
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Finding All Bayesian Network Structures within a Factor of Optimal

Zhenyu A. Liao,1 Charupriya Sharma,1 James Cussens,2 Peter van Beek1

1David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
2Department of Computer Science, University of York, York, United Kingdom
{z6liao, c9sharma, vanbeek}@uwaterloo.ca, james.cussens@york.ac.uk

Abstract
A Bayesian network is a widely used probabilistic graphical
model with applications in knowledge discovery and predic-
tion. Learning a Bayesian network (BN) from data can be cast
as an optimization problem using the well-known score-and-
search approach. However, selecting a single model (i.e., the
best scoring BN) can be misleading or may not achieve the
best possible accuracy. An alternative to committing to a sin-
gle model is to perform some form of Bayesian or frequentist
model averaging, where the space of possible BNs is sam-
pled or enumerated in some fashion. Unfortunately, existing
approaches for model averaging either severely restrict the
structure of the Bayesian network or have only been shown
to scale to networks with fewer than 30 random variables. In
this paper, we propose a novel approach to model averaging
inspired by performance guarantees in approximation algo-
rithms. Our approach has two primary advantages. First, our
approach only considers credible models in that they are op-
timal or near-optimal in score. Second, our approach is more
efficient and scales to significantly larger Bayesian networks
than existing approaches.

Introduction
A Bayesian network is a widely used probabilistic graphical
model with applications in knowledge discovery, explana-
tion, and prediction (Darwiche 2009, Koller and Friedman
2009). A Bayesian network (BN) can be learned from data
using the well-known score-and-search approach, where a
scoring function is used to evaluate the fit of a proposed BN
to the data, and the space of directed acyclic graphs (DAGs)
is searched for the best-scoring BN. However, selecting a
single model (i.e., the best-scoring BN) may not always be
the best choice. When one is using BNs for knowledge dis-
covery and explanation with limited data, selecting a single
model may be misleading as there may be many other BNs
that have scores that are very close to optimal and the pos-
terior probability of even the best-scoring BN is often close
to zero. As well, when one is using BNs for prediction, se-
lecting a single model may not achieve the best possible ac-
curacy.

An alternative to committing to a single model is to per-
form some form of Bayesian or frequentist model averag-
ing (Claeskens and Hjort 2008, Hoeting et al. 1999, Koller

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Friedman 2009). In the context of knowledge discovery,
Bayesian model averaging allows one to estimate, for exam-
ple, the posterior probability that an edge is present, rather
than just knowing whether the edge is present in the best-
scoring network. Previous work has proposed Bayesian and
frequentist model averaging approaches to network struc-
ture learning that enumerate the space of all possible DAGs
(Koivisto and Sood 2004), sample from the space of all pos-
sible DAGs (He, Tian, and Wu 2016, Madigan and Raftery
1994), consider the space of all DAGs consistent with a
given ordering of the random variables (Buntine 1991, Dash
and Cooper 2004), consider the space of tree-structured or
other restricted DAGs (Madigan and Raftery 1994, Meilă
and Jaakkola 2000), and consider only the k-best scoring
DAGs for some given value of k (Chen, Choi, and Dar-
wiche 2015, Chen, Choi, and Darwiche 2016, Chen, Dar-
wiche, and Choi 2018, Chen and Tian 2014, He, Tian, and
Wu 2016, Tian, He, and Ram 2010). Unfortunately, these
existing approaches either severely restrict the structure of
the Bayesian network, such as only allowing tree-structured
networks or only considering a single ordering, or have only
been shown to scale to small Bayesian networks with fewer
than 30 random variables.

In this paper, we propose a novel approach to model av-
eraging for BN structure learning that is inspired by perfor-
mance guarantees in approximation algorithms. Let OPT be
the score of the optimal BN and assume without loss of gen-
erality that the optimization problem is to find the minimum-
score BN. Instead of finding the k-best networks for some
fixed value of k, we propose to find all Bayesian networks G
that are within a factor ρ of optimal; i.e.,

OPT ≤ score(G) ≤ ρ ·OPT , (1)

for some given value of ρ ≥ 1, or equivalently,

OPT ≤ score(G) ≤ OPT + ε, (2)

for ε = (ρ − 1) · OPT . Instead of choosing arbitrary val-
ues for ε, ε ≥ 0, we show that for the two scoring functions
BIC/MDL and BDeu, a good choice for the value of ε is
closely related to the Bayes factor, a model selection crite-
rion summarized in (Kass and Raftery 1995).

Our approach has two primary advantages. First, our ap-
proach only considers credible models in that they are op-
timal or near-optimal in score. Approaches that enumerate

7892

or sample from the space of all possible models consider
DAGs with scores that can be far from optimal; for exam-
ple, for the BIC/MDL scoring function the ratio of worst-
scoring to best-scoring network can be four or five orders of
magnitude1. A similar but more restricted case can be made
against the approach which finds the k-best networks since
there is no a priori way to know how to set the parame-
ter k such that only credible networks are considered. Sec-
ond, and perhaps most importantly, our approach is signifi-
cantly more efficient and scales to Bayesian networks with
almost 60 random variables. Existing methods for finding
the optimal Bayesian network structure, e.g., (Bartlett and
Cussens 2013, van Beek and Hoffmann 2015) rely heav-
ily for their success on a significant body of pruning rules
that remove from consideration many candidate parent sets
both before and during the search. We show that many of
these pruning rules can be naturally generalized to preserve
the Bayesian networks that are within a factor of optimal.
We modify GOBNILP (Bartlett and Cussens 2013), a state-
of-the-art method for finding an optimal Bayesian network,
to implement our generalized pruning rules and to find all
near-optimal networks. We show in an experimental eval-
uation that the modified GOBNILP scales to significantly
larger networks without resorting to restricting the structure
of the Bayesian networks that are learned.

Background
In this section, we briefly review the necessary background
in Bayesian networks and scoring functions, and define
the Bayesian network structure learning problem (for more
background on these topics see (Darwiche 2009, Koller and
Friedman 2009)).

Bayesian Networks
A Bayesian network (BN) is a probabilistic graphical model
that consists of a labeled directed acyclic graph (DAG),
G = (V ,E) in which the vertices V = {V1, . . . , Vn} cor-
respond to n random variables, the edges E represent di-
rect influence of one random variable on another, and each
vertex Vi is labeled with a conditional probability distribu-
tion P (Vi | Πi) that specifies the dependence of the variable
Vi on its set of parents Πi in the DAG. A BN can alterna-
tively be viewed as a factorized representation of the joint
probability distribution over the random variables and as an
encoding of the Markov condition on the nodes; i.e., given
its parents, every variable is conditionally independent of its
non-descendents.

Each random variable Vi has state space Ωi = {vi1, . . . ,
viri}, where ri is the cardinality of Ωi and typically ri ≥ 2.
Each Πi has state space ΩΠi = {πi1, . . . , πirΠi

}. We use
rΠi to refer to the number of possible instantiations of the
parent set Πi of Vi (see Figure 1). The set θ = {θijk} for
all i = {1, . . . , n}, j = {1, . . . , rΠi} and k = {1, . . . , ri}
represents parameters in G where each element in θ, θijk =
P (vik | πij).

1Madigan and Raftery (1994) deem such models discredited
when they make a similar argument for not considering models
whose probability is greater than a factor from the most probable.

E F

B

G H

C

A

Figure 1: Example Bayesian network: VariablesA,B, F and
G have the state space {0, 1}. The variables C and E have
state space {0, 1, 3} andH has state space {2, 4} Thus rA =
rB = rF = rG = 2, rC = rE = 3 and rH = 2. Consider
the parent set of G, ΠG = {B,C} The state space of ΠG

is ΩΠG
= {{0, 0}, {0, 1}, {0, 3}, {1, 0}, {1, 1}, {1, 3}}. and

rΠG
= 6.

The predominant method for Bayesian network structure
learning (BNSL) from data is the score-and-search method.
Let I = {I1, . . . , IN} be a dataset where each instance Ii is
an n-tuple that is a complete instantiation of the variables in
V . A scoring function σ(G | I) assigns a real value mea-
suring the quality of G = (V,E) given the data I . Without
loss of generality, we assume that a lower score represents a
better quality network structure and omit I when the data is
clear from context.

Definition 1. Given a non-negative constant ε and a dataset
I = {I1, . . . , IN}, a credible network G is a network that
has a score σ(G) such that OPT ≤ σ(G) ≤ OPT + ε,
where OPT is the score of the optimal Bayesian network.

In this paper, we focus on solving a problem we call the
ε-Bayesian Network Structure Learning (εBNSL). Note that
the BNSL for the optimal network(s) is a special case of
εBNSL where ε = 0.

Definition 2. Given a non-negative constant ε, a dataset
I = {I1, . . . , IN} over random variables V = {V1, . . . , Vn}
and a scoring function σ, the ε-Bayesian Network Structure
Learning (εBNSL) problem is to find all credible networks.

Scoring Functions
Scoring functions usually balance goodness of fit to the
data with a penalty term for model complexity to avoid
overfitting. Common scoring functions include BIC/MDL
(Lam and Bacchus 1994, Schwarz 1978) and BDeu (Bun-
tine 1991, Heckerman, Geiger, and Chickering 1995). An
important property of these (and most) scoring functions is
decomposability, where the score of the entire network σ(G)
can be rewritten as the sum of local scores associated to each
vertex

∑n
i=1 σ(Vi,Πi) that only depends on Vi and its parent

set Πi in G . The local score is abbreviated below as σ(Πi)
when the local node Vi is clear from context.

Pruning techniques can be used to reduce the number of
candidate parent sets that need to be considered, but in the
worst-case the number of candidate parent sets for each vari-
able Vi is exponential in n, where n is the number of vertices
in the DAG.

7893

In this work, we focus on the Bayesian Information Cri-
terion (BIC) and the Bayesian Dirichlet, specifically BDeu,
scoring functions. The BIC scoring function in this paper is
defined as,

BIC : σ(G) = −max
θ
LG,I(θ) + t(G) · w.

Here, w = logN
2 , t(G) is a penalty term and LG,I(θ) is the

log likelihood, given by,

LG,I(θ) =

n∑
i=1

rΠi∑
j=1

ri∑
k=1

log θ
nijk

ijk ,

where nijk is the number of instances in I where vik and πij
co-occur. As the BIC function is decomposable, we can as-
sociate a score to Πi, a candidate parent set of Vi as follows,

BIC : σ(Πi) = −max
θi

L(θi) + t(Πi) · w.

Here, L(θi) =
∑rΠi
j=1

∑ri
k=1 nijk log θijk and t(Πi) =

rΠi
(ri − 1). The BDeu scoring function in this paper is de-

fined as,

BDeu : σ(G) = −
n∑
i=1

rΠi∑
j=1

log
Γ(α)

Γ(α+ nij)

−
n∑
i=1

rΠi∑
j=1

ri∑
k=1

log
Γ(αri + nijk)

Γ(αri)
,

where α is the equivalent sample size and nij =
∑
k nijk.

As the BDeu function is decomposable, we can associate a
score to Πi, a candidate parent set of Vi as follows,

BDeu : σ(Πi) = −
rΠi∑
j=1

log
Γ(α)

Γ(α+ nij)

−
rΠi∑
j=1

ri∑
k=1

log
Γ(αri + nijk)

Γ(αri)
.

The Bayes Factor
In this section, we show that a good choice for the value of ε
for the εBNSL problem is closely related to the Bayes factor
(BF), a model selection criterion summarized in (Kass and
Raftery 1995).

The BF was proposed by Jeffreys as an alternative to sig-
nificance test (Jeffreys 1967). It was thoroughly examined as
a practical model selection tool in (Kass and Raftery 1995).
Let G0 and G1 be DAGs (BNs) in the set of all DAGs G
defined over V. The BF in the context of BNs is defined as,

BF (G0,G1) =
P (I | G0)

P (I | G1)
,

namely the odds of the probability of the data predicted by
network G0 and G1. The actual calculation of the BF often
relies on Bayes’ Theorem as follows,

P (G0 | I)

P (G1 | I)
=
P (I | G0)

P (I | G1)
· P (G0)

P (G1)
=
P (I,G0)

P (I,G1)
.

Since it is typical to assume the prior over models is uniform
in εBNSL, the BF can then be obtained using either P (G |
I) or P (I,G)∀G ∈ G. We use those two representations to
show how BIC and BDeu scores relate to the BF.

Using Laplace approximation and other simplifications in
(Ripley 1996), Ripley derived the following approximation
to the logarithm of the marginal likelihood for network G (a
similar derivation is given in (Claeskens and Hjort 2008)),

logP (I | G) =LG,I(θ̂)− t(G) · logN

2
+ t(G) · log 2π

2

− 1

2
log |JG,I(θ̂)|+ logP (θ̂ | G),

where θ̂ is the maximum likelihood estimate of model pa-
rameters and JG,I(θ̂) is the Hessian matrix evaluated at θ̂. It
follows that,

logP (I | G) = −BIC(I,G) +O(1).

The above equation shows that the BIC score was designed
to approximate the log marginal likelihood. If we drop the
lower-order term, we can then obtain the following equation,

BIC(I,G1)−BIC(I,G0) = log
P (I | G0)

P (I | G1)

= logBF (G0,G1).

It has been indicated in (Kass and Raftery 1995) that as
N → ∞, the difference of the two BIC scores, dubbed the
Schwarz criterion, approaches the true value of logBF such
that,

BIC(I,G1)−BIC(I,G0)− logBF (G0,G1)

logBF (G0,G1)
→ 0.

Therefore, the difference of two BIC scores can be used as
a rough approximation to logBF . Note that some papers
define BIC to be twice as large as the BIC defined in this
paper, but the above relationship still holds albeit with twice
the logarithm of the BF.

Similarly, the difference of the BDeu scores can be ex-
pressed in terms of the BF. In fact, the BDeu score is the log
marginal likelihood where there are Dirichlet distributions
over the parameters (Buntine 1991, Heckerman, Geiger, and
Chickering 1995); i.e.,

logP (I,G) = −BDeu(I,G),

and thus,

BDeu(I,G1)−BDeu(I,G0) = log
P (I,G0)

P (I,G1)

= logBF (G0,G1).

The above results are consistent with the observation in
(Kass and Raftery 1995) that the logBF can be interpreted
as a measure for the relative success of two models at pre-
dicting data, sometimes referred to as the “weight of evi-
dence”, without assuming either model is true. The desired
value of BF, however, is often specific to a study and de-
termined with domain knowledge, e.g., a BF of 1000 is
more appropriate in forensic science. Heckerman, Geiger,

7894

and Chickering (1995) proposed the following interpreting
scale for the BF: a BF of 1 to 3 bears only anecdotal evi-
dence, a BF of 3 to 20 suggests some positive evidence that
G0 is better, a BF of 20 to 150 suggests strong evidence in
favor of G0, and a BF greater than 150 indicates very strong
evidence. If we deem 20 to be the desired BF in εBNSL,
i.e., G0 = G∗ and ε = log(20), then any network with a
score less than log(20) away from the optimal score would
be credible, otherwise it would be discredited. Note that the
ratio of posterior probabilities was defined as λ in (Tian, He,
and Ram 2010, Chen and Tian 2014) and was used as a met-
ric to assess arbitrary values of k in finding the k-best net-
works.

Finally, the εBNSL problem using the BIC or BDeu scor-
ing function given a desired BF can be written as,

OPT ≤ score(G) ≤ OPT + logBF. (3)

Pruning Rules for Candidate Parent Sets
To find all near-optimal BNs given a BF, the local score
σ(Πi) for each candidate parent set Πi ⊆ 2V−{Vi} and each
random variable Vi must be computed. As this is very cost
prohibitive, the search space of candidate parent sets can be
pruned, provided that global optimality constraints are not
violated.

A candidate parent set Πi can be safely pruned given a
non-negative constant ε ∈ R+ if Πi cannot be the parent set
of Vi in any network in the set of credible networks. Note
that for ε = 0, the set of credible networks just contains the
optimal network(s). We discuss the original rules and their
generalization below and proofs for them can be found in
the extended version.

Teyssier and Koller (2005) gave a pruning rule for all de-
composable scoring functions. This rule compares the score
of a candidate parent set to those of its subsets. We give a
relaxed version of the rule.
Lemma 1. Given a vertex variable Vj , candidate parent sets
Πj and Π′j , and some ε ∈ R+, if Πj ⊂ Π′j and σ(Πj) + ε <
σ(Π′j), Π′j can be safely pruned.

Pruning with BIC/MDL Score
A pruning rule comparing the BIC score and penalty asso-
ciated to a candidate parent set to those of its subsets was
introduced in (de Campos and Ji 2011). The following theo-
rem gives a relaxed version of that rule.
Theorem 2. Given a vertex variable Vj , candidate parent
sets Πj and Π′j , and some ε ∈ R+, if Πj ⊂ Π′j and σ(Πj)−
t(Π′j) + ε < 0, Π′j and all supersets of Π′j can be safely
pruned if σ is the BIC function.

Another pruning rule for BIC appears in (de Campos and
Ji 2011). This provides a bound on the number of possible
instantiations of subsets of a candidate parent set. The fol-
lowing theorem relaxes that rule.
Theorem 3. Given a vertex variable Vi, and a candidate
parent set Πi such that rΠi

> N
w

log ri
ri−1 + ε for some ε ∈ R+,

if Πi (Π′i , then Π′i can be safely pruned if σ is the BIC
scoring function.

The following corollary of Theorem 3 gives a useful upper
bound on the size of a candidate parent set.
Corollary 4. Given a vertex variable Vi and candidate par-
ent set Πi, if Πi has more than dlog2(N + ε)e elements, for
some ε ∈ R+, Πi can be safely pruned if σ is the BIC scor-
ing function.

Corollary 4 provides an upper-bound on the size of parent
sets based solely on the sample size. The following table
summarizes such an upper-bound given different amounts
of data N and a BF of 20.

N 100 500 103 5× 103 104 5× 104 105

|Π| 10 12 13 16 17 19 20

The entropy of a candidate parent set is also a useful mea-
sure for pruning. A pruning rule, given by (de Campos et
al. 2018), provides an upper bound on conditional entropy
of candidate parent sets and their subsets. We give a relaxed
version of their rule. First, we note that entropy for a vertex
variable Vi is given by,

H(Vi) = −
ri∑
k=1

nik
N

log
nik
N
,

where nik represents how many instances in the dataset con-
tain vik, where vik is an element in the state space Ωi of Vi.
Similarly, entropy for a candidate parent set Πi is given by,

H(Πi) = −
rΠi∑
j=1

nij
N

log
nij
N
.

Conditional information is given by,

H(X | Y) = H(X ∪ Y)−H(Y).

Theorem 5. Given a vertex variable Vi, and candidate par-
ent set Πi, let Vj /∈ Πi such thatN ·min{H(Vi | Πi), H(Vj |
Πi)} ≥ (1− rj) · t(Πi) + ε for some ε ∈ R+. Then the can-
didate parent set Π′i = Πi ∪ {Vj} and all its supersets can
be safely pruned if σ is the BIC scoring function.

Pruning with BDeu Score
A pruning rule for the BDeu scoring function appears in (de
Campos et al. 2018) and a more general version is included
in (Cussens and Bartlett 2012). Here, we present a relaxed
version of the rule in (Cussens and Bartlett 2012).
Theorem 6. Given a vertex variable Vi and candidate par-
ent sets Πi and Π′i such that Πi ⊂ Π′i and Πi 6= Π′i, let
r+
i (Π′i) be the number of positive counts in the contingency

table for Π′i. If σ(Πi) + ε < r+
i (Π′i) log ri, for some ε ∈ R+

then Π′i and the supersets of Π′i can be safely pruned if σ is
the BDeu scoring function..

Experimental Evaluation
In this section, we evaluate the proposed BF based method
and compare its performance with published k-best solvers.

Our proposed method is more memory efficient compar-
ing to the k-best based solvers in BDeu scoring and often

7895

Data n N T3 (s) |G3| |M3| T20 (s) |G20| |M20| T150 (s) |G150| |M150|
tic tac toe 10 958 1.9 192 64 2.0 192 64 3.3 544 160
wine 14 178 4.1 308 51 24.9 3,449 576 143.7 26,197 4,497
adult 14 32,561 17.5 324 162 45.1 1,140 570 55.7 2,281 1,137
nltcs 16 3,236 53.8 240 120 201.7 1,200 600 1,005.1 4,606 2,303
msnbc 17 58,265 3,483.0 24 24 7,146.9 960 504 8,821.4 1,938 1,026
letter 17 20,000 OT — — OT — — OT — —
voting 17 435 1.3 27 2 4.0 441 33 14.3 2,222 170
zoo 17 101 8.1 49 13 21.9 1,111 270 299.3 21,683 5,392
hepatitis 20 155 7.1 580 105 513.3 87,169 15,358 1,452.8 150,000 49,269
parkinsons 23 195 30.7 1,088 336 3,165.9 150,000 39,720 4,534.3 150,000 116,206
sensors 25 5456 OT — — OT — — OT — —
autos 26 159 95.0 560 200 2,382.8 50,374 17,790 6,666.9 150,000 54,579
insurance 27 1,000 49.8 8,226 2,062 244.9 104,870 25,580 414.5 148,925 36,072
horse 28 300 18.8 1,643 246 1,358.8 150,000 28,186 1,962.5 150,000 69,309
flag 29 194 16.1 773 169 4,051.9 150,000 39,428 5,560.9 150,000 122,185
wdbc 31 569 396.1 398 107 10,144.2 28,424 8,182 45,938.2 150,000 54,846
mildew 35 1000 1.2 1,026 2 1.2 1,026 2 2.1 2,052 4
soybean 36 266 7,729.4 150,000 150,000 16,096.8 150,000 62,704 8,893.5 150,000 118,368
alarm 37 1000 6.3 1,508 122 684.2 123,352 9,323 2,258.4 150,000 8,484
bands 39 277 100.9 7,092 810 2,032.6 150,000 44,899 16,974.8 150,000 95,774
spectf 45 267 432.4 27,770 4,510 7,425.2 150,000 51,871 19,664.8 150,000 63,965
sponge 45 76 16.8 1,102 65 1,301.0 146,097 7,905 1,254.4 150,000 90,005
barley 48 1000 0.8 182 1 0.8 364 2 1.3 1,274 5
hailfinder 56 100 171.5 150,000 20 149.4 150,000 748 214.6 150,000 294
hailfinder 56 500 286.1 150,000 30,720 314.1 150,000 18,432 217.3 150,000 24,576
lung cancer 57 32 584.3 150,000 40,621 966.6 150,000 79,680 2,739.7 150,000 48,236

Table 1: The search time T , the number of collected networks |G| and the number of MECs |M| in the collected networks at
BF = 3, 20 and 150 using BIC, where n is the number of random variables in the dataset, N is the number of instances in the
dataset and OT = Out of Time.

collects more networks in a shorter period of time. With the
pruning rules generalized above, our method can scale up to
datasets with 57 variables in BIC scoring, whereas the pre-
vious best results are reported on a network of 29 variables
using the k-best approach with score pruning (Chen, Dar-
wiche, and Choi 2018).

The datasets are obtained from the UCI Machine Learn-
ing Repository (Dheeru and Karra Taniskidou 2017) and the
Bayesian Network Repository2. Some of the complete local
scoring files are downloaded from the GOBNILP website3

and are used for the k-best related experiments only. Since
not all solvers in the k-best experiments can take in scoring
files, we exclude the time to compute local scores from the
comparison. Both BIC/MDL (Schwarz 1978, Lam and Bac-
chus 1994) and BDeu (Buntine 1991, Heckerman, Geiger,
and Chickering 1995) scoring functions are used where ap-
plicable. All experiments are conducted on computers with
2.2 GHz Intel E7-4850V3 processors. Each experiment is
limited to 64 GB of memory and 24 hours of CPU time.

The Bayes Factor Approach

We modified the development version (9c9f3e6) of GOB-
NILP, referred below as GOBNILP dev, to apply pruning
rules presented above during scoring and supplied appropri-

2http://www.bnlearn.com/bnrepository/
3https://www.cs.york.ac.uk/aig/sw/gobnilp/#benchmarks

ate parameter settings for collecting near-optimal networks4.
The code is compiled with SCIP 6.0.0 and CPLEX 12.8.0.
GOBNILP extends the SCIP Optimization Suite (Gleixner
et al. 2018) by adding a constraint handler for handling the
acyclicity constraint for DAGs. If multiple BNs are required
GOBNILP dev just calls SCIP to ask it to collect feasible
solutions. In this mode, when SCIP finds a solution, the so-
lution is stored, a constraint is added to render that solution
infeasible and the search continues. This differs from (and is
much more efficient than) GOBNILP’s current method for
finding k-best BNs where an entirely new search is started
each time a new BN is found. A recent version of SCIP has
a separate “reoptimization” method which might allow bet-
ter k-best performance for GOBNILP but we do not explore
that here. By default when SCIP is asked to collect solutions
it turns off all cutting plane algorithms. This led to very poor
GOBNILP performance since GOBNILP relies on cutting
plane generation. Therefore, this default setting is overrid-
den in GOBNILP dev to allow cutting planes when collect-
ing solutions. To find only solutions with objective no worse
than (OPT + ε), SCIP’s SCIPsetObjlimit function is
used. Note that, for efficiency reasons, this is not effected by
adding a linear constraint.

We first use GOBNILP dev to find the optimal scores
since GOBNILP dev takes objective limit (OPT + ε) for
enumerating feasible networks. Then all networks falling

4The modified code is available at: https://www.cs.york.ac.uk/
aig/sw/gobnilp/

7896

Data n N Tk (s) k TEC (s) |Gk| T20 (s) |G20| |M20|

tic tac toe 10 958
0.2 10 0.5 67

0.6 152 242.8 100 6.0 673
70.7 1,000 78.5 7,604

wine 14 178
3.4 10 12.0 60

35.9 8,734 6,26285.0 100 168.4 448
3,420.4 1,000 3,064.4 4,142

adult 14 32,561
3.3 10 633.5 68

9.3 792 1973.6 100 63,328.9 1,340
2,122.8 1,000 OT —

nltcs 16 3,236
11.8 10 47,338.4 552

125.5 652 326406.6 100 OT —
13,224.6 1,000 OT —

msnbc 17 58,265 ES — ES — 4,018.9 24 24

letter 17 20,000
26.0 10 18,788.0 200

56,344.8 20 10909.8 100 OT —
41,503.9 1,000 OT —

voting 17 435
34.1 10 101.9 30

6.0 621 2071,125.7 100 1,829.2 3,392
38,516.2 1,000 42,415.3 3,665

zoo 17 101
33.5 10 99.8 52

8,418.8 29,073 6,7611,041.7 100 1,843.4 100
41,412.1 1,000 OT —

hepatitis 20 155
351.2 10 872.3 89

441.4 28,024 3,53413,560.3 100 20,244.7 842
OT 1,000 OT —

parkinsons 23 195
3,908.2 10 OT —

1,515.9 150,000 42,448OT 100 OT —
OT 1,000 OT —

autos 26 159 OM 1 OM — OT — —
insurance 27 1,000 OM 1 OM — 8.3 1,081 133

Table 2: The search time T and the number of collected networks k, |Gk| and |G20| for KBest, KbestEC and GOBNILP dev (BF
= 20) using BDeu, where n is the number of random variables in the dataset, N is the number of instances in the dataset, OM
= Out of Memory, OT = Out of Time and ES = Error in Scoring. Note that |Gk| is the number of DAGs covered by the k-best
MECs in KBestEC and |M20| is the number of MECs in the networks collected by GOBNILP dev.

into the limit are collected with a counting limit of 150,000.
Finally the collected networks are categorized into Markov
equivalence classes (MECs), where two networks belong
to the same MEC iff they have the same skeleton and v-
structures (Verma and Pearl 1990). The proposed approach
is tested on datasets with up to 57 variables. The search time
T , the number of collected networks |G| and the number of
MECsM in the collected networks at BF = 3, 20 and 150
using BIC are reported in Table 1, where n is the number
of random variables in the dataset and N is the number of
instances in the dataset. The three thresholds are chosen ac-
cording to the interpreting scale suggested by (Heckerman,
Geiger, and Chickering 1995) where 3 marks the difference
between anecdotal and positive evidence, 20 marks positive
and strong evidence and 150 marks strong and very strong
evidence. The search time mostly depends on a combined
effect of the size of the network, the sample size and the
number of MECs at a given BF. Some fairly large networks
such as alarm, sponge and barley are solved much faster than
smaller networks with a large sample size, e.g., msnbc and
letter.

The results also indicate that the number of collected net-

works and the number of MECs at three BF levels varies
substantially across different datasets. In general, datasets
with smaller sample sizes tend to have more networks col-
lected at a given BF since near-optimal networks have simi-
lar posterior probabilities to the best network. Although the
desired level of BF for a study, like the p-value, is often de-
termined with domain knowledge, the proposed approach,
given sufficient samples, will produce meaningful results
that can be used for further analysis.

Bayes Factor vs. k-Best
In this section, we compare our approach with published
solvers that are able to find a subset of top-scoring net-
works with the given parameter k. The solvers under con-
sideration are KBest 12b5 from (Tian, He, and Ram 2010),
KBestEC6 from (Chen and Tian 2014), and GOBNILP 1.6.3
(Bartlett and Cussens 2013), referred to as KBest, KBestEC
and GOBNILP below. The first two solvers are based on the
dynamic programming approach introduced in (Silander and

5http://web.cs.iastate.edu/∼jtian/Software/UAI-10/KBest.htm
6http://web.cs.iastate.edu/∼jtian/Software/AAAI-14-yetian/

KBestEC.htm

7897

Myllymäki 2006). Due to the lack of support for BIC in
KBest and KBestEC, only BDeu with a equivalent sample
size of one is used in corresponding experiments.

The most recent stable version of GOBNILP is 1.6.3 that
works with SCIP 3.2.1. The default configuration is used
and experiments are conducted for both BIC and BDeu scor-
ing functions. However, the k-best results are omitted here
due to its poor performance. Despite that GOBNILP can it-
eratively find the k-best networks in descending order by
adding linear constraints, the pruning rules designed to find
the best network are turned off to preserve sub-optimal net-
works. In fact, the memory usage often exceeded 64 GB dur-
ing the initial ILP formulation, indicating that the lack of
pruning rules posed serious challenge for GOBNILP. GOB-
NILP dev, on the other hand, can take advantage of the prun-
ing rules presented above in the proposed BF approach and
its results compare favorably to KBest and KBestEC.

The experimental results of KBest, KBestEC and GOB-
NILP dev are reported in Table 2, where n is the number
of random variables in the dataset, N is the number of in-
stances in the dataset, and k is the number of top scoring
networks. The search time T is reported for KBest, KBestEC
and GOBNILP dev (BF = 20). The number of DAGs cov-
ered by the k MECs |Gk| is reported for KBestEC. In com-
parison, the last two columns are the number of found net-
works |G20| and the number of MECs |M20| using the BF
approach with a given BF of 20 and BDeu scoring function.

As the number of requested networks k increases, the
search time for both KBest and KBestEC grows exponen-
tially. The KBest and KBestEC are designed to solve prob-
lems of size fewer than 207, and so they have some difficulty
with larger datasets. They also fail to generate correct scor-
ing files for msnbc. KBestEC seems to successfully expand
the coverage of DAGs with some overhead for checking
equivalence classes. However, KBestEC took much longer
than KBest for some instances, e.g., nltcs and letter, and the
number of DAGs covered by the found MECs is inconsis-
tent for nltcs, letter and zoo. The search time for the BF
approach is improved over the k-best approach except for
datasets with very large sample sizes. The generalized prun-
ing rules are very effective in reducing the search space,
which then allows GOBNILP dev to solve the ILP problem
subsequently. Comparing to the improved results in (Chen,
Choi, and Darwiche, 2015; 2016), our approach can scale to
larger networks if the scoring file can be generated.8

Now we show that different datasets have distinct score
patterns in the top scoring networks. The scores of the 1,000-
best networks for some datasets in the KBest experiment are
plotted in Figure 2. A specific line for a dataset indicates
the deviation ε from the optimal BDeu score by the kth-best
network. For reference, the red dash lines represent different
levels of BFs calculated by ε = logBF (See Equation 3).
The figure shows that it is difficult to pick a value for k a
priori to capture the appropriate set of top scoring networks.
For a few datasets such as adult and letter, it only takes fewer

7Obtained through correspondence with the author.
8We are unable to generate BDeu score files for datasets with

over 30 variables.

Figure 2: The deviation ε from the optimal BDeu score by k
using results from KBest. The corresponding values of the
BF (ε = log(BF), see Equation 3) are presented on the
right. For example, if the desired BF value is 20, then all
networks falling below the dash line at 20 are credible.

than 50 networks to reach a BF of 20, whereas zoo needs
more than 10,000 networks. The sample size has a signifi-
cant effect on the number of networks at a given BF since
the lack of data leads to many BNs with similar probabili-
ties. It would be reasonable to choose a large value for k in
model averaging when data is scarce and vice versa, but only
the BF approach is able to automatically find the appropriate
and credible set of networks for further analysis.

Conclusion
Existing approaches for model averaging for Bayesian net-
work structure learning either severely restrict the structure
of the Bayesian network or have only been shown to scale to
networks with fewer than 30 random variables. In this paper,
we proposed a novel approach to model averaging inspired
by performance guarantees in approximation algorithms that
considers all networks within a factor of optimal. Our ap-
proach has two primary advantages. First, our approach only
considers credible models in that they are optimal or near-
optimal in score. Second, our approach is significantly more
efficient and scales to much larger Bayesian networks than
existing approaches. We modified GOBNILP (Bartlett and
Cussens 2013), a state-of-the-art method for finding an opti-
mal Bayesian network, to implement our generalized prun-
ing rules and to find all near-optimal networks. Our ex-
perimental results demonstrate that the modified GOBNILP
scales to significantly larger networks without resorting to
restricting the structure of the Bayesian networks that are
learned.

7898

References
Bartlett, M., and Cussens, J. 2013. Advances in Bayesian
network learning using integer programming. In Proceed-
ings of the 29th Conference on Uncertainty in Artificial In-
telligence, 182–191.
Buntine, W. L. 1991. Theory refinement of Bayesian net-
works. In Proceedings of the Seventh Conference on Uncer-
tainty in Artificial Intelligence, 52–60.
Chen, Y., and Tian, J. 2014. Finding the k-best equivalence
classes of Bayesian network structures for model averaging.
In Proceedings of the 28th Conference on Artificial Intelli-
gence, 2431–2438.
Chen, E. Y.-J.; Choi, A.; and Darwiche, A. 2015. Learning
Bayesian networks with non-decomposable scores. In Pro-
ceedings of the 4th IJCAI Workshop on Graph Structures for
Knowledge Representation and Reasoning (GKR 2015), 50–
71. Available as: LNAI 9501.
Chen, E. Y.-J.; Choi, A.; and Darwiche, A. 2016. Enumer-
ating equivalence classes of Bayesian networks using EC
graphs. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS), 591–599.
Chen, E. Y.-J.; Darwiche, A.; and Choi, A. 2018. On pruning
with the MDL score. International Journal of Approximate
Reasoning 92:363–375.
Claeskens, G., and Hjort, N. L. 2008. Model Selection and
Model Averaging. Cambridge University Press.
Cussens, J., and Bartlett, M. 2012. GOBNILP 1.2
user/developer manual. University of York, York.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Dash, D., and Cooper, G. F. 2004. Model averaging for
prediction with discrete Bayesian networks. Journal of Ma-
chine Learning Research 5:1177–1203.
de Campos, C. P., and Ji, Q. 2011. Efficient structure learn-
ing of Bayesian networks using constraints. J. Mach. Learn.
Res. 12:663–689.
de Campos, C. P.; Scanagatta, M.; Corani, G.; and Zaffalon,
M. 2018. Entropy-based pruning for learning Bayesian net-
works using BIC. Artificial Intelligence 260:42–50.
Dheeru, D., and Karra Taniskidou, E. 2017. UCI machine
learning repository.
Gleixner, A.; Bastubbe, M.; Eifler, L.; Gally, T.; Gam-
rath, G.; Gottwald, R. L.; Hendel, G.; Hojny, C.; Koch, T.;
Lübbecke, M. E.; Maher, S. J.; Miltenberger, M.; Müller,
B.; Pfetsch, M. E.; Puchert, C.; Rehfeldt, D.; Schlösser, F.;
Schubert, C.; Serrano, F.; Shinano, Y.; Viernickel, J. M.;
Walter, M.; Wegscheider, F.; Witt, J. T.; and Witzig, J. 2018.
The SCIP Optimization Suite 6.0. Technical report, Opti-
mization Online.
He, R.; Tian, J.; and Wu, H. 2016. Bayesian learning in
Bayesian networks of moderate size by efficient sampling.
Journal of Machine Learning Research 17:1–54.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning 20:197–243.

Hoeting, J. A.; Madigan, D.; Raftery, A. E.; and Volinsky,
C. T. 1999. Bayesian model averaging: A tutorial. Statistical
Science 14(4):382–401.
Jeffreys, S. H. 1967. Theory of Probability: 3d Ed. Claren-
don Press.
Kass, R. E., and Raftery, A. E. 1995. Bayes factors. Journal
of the American Statistical Association 90(430):773–795.
Koivisto, M., and Sood, K. 2004. Exact Bayesian struc-
ture discovery in Bayesian networks. J. Mach. Learn. Res.
5:549–573.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. The MIT Press.
Lam, W., and Bacchus, F. 1994. Using new data to refine a
Bayesian network. In Proceedings of the Tenth Conference
on Uncertainty in Artificial Intelligence, 383–390.
Madigan, D., and Raftery, A. E. 1994. Model selection
and accounting for uncertainty in graphical models using
Occam’s window. Journal of the Amercian Statistical As-
sociation 89:1535–1546.
Meilă, M., and Jaakkola, T. 2000. Tractable Bayesian learn-
ing of tree belief networks. In Proceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence, 380–388.
Ripley, B. D. 1996. Pattern recognition and neural networks.
Cambridge University Press.
Schwarz, G. 1978. Estimating the dimension of a model.
The Annals of Statistics 6:461–464.
Silander, T., and Myllymäki, P. 2006. A simple approach
for finding the globally optimal Bayesian network structure.
In Proceedings of the 22nd Conference on Uncertainty in
Artificial Intelligence, 445–452.
Teyssier, M., and Koller, D. 2005. Ordering-based search:
A simple and effective algorithm for learning Bayesian net-
works. In Proceedings of the 21st Conference on Uncer-
tainty in Artificial Intelligence, 548–549.
Tian, J.; He, R.; and Ram, L. 2010. Bayesian model aver-
aging using the k-best Bayesian network structures. In Pro-
ceedings of the 26th Conference on Uncertainty in Artificial
Intelligence, 589–597.
van Beek, P., and Hoffmann, H.-F. 2015. Machine learn-
ing of Bayesian networks using constraint programming. In
Proceedings of the 21st International Conference on Princi-
ples and Practice of Constraint Programming, 428–444.
Verma, T., and Pearl, J. 1990. Equivalence and synthesis of
causal models. In Proceedings of the Sixth Conference on
Uncertainty in Artificial Intelligence, 220–227.

7899

