regularization, constraining the close short texts
should have similar variational topic representations. Upon
this idea, we propose a novel Laplacian DMM (LapDMM)
topic model. During the document graph construction, we
further use the word mover’s distance with word embeddings
to measure document similarities at the semantic level. To
evaluate LapDMM, we compare it against the state-of-the-
art short text topic models on several traditional tasks. Ex-
perimental results demonstrate that our LapDMM achieves
very significant performance gains over baseline models, e.g.,
achieving even about 0.2 higher scores on clustering and clas-
sification tasks in many cases.

Introduction
Short texts, such as text advertisements and social media
posts, are becoming more and more prevalent on the In-
ternet. With the emerging large-scale collections of short
texts, discovering the hidden topic structure from them is
important for many content analysis applications. However,
short texts, as suggested by the name, often contain very few
words. For example, in StackOverFlow of question titles,
each title sample has only about 4.9 word tokens averagely
after a removal of the meaningless stopwords. Therefore,
there must be very limited valuable information for short text
collections at the document level, resulting in the so-called
sparsity problem.

Conventional topic models, such as probabilistic latent se-
mantic indexing (PLSI) (Hofmann 1999) and latent Dirich-
let allocation (LDA) (Blei, Ng, and Jordan 2003), also suf-
fer from the sparsity problem. That is because with statisti-
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cal methods, the topic inference is mainly depended on the
document-level word co-occurrence information (Wang and
McCallum 2006) that the short texts lack. This raises up a
significant challenge to topic modeling of short texts.

Recently, many efforts have been made to handle the
sparsity problem. Borrowing the taxonomic hierarchy from
multi-label learning (Zhang and Zhou 2014), we organize
the existing works on topic modeling of short texts into
two categories, i.e., problem transformation method and
adaptation method. The problem transformation method
(Mehrotra et al. 2013; Quan et al. 2015; Zuo et al. 2016;
Li et al. 2018b) tackles the task by aggregating short texts
into long pseudo-documents and then applying a well-
established topic model, e.g., LDA. For this category of
methods, the short texts can be aggregated using side in-
formation, e.g., user ID (Mehrotra et al. 2013), or adap-
tive scenarios (Quan et al. 2015; Zuo et al. 2016; Li et
al. 2018b). However, a drawback of them is that any long
pseudo-document may consist of many irrelevant short texts,
making the topic inference less effective. The adaptation
method (Nigam et al. 2000; Cheng et al. 2014; Sridhar 2015;
Zuo, Zhao, and Xu 2016; Xin et al. 2011; Yin and Wang
2014; Li et al. 2016; 2017; 2018c; 2018d) directly modifies
traditional topic models by enriching word co-occurrences,
so as to remedy the sparsity problem. A straightforward
methodology is to model the global word co-occurrences
at the corpus level (Cheng et al. 2014; Sridhar 2015;
Zuo, Zhao, and Xu 2016). For example, the biterm topic
model (BTM) (Cheng et al. 2014) learns topics by mod-
eling word co-occurrence pairs over the entire corpus; the
word network topic model (WNTM) (Zuo, Zhao, and Xu
2016) refers to each word type as a pseudo-document fol-
lowing a global word co-occurrence network. These models
can alleviate the sparsity problem to some extent. However,
they may create many meaningless word co-occurrences
without any word pair filtering process, and more impor-
tantly they lose document-specific topic structure. Addi-
tionally, another methodology indirectly enriches document-
level word co-occurrences by supposing that each short text
covers a small subset of topics. The representative methods
include Dirichlet multinomial mixture (DMM) (Nigam et al.
2000; Yin and Wang 2014) and its variants (Li et al. 2016;
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2017), which are widely used on analysis tasks of short texts
(Xin et al. 2011).

Orthogonal to BTM and WNTM, the family of DMM can
maintain document-specific topic structure, and the recent
variants (Li et al. 2016; 2017) have empirically shown very
competitive performance. However, a salient problem is that
they are sensitive to ordinary and noisy words, therefore the
document-level topic representation can be easily miscalcu-
lated. We refer to this as the sensitivity problem. For ex-
ample, if the majority of words in a short text are without
any topic-inclination or even noises, the topic of this docu-
ment can be probably miscalculated. Unfortunately, this of-
ten happens as short texts contain very few words.

Our Model
To break the limitation of DMM, we develop a novel
Laplacian DMM (LapDMM) topic model for short texts.
Our basic idea is to extend DMM by preserving local neigh-
borhood structure of short texts using manifold regulariza-
tion, which has been successfully used for topic models (Cai
et al. 2008; Cai, Wang, and He 2009; Huh and Fienberg
2010; Du et al. 2015; Hu et al. 2017). The manifold regular-
ization implies that the learned manifolds should be smooth,
which here constrains nearby document pairs have similar
latent topic representations. This can indirectly spread topi-
cal signals among neighboring documents, enabling to cor-
rect the miscalculated topic representations, so as to remedy
the sensitivity problem of DMM.

We would like to notice that the manifold regularization
can not be directly applied to DMM, because it supposes that
each document only covers a single topic. To solve this, we
train LapDMM following the spirit of collapsed variational
inference (Teh, Newman, and Welling 2006), a more accu-
rate inference method for topic models (Chi et al. 2018) than
Gibbs sampling used in other DMM variants (Li et al. 2016;
2017). We then incorporate a manifold regularization term
with respect to variational distributions into the original
variational objective of DMM, such that the close short
texts should have similar variational topic representations.
LapDMM is optimized by maximizing the regularized vari-
ational objective. To better capture similarities between
short texts, we employ the word mover’s distance (WMD)
(Kusner et al. 2015) with word embeddings (Mikolov, tau
Yih, and Zweig 2013), which describes document similar-
ities at the semantic level. We employ a regularized ver-
sion of WMD with an entropic regularizer (Cuturi 2013)
for efficient computations. Empirical results indicate that
our LapDMM significantly outperforms the state-of-the-art
baselines.

The main contributions of this paper are summarized as
follows:
1 We develop a novel LapDMM model by incorporating a

variational manifold regularization term.
2 We use the WMD with word embeddings to measure (se-

mantic) similarities between short text pairs.
3 Empirical results on popular benchmark datasets demon-

strate that our LapDMM significantly outperforms the
state-of-the-art baselines on topic quality, clustering and

classification tasks. Specifically, the performance gain
achieves even above 0.2 in many cases.

Model
In this section, we give a brief introduction to Dirichlet
multinomial mixture (DMM) (Nigam et al. 2000; Yin and
Wang 2014), and then describe the proposed LapDMM topic
model for short texts.

Dirichlet Multinomial Mixture
DMM is a generative topic model with the assumption that
each document covers only a single topic. Actually, this as-
sumption can indirectly enrich word co-occurrences at the
document level, making the model more effective for short
texts.

Formally, DMM consists of (1) K topic distributions φ
over the vocabulary of V words, drawn from a Dirichlet prior
β and (2) a corpus-level distribution θ over topics, drawn
from a Dirichlet prior α. For each document d, it first draws
a topic indicator zd from θ, and then draws each word token
wdn from the selected topic φzd . Given a corpus of D short
texts, the generative process of DMM can be described as
follows:

1. Draw a distribution over topics: θ ∼ Dir (α)

2. For each topic k

a. Draw a distribution over words φk ∼ Dir (β)

3. For each document d

a. Draw a topic : zd ∼Multinomial (θ)

b. For each of the Nd words wdn

i. Draw a word: wdn ∼Multinomial (φzd)

LapDMM with Variational Manifold
Regularization
We propose an extension of DMM with variational manifold
regularization, namely LapDMM, to preserve local neigh-
borhood structure of short texts.

Manifold regularization In the context of topic model-
ing, the manifold regularization constrains that the latent
topic representations of document pairs should be similar to
each other if they are nearest neighbors in document mani-
folds.

Formally, consider a directed graph with D vertices,
where each vertex corresponds to a document in the corpus.
Each component of the edge weight matrix W is defined by:

Wij =

{
1 if di ∈ Ω(dj) or dj ∈ Ω(di)
0 otherwise

, (1)

where Ω(d) is a document set containing R nearest neigh-
bors of document d. Specifically, let θd denote a latent K-
dimensional topic representation of document d. We define
a least square manifold regularization term as follows:

R =
1

2

K∑
k=1

D∑
i,j=1

(θik − θjk)
2
Wij (2)
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Variational objective of LapDMM Note that we can not
directly incorporate the manifold regularization term of Eq.2
into DMM inference. Because in DMM each document is
supposed to be drawn from a single topic, there are no ex-
plicit K-dimensional topic representations θ for documents.

To address this issue, we resort to the collapsed variational
inference optimization (Teh, Newman, and Welling 2006),
and propose a variational manifold regularization term in-
stead.

Thanks to the conjugate Dirichlet-multinomial design in
DMM, the two distributions θ and φ can be marginalized
out. We then define a mean-field variational distribution with
respect to the topic assignment z of documents,

q(z) =

D∏
d=1

q (zd|γd), (3)

where each q(zd|γd) is a multinomial distribution with
a K-dimensional variational parameter vector γd, i.e.,∑K

k=1 γdk = 1. Given a short text collection S, we train
DMM by maximizing the following variational objective
with respect to γ:

L(γ) = Eq(z) [log p (S, z|α, β)− log q (z)] (4)

Since each document-specific variational distribution
q(zd|γd) is used as an approximation to the latent topic rep-
resentation of the current document, we can define a varia-
tional manifold regularization term on q(z) to achieve man-
ifold constraints. That is, we re-write the manifold regular-
ization (i.e., Eq.2) by replacing θ with the K-dimensional
variational parameter γ as follows:

R(γ) =
1

2

K∑
k=1

D∑
i,j=1

(γik − γjk)
2
Wij (5)

By combining Eq.4 and Eq.5, we reach the final regular-
ized variational objective of LapDMM:

L̂(γ) =
1

D
L(γ)− λR(γ), (6)

where λ ∈ [0, 1] is a regularization parameter.

Optimization
We use a double-loop optimization procedure to maximize
the objective of LapDMM L̂(γ) of Eq.6. In the outer iter-
ation, we optimize γ by maximizing the first term of Eq.6,
i.e., the original variational objective of DMM; in the inner
iteration, we use the Newton-Raphson method to update γ
by minimizing the second term of Eq.6, i.e., the variational
manifold regularization, until the value of L̂(γ) decreases.
Due to the space limitation, we omit derivation details, and
directly show the update equations.

Outer iteration Actually, the outer update is a standard
step of collapsed variational inference for DMM. Following

(Bishop 2006), the optimum of γ is given by:

γdk ∝ exp
(
Eq(z¬d)

[
log p(S, z¬d, zd = k|α, β

])
∝ exp

(
Eq(z¬d)

[∑
v∈d

Ndv∑
n=1

log
(
β +N¬d

kv + n− 1
)

+ log
(
α+ N̂¬d

k

)
−

Nd∑
n=1

log
(
V β +N¬d

k + n− 1
)])

,(7)

where Ndv is the number of times word v occurring in doc-
ument d; N̂k is the number of documents assigned to topic
k; Nkv and Nk are the number of word v assigned to topic k
and total number of words assigned to topic k, respectively;
the superscript “¬d” means the corresponding variables and
counts with document d excluded.

We can efficiently compute an approximation of Eq.7 us-
ing the first-order Taylor expansion at the expectation values
of number counts in Eq.7:

γdk ∝
(
α+ Eq(z¬d)

[
N̂¬d

k

])

×

∑
v∈d

Ndv∑
n=1

(
β + Eq(z¬d)

[
N¬d

kv

]
+ n− 1

)
Nd∑
n=1

(
V β + Eq(z¬d)

[
N¬d

k

]
+ n− 1

) , (8)

where for example the expectation of N̂¬d
k is

∑D
i 6=d γik, and

the other two expected number counts are similar. We refer
readers to (Asuncion et al. 2009) for more details of this
Taylor expansion approximation.

Inner iteration In the inner iteration, we focus on min-
imizing R(γ). We continue updating γ using Newton-
Raphson iterations as long as the value of the overall ob-
jective L̂(γ) does not decrease (Cai et al. 2008). The update
equation is as follows:

γdk ← γdk − ρ
R′(γdk)

R′′(γdk)

← (1− ρ)γdk + ρ

∑D
i=1 γikWdi∑D
i=1Wdi

, (9)

where ρ ∈ [0, 1] is the learning rate. Note that this update
equation guarantees

∑K
k=1 γdk = 1 for any document d.

Remark: The learning rate ρ can be roughly considered as
a tuning parameter used to balance the two terms in Eq.9.
When ρ = 0, LapDMM is downgraded to the standard
DMM without manifold constraints.

Full algorithm Given the optimum of γ, the point esti-
mates of φ and θ can be computed by:

φkv =
Eq(z)[Nkv] + β

Eq(z)[Nk] + V β
(10)

θk =
Eq(z)[N̂k] + α

D +Kα
(11)

We outline the full optimization process of LapDMM in
Algorithm 1.
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Algorithm 1 Optimization for LapDMM
1: Set model and training parameters, including the num-

ber of nearest neighbors R, the regularization parameter
λ and Newton-Raphson learning rate ρ

2: Construct the document graph
3: Initialize γ randomly and then expected number counts
4: For t = 1, 2, . . . , MaxIter
5: Update γ using Eq.8
6: γ̂ ← γ

7: While
(
L̂(γ) ≤ L̂(γ̂)

)
Do

8: γ ← γ̂
9: Update γ̂ using Eq.9

10: End While
11: Update expected number counts with the current γ
12: End for
13: Compute φ and θ using Eqs.10 and 11

Graph Construction
Before LapDMM training, we need to construct a document
graph, i.e., finding R nearest neighbours for each document
(ref. Eq.1). In this paper, we exploit two ways to measure
distances between document pairs detailed as below:

Measuring document distances in the original term
space Straightforwardly, we employ the popular cosine dis-
tance of documents’ term frequency vectors.

Measuring document distances in a latent semantic
space with word embeddings (Mikolov, tau Yih, and Zweig
2013) In the sparse short text context, semantically related
documents may not contain any same word, so that they
seem far away in the term space. To alleviate this, we em-
ploy the word mover’s distance (WMD) (Kusner et al. 2015)
to measure document distances at the semantic level. The
formulation of WMD of a document pair (di, dj) with an
entropic regularization term (Cuturi 2013) is given by:

Wc (di, dj) = inf
P∈Π(di,dj)

〈P,C〉 − 1

λ′
H(P ) (12)

where di denotes the normalized term frequency vector of
document i that can be considered as a multinomial distri-
bution; Π(di, dj) is the set of the joint distributions of di
and dj ; H(·) denotes the entropy; λ′ is a regularization pa-
rameter1; and C is the distance matrix measured by the co-
sine distances of word embedding pairs (i.e., semantic dis-
tances between words measured by the corresponding word
embeddings). In summary, the WMD actually measures the
optimal (i.e., cheapest) transport from one document to any
other in a semantic space with word embeddings. We can use
the method proposed in (Cuturi 2013) to efficiently optimize
Eq.12 and then obtain the WMD values.

For clarity, we refer to LapDMM using the two document
distances as LapDMMT and LapDMMW, respectively.

Discussion Actually, the document graph construction is
independent of LapDMM, so it can be done off-line. How-

1Following previous studies, in this work we set λ′ to 10.

ever, it computes the distances of all document pairs, requir-
ing O(D2) time. This is computationally expensive, espe-
cially for big datasets and streaming data. Such limitation
not only arises in LapDMM, but also other models with
manifold regularization. We will attempt to alleviate this
problem in the future work.

Related Work
We review recent related works on topic models for short
texts and topic modeling with manifold regularization.

Topic Models for Short Texts
Conventional topic models, such as PLSI and LDA, suffer
from the sparsity problem when facing short texts, because
they are lack of word co-occurrences at the document level.
The models proposed in (Cheng et al. 2014; Zuo, Zhao, and
Xu 2016; Lu et al. 2017) address the sparsity problem by
directly using word co-occurrences at the corpus level. For
example, BTM considers a corpus as a single big document,
and models all the biterms, i.e., word co-occurrence patterns,
extracted from documents. DMM assumes that each docu-
ment is drawn from a single topic. Given the sparse con-
tent of short texts, this assumption is more reasonable, mak-
ing DMM more effective than traditional topic models (Xin
et al. 2011). GPU-DMM and GPU-PDMM (Li et al. 2016;
2017), two extensions of DMM, incorporate a generalized
Pólya urn process into the topic inference process, so that
similar words measured by word embeddings should be
clustered in topics. In contrast to GPU-DMM and GPU-
PDMM, our LapDMM not only captures the semantic infor-
mation of word embeddings, but further considers document
similarities with manifold constraints.

Besides, many other models (Mehrotra et al. 2013) ad-
dress the sparsity problem of short texts by aggregating
them into long pseudo-documents before applying LDA.
Some recent extensions (Quan et al. 2015; Zuo et al. 2016;
Li et al. 2018b) can adaptively aggregate short texts without
using side information, e.g., user ID. Roughly, this kind of
adaptive aggregation-based models is equivalent to an EM-
like iteration process, i.e., clustering short texts (E-step) and
LDA optimization (M-step). In some sense, our LapDMM is
aggregating short texts by linking neighboring documents.
In contrast, LapDMM is safer since it learns topics with the
help of the neighboring document graph, instead of short
text clusters that may be inaccurate.

Topic Modeling with Manifold Regularization
The manifold regularization methodology has been success-
fully used for topic models (Cai et al. 2008; Cai, Wang,
and He 2009; Huh and Fienberg 2010; Du et al. 2015;
Hu et al. 2017; Li et al. 2018a). For example, the authors
of (Cai et al. 2008) incorporate manifold structure informa-
tion, i.e., a manifold regularization term with the Euclidean
distance, into the log-likelihood objective of PLSI (Hofmann
1999). The locally-consistent topic model (Cai, Wang, and
He 2009) uses a manifold term with Kullback-Leibler diver-
gence, instead of the Euclidean distance. The discriminative
topic model (Huh and Fienberg 2010) develops a manifold
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Table 1: Summary of the datasets. D: the number of docu-
ments. V: the number of unique words. AvgD: the average
document length. L: the number of categories.

Dataset D V AvgD L

Trec 5952 8392 4.94 6
Snipptes 12340 30445 17,5 8

StackOverFlow 20000 17996 4.93 20

term that not only pulls neighboring document pairs closer
together, but also separates non-neighboring document pairs
from each other. However, those previous models mainly fo-
cus on modeling normal long texts, therefore they also suffer
from the sparsity problem of extremely short texts.

Experiment
We now present the empirical results of LapDMM on topic
quality, clustering and classification tasks.

Experimental Setup
Dataset We employ three datasets, including Trec2, Snip-
pets3 and StackOverFlow4. The Trec is a question dataset,
consisting of 6 question types. The Snippets dataset was
selected from the results of web search transaction of 8
different domains. The StackOverFlow dataset is a collec-
tion of question titles from 20 different tags. For each one,
we removed the standard stopwords. The statistics of these
datasets are summarized in Table 1.

Baseline model We compare LapDMM against four exist-
ing baseline topic models of short texts. For all models, the
Dirichlet priors α and β are set to 0.1 and 0.01, respectively.
For LapDMM, the parameters are empirically set as: R = 9,
λ = 0.1 and ρ = 0.1. The specific settings of baseline mod-
els are presented as follows:

• DMM. We use collapsed variational inference for model
inference.

• GPU-DMM (Li et al. 2016; 2017): an extension of DMM
with word embeddings. We use the code provided by
its authors5. To compute word similarities, we employ
pre-trained 100-dimensional GloVe6 word embeddings,
trained on Wikipedia + Gigaword. For LapDMM, we use
the same word embeddings to compute WMD values.
Additionally, we haven’t shown the empirical results of
GPU-PDMM, since it have performed almost at the same
level with GPU-DMM in our early experiments.

• Latent topic model (LTM) (Li et al. 2018b): a LDA-
based topic model by adaptively aggregating short texts.
We tune its parameters following the suggestions in the
original paper.

2http://cogcomp.cs.illinois.edu/Data/QA/QC/
3http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
4https://github.com/jacoxu/STC2
5https://github.com/NobodyWHU/GPUDMM
6https://nlp.stanford.edu/projects/glove/

• BTM (Cheng et al. 2014): a topic model of biterms for
short texts. We use the code provided by its authors7.

For all models, we tune their parameters, and report the best
scores in all evaluation tasks.

Evaluation by Topic Quality
This section shows the topic quality evaluation results. We
quantitatively evaluate the topic quality using the topic
coherence (TC) project8 developed by (Roder, Both, and
Hinneburg 2015). This project automatically computes TC
scores by counting co-occurrences of topical top-M words
on a big reference corpus. The intuition is that for a topic,
more co-occurrences between its top words, more semanti-
cally coherent it is.

Table 2 shows the average TC scores of top-10 words of
all models. We have several observations. First, LapDMMW

performs the best among all models, where it ranks the first
in most (i.e., 4/6) settings. LapDMMW beats LapDMMT in
all settings. We argue that is because the WMD can bet-
ter capture similarities between short texts at the semantic
level. Second, LapDMMT is also capable of outputting co-
herent topics. TC scores of LapDMMT are roughly competi-
tive with those of BTM, GPU-DMM and LTM, and it signif-
icantly outperforms BTM on Trec. Finally, we observe that
both versions of LapDMM outperform the standard DMM.
This indicates that the manifold regularizer can effectively
improve the quality of learned topics.

Evaluation by Clustering
We compare LapDMM against baseline models by cluster-
ing. Here, each topic corresponds to a cluster, and the num-
ber of topics is set to the true category number of datasets.
For LapDMM, we assign a document d to the largest topic
in its variational approximation q(zd|γd).

We employ two clustering metrics, i.e., accuracy (ACC)
and normalized mutual information (NMI). For a document
d, its true label and estimated cluster are respectively de-
noted to be yd and cd. Then the ACC score can be computed
by:

ACC =

∑D
d=1 I (yd,map (cd))

D
, (13)

where I (·) denotes the indicator function; and map (cd) is
the mapping function between cd and yd, computed by the
Hungarian algorithm. Besides, let Y and C be the true la-
bel set and the estimated cluster label set of a given dataset,
respectively. The NMI score can be computed by:

NMI (Y,C) =
MI (Y,C)√
H (Y )H (C)

, (14)

where MI (Y,C) denotes the mutual information of Y and
C; and H (·) denotes the entropy.

Table 3 shows the average scores of 10 independent runs.
Surprisingly, we see that LapDMM significantly outper-
forms the baseline models. For example, the performance

7http://code.google.com/p/btm/
8https://github.com/AKSW/Palmetto/wiki/Coherences. The

setting of “CV ” is used.
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Table 2: Results of topic coherence (mean±std). “‡” means that the gain of LapDMM is statistically significant at 0.01 level.
Dataset Topic LapDMMT LapDMMW DMM BTM GPU-DMM LTM

Trec K=25 0.46±0.08 0.48±0.06 0.44±0.07‡ 0.35±0.04‡ 0.47±0.07 0.48±0.07
K=50 0.47±0.08 0.49±0.08 0.46±0.07‡ 0.36±0.06‡ 0.47±0.07 0.48±0.07

Snippets K=25 0.45±0.07 0.46±0.08 0.43±0.07‡ 0.43±0.06‡ 0.43±0.06‡ 0.47±0.07
K=50 0.45±0.09 0.47±0.08 0.43±0.09‡ 0.45±0.06‡ 0.43±0.08‡ 0.45±0.08

StackOverFlow K=25 0.37±0.07 0.39±0.09 0.37±0.08‡ 0.40±0.07 0.38±0.07 0.36±0.08‡

K=50 0.36±0.09 0.37±0.08 0.34±0.08‡ 0.36±0.07 0.35±0.06‡ 0.35±0.07‡

Table 3: Clustering results of NMI and ACC (mean±std). “‡” means that the gain of LapDMM is statistically significant at 0.01
level.

Dataset Topic LapDMMT LapDMMW DMM BTM GPU-DMM LTM

Trec NMI 0.292±0.02 0.288±0.04 0.125±0.06‡ 0.109±0.05‡ 0.127±0.04‡ 0.114±0.06‡

ACC 0.499±0.05 0.484±0.05 0.355±0.05‡ 0.337±0.04‡ 0.352±0.03‡ 0.348±0.05‡

Snippets NMI 0.634±0.04 0.653±0.01 0.526±0.05‡ 0.521±0.02‡ 0.544±0.02‡ 0.539±0.02‡

ACC 0.761±0.06 0.793±0.03 0.698±0.04‡ 0.683±0.04‡ 0.723±0.02‡ 0.705±0.05‡

StackOverFlow NMI 0.641±0.01 0.645±0.02 0.457±0.05‡ 0.429±0.02‡ 0.439±0.01‡ 0.442±0.01‡

ACC 0.728±0.02 0.710±0.05 0.494±0.03‡ 0.472±0.01‡ 0.482±0.03‡ 0.498±0.02‡

gain of NMI is about 0.15∼0.17 on Trec and the gain of
ACC is even about 0.23∼0.25 on StackOverFlow. The pos-
sible reason is that the manifold regularizer effectively re-
mains the local manifold structures, i.e., pulling closer short
texts together at the topic level. This is obviously benefit to
unsupervised learning tasks such as clustering. Our result is
consistent with the previous study of (Cai et al. 2008), where
it has shown that the manifold regularization scheme signif-
icantly improved the clustering performance of PLSI.

Evaluation by Classification
We compare LapDMM against baseline models by classi-
fication. For all models, we train topical features (i.e., the
SW representation described in (Li et al. 2016)) to represent
short texts, and then feed them into SVMs.9 The classifica-
tion accuracy is computed by 5-fold cross validation. In the
experiment, the topic number has been set to 40 and 60.

Table 4 shows the average classification accuracies of 10
independent runs. Fortunately, we again observe significant
improvement of LapDMM just as observations in clustering
experiments. For example, the accuracy scores of LapDMM
are about 0.17 and 0.09 higher than those of baseline mod-
els on Trec and StackOverFlow, respectively. That is to say,
our LapDMM can output more discriminative topical rep-
resentations, leading to better classification performance.
Besides, we observe that LapDMMW performs better than
LapDMMT, especially for Trec with 40 topics. This again
implies that the WMD is a better distance measurement for
short texts.

Parameter Evaluation
In this subsection, we empirically evaluate two crucial pa-
rameters of LapDMM, including the nearest neighbor num-

9http://scikit-learn.org/

ber R and Newton learning rate ρ in the inner iteration. To
this end, for each dataset we show the clustering and classi-
fication10 scores of LapDMMW.

We first evaluate the impact of different R values over
the set {1, 2, · · · , 10}. The results are shown in Figure 1.
Roughly, the overall trend is that the performance becomes
better as the value of R increases, e.g., the classification ac-
curacy of Trec. The best scores are achieved at R=8 and 9 in
most cases. The clustering ACC score seems a bit unsmooth,
however R=9 also performs the best. The results tell us that
using more nearest neighbors in manifolds is helpful. We
thus fix R=9 in our experiments, and suggest to set a rela-
tively larger value of R in practice.

Then, we evaluate the impact of ρ with different values
over the set {0.1, 0.2, · · · , 0.9}. The experimental results are
shown in Figure 2. Overall, we argue that LapDMM is in-
sensitive to ρ, and smaller values of ρ perform a little better.
In some sense, the learning rate ρ describes the importance
degree of the manifold regularizer during model training. A
smaller value of ρ is safer when we cannot accurately find
the nearest neighbors of short texts. Thus we use ρ = 0.1 as
the default setting of LapDMM.

Conclusion
In this paper, we develop a novel LapDMM topic model for
short texts. which incorporates a variational manifold regu-
larization term into DMM. That is, we use collapsed varia-
tional inference to train DMM with a manifold regulariza-
tion term with respect to variational distributions. To con-
struct document graph for manifold constraints, we employ
the WMD to measure semantic similarities between short
texts. Extensive experiments show that LapDMM performs
significantly better than the state-of-the-art baseline models.

10For classification, we show results of K = 60.
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Table 4: Results of classification accuracy (mean±std). “‡” means that the gain of LapDMM is statistically significant at 0.01
level.

Dataset Topic LapDMMT LapDMMW DMM BTM GPU-DMM LTM

Trec K=40 0.772±0.01 0.844±0.01 0.676±0.02‡ 0.671±0.02‡ 0.688±0.01‡ 0.681±0.01‡

K=60 0.852±0.01 0.852±0.01 0.696±0.02‡ 0.676±0.01‡ 0.703±0.01‡ 0.712±0.01‡

Snippets K=40 0.897±0.01 0.901±0.01 0.860±0.01‡ 0.816±0.01‡ 0.860±0.02‡ 0.825±0.01‡

K=60 0.901±0.01 0.908±0.01 0.867±0.01‡ 0.828±0.02‡ 0.868±0.01‡ 0.833±0.01‡

StackOverFlow K=40 0.801±0.01 0.809±0.01 0.714±0.01‡ 0.692±0.01‡ 0.702±0.01‡ 0.711±0.01‡

K=60 0.796±0.01 0.805±0.01 0.729±0.01‡ 0.703±0.01‡ 0.716±0.01‡ 0.709±0.01‡

Figure 1: Evaluation results of different R values

Figure 2: Evaluation results of different ρ values

An limitation of LapDMM is that the document graph
construction may be time-consuming, especially for big
datasets and streaming data. We plan to investigate this prob-
lem in the future work.
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