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Abstract

Computing the partition function of a graphical model is
a fundamental task in probabilistic inference. Variational
bounds and Monte Carlo methods, two important approxi-
mate paradigms for this task, each has its respective strengths
for solving different types of problems, but it is often non-
trivial to decide which one to apply to a particular problem
instance without significant prior knowledge and a high level
of expertise. In this paper, we propose a general framework
that interleaves optimization of variational bounds (via mes-
sage passing) with Monte Carlo sampling. Our adaptive inter-
leaving policy can automatically balance the computational
effort between these two schemes in an instance-dependent
way, which provides our framework with the strengths of both
schemes, leads to tighter anytime bounds and an unbiased
estimate of the partition function, and allows flexible trade-
offs between memory, time, and solution quality. We verify
our approach empirically on real-world problems taken from
recent UAI inference competitions.

Introduction
Probabilistic graphical models, including Bayesian networks
and Markov random fields, are a set of powerful frame-
works for representing and reasoning with probabilistic and
deterministic information (Darwiche 2009; Dechter 2013;
Dechter, Geffner, and Halpern 2010). Reasoning in a graph-
ical model often requires computing the partition function,
i.e., the normalizing constant of the underlying distribution.
Exact computation of the partition function is known to be
intractable (Valiant 1979) in general, leading to the develop-
ment of many approximate schemes, the major categories
of which are variational methods, Monte Carlo sampling,
and search algorithms. Within these, techniques that provide
some guaranteed confidence intervals on the correct value,
and can be improved with additional computation, are valued
for providing users with concrete information or certificates
of accuracy within a reasonable amount of time, and allowing
the user to decide the desired balance of quality versus time.

Variational bounds (Wainwright and Jordan 2008) and
closely related approximate elimination methods (Dechter
and Rish 2003; Liu and Ihler 2011) provide deterministic
guarantees on the partition function. However, these bounds
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are not anytime; their quality often depends critically on the
amount of memory available, and do not continue to improve
(approach the correct value) without additional memory.

Monte Carlo methods (Liu 2008), such as importance sam-
pling (Dagum and Luby 1997; Liu, Fisher, and Ihler 2015)
gives probabilistic bounds that improve with more samples at
a predictable rate; in practice this means bounds that improve
rapidly at first, but can be slow to become very tight.

Search algorithms (Henrion 1991; Viricel et al. 2016; Lou,
Dechter, and Ihler 2017a) explicitly enumerate over the space
of configurations and eventually provide an exact answer;
however, while some problems are well-suited to search,
others only improve their quality very slowly with more
computation.

Several algorithms combine two or more strategies. Ap-
proximate hash-based counting combines sampling (of
hash functions) with CSP-based search (Chakraborty et al.
2014; Chakraborty, Meel, and Vardi 2016) or other MAP
queries (Ermon et al. 2013; 2014), although these are not typ-
ically formulated to provide anytime behavior. Some recent
works combine importance sampling with (partially) exact
inference (Broka et al. 2018; Friedman and Van den Broeck
2018), though they do not have guarantees on their estimates.
A number of works use some form of approximate elimina-
tion or variational bounds as search heuristics, such as Lou,
Dechter, and Ihler (2017a), while Liu, Fisher, and Ihler (2015)
develops an importance sampling proposal from variational
bounds that provides strong probabilistic confidence intervals.
More recently, Lou, Dechter, and Ihler (2017b) unifies these
two works within the same framework.

However, a typical approach to incorporating variational
methods is to build and optimize the variational bound via
message passing first, waiting for this procedure to termi-
nate before initiating search and/or sampling. While this
works well enough at longer time scales (minutes to hours),
it is undesirable if we want high-quality anytime bounds
on faster time scales. Failing to build a high-quality vari-
ational bound can dramatically slow down the subsequent
progress of search or sampling on more difficult problems,
but for easier problems that would be solvable with a less
optimized heuristic or proposal, solution time is dominated
by this initial build time; unfortunately it is difficult to know
beforehand into which regime a particular problem instance
will fall. Our framework fills this gap by interleaving opti-
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mization of variational bounds with importance sampling
from the very beginning, and provides an instance-specific
balance designed to give rapid anytime improvement.

Our contributions. First, we propose a general framework
that interleaves optimization of variational upper bounds with
importance sampling to achieve anytime upper and lower
bounds of the partition function, which is directly applicable
to a set of convex variational bounds including TRW (Wain-
wright, Jaakkola, and Willsky 2005) and WMB (Liu and
Ihler 2011). Second, we propose an effective adaptive policy
that automatically balances the computational effort between
these two processes on the fly in a problem-dependent fashion.
Third, our experiments on real-world problems demonstrate
that our interleaving framework with the adaptive policy is
superior to several non-interleaving baselines and interleav-
ing baselines with simple static policies in terms of anytime
performance, gives competitive final bound quality, and is
relatively insensitive to its hyperparameter, making it easy to
use and automate in practice.

Background
In this section, we introduce some notations and background
knowledge that are essential to present and understand our
algorithm.

Let X = (X1, . . . , Xn) be a vector of random variables,
where each Xi takes values in a discrete domain Xi; we use
lower case letters, e.g. xi ∈ Xi, to indicate a value of Xi, and
x to indicate an assignment of X . A graphical model over X
consists of a set of factors F = {fα(Xα) | α ∈ I}, where
each factor fα is defined on a subset Xα = {Xi | i ∈ α} of
X , called its scope.

We associate an undirected graph G = (V,E) with F ,
where each node i ∈ V corresponds to a variable Xi and we
connect two nodes, (i, j) ∈ E, iff {i, j} ⊆ α for some α.
The set I then corresponds to cliques of G. We can interpret
F as an unnormalized probability measure, so that

f(x) =
∏
α∈I

fα(xα), Z =
∑
x

∏
α∈I

fα(xα).

Z is called the partition function, and normalizes f(x). Com-
puting Z is often a key task in evaluating the probability
of observed data, model selection, or computing predictive
probabilities.

Weighted Mini-bucket
In experiments, we apply our framework to a particular varia-
tional bound called weighted mini-bucket (WMB) (Liu and
Ihler 2011), which we briefly introduce here to make our
paper self-contained. WMB is an approximate elimination
algorithm that generalizes its elimination-based predeces-
sors (e.g., bucket elimination (Dechter 1999), mini-bucket
elimination (Dechter and Rish 2003)) by relaxing the exact
summation using a “power sum” operation during variable
elimination, and controls the computational complexity using
a user-specified parameter called the ibound.

Given an elimination order, WMB processes variables one
by one. Upon reaching a variable, say,Xi, WMB first collects
all factors (including those intermediately generated ones,

termed “messages”) with Xi in their scopes, which form a
factor set called “bucket” Bi. WMB then partitions Bi into
several disjoint “mini-buckets” {Bji } to ensure that each Bji
involves no more than (ibound+ 1) variables.

After assigning a “weight” ρij to each Bji , WMB elimi-
nates Xi in factors of Bji using the power sum:

λi→πij = (
∑
xi

∏
fα∈Bji

f
1
ρij
α )ρij ,

which sends a message λi→πij to Xπij , the earliest unelimi-
nated variable in the scope of λi→πij . This message λi→πij
is then placed in the bucket of Xπij for later processing.

When the weights ρij’s are nonnegative and sum to one,
Hölder’s inequality guarantees that the product of the mes-
sages λi→πij is an upper bound of the sum, i.e.,∑

xi

∏
fα∈Bi

fα ≤
∏
j

λi→πij .

Therefore, WMB eventually returns an upper bound U of the
partition function Z after it terminates. Liu and Ihler (2011)
also shows that the resulting bound is equivalent to a class
of bounds based on tree reweighted (TRW) belief propa-
gation (Wainwright, Jaakkola, and Willsky 2005), or more
generally conditional entropy decompositions (Globerson
and Jaakkola 2007).
U can be tightened by cost shifting (a.k.a., reparameteri-

zation) and weight optimization, which can be implemented
in a forward-backward message passing procedure. We refer
readers to Liu and Ihler (2011) for details.

Weighted Mini-bucket Importance Sampling
This same relaxation of WMB can also be used to define a
proposal distribution q(x) (Liu, Fisher, and Ihler 2015) as
follows:

q(x) =
∏
i

∑
j

ρijqij(xi|xanj(i)), (1)

where Xanj(i) are variables included in the mini-bucket Bji
excluding Xi. The qij(xi|xanj(i))’s are conditional distribu-
tions:

qij(xi|xanj(i)) =
( ∏
fα∈Bji

fα/λi→πij
) 1
ρij .

One can show that importance weights derived from this
proposal distribution are bounded and unbiased, i.e.,

f(x)/q(x) ≤ U, E
[
f(x)/q(x)

]
= Z, (2)

which leads to finite-sample bounds of the partition function
(see Corollary 3.2 of Liu, Fisher, and Ihler (2015)).

Example. Fig. 1 shows an example of running WMB on
a pairwise graphical model to produce an upper bound of
the partition function and a proposal distribution when an
elimination order and an ibound are imposed.
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Figure 1: (a) A graphical model over 7 variables. (b) Given an elimination order G,F,E,D,C,B,A, and ibound = 2, WMB
runs on this model to produce an upper bound of the partition function. (c) The same relaxation from (b) gives a proposal
distribution with properties present in (2).

Interleaving Variational Optimization with
Importance Sampling

In this section, we present a general scheme that interleaves
optimization of the variational upper bound with importance
sampling, derive finite-sample bounds for this scheme, and
discuss interleaving policies.

A General Interleaving Framework
Our general scheme is quite simple: we interleave the two
processes according to some policy. Since optimization of
variational bounds is typically through a message passing
procedure, we consider interleaving message passing with
importance sampling in our algorithm. Procedurally, we first
build up an initial bound within a given memory budget,
and then interleave the two processes following a policy that
we will discuss in the sequel. Alg. 1 presents details of our
framework.

Our framework actually serves as a “meta-algorithm” from
which any optimizable proposal with properties in (2) can
benefit; in particular this includes convex variational bounds
such as WMB and TRW (see Liu, Fisher, and Ihler (2015)
for more details on why this holds for TRW).

Interleaving these two processes leads to rapid early bound
improvement, since the improvement provided by the proba-
bilistic bounds is not delayed until after variational optimiza-
tion converges or is otherwise terminated (e.g., in Liu, Fisher,
and Ihler (2015) and Lou, Dechter, and Ihler (2017b)); this
results in significant improvements in anytime behavior as
we demonstrate in the empirical evaluation. A critical point
is that, by interleaving updates to the proposal, our samples
are no longer identically distributed; in fact, their variance
is decreasing as the proposal improves, and for best results
we should up-weight these more accurate samples in our es-
timates. To this end, and analogous to that of Lou, Dechter,
and Ihler (2017b), we define a weighted average estimator Ẑ
and apply an empirical Bernstein bound (Maurer and Pontil
2009) to derive finite-sample bounds on the error between
Z and Ẑ based on independent samples from a sequence of
proposals satisfying (2):

Algorithm 1 A General Interleaving Framework

Require: memory budget, time budget, confidence parame-
ter δ, interleaving policy P .

Ensure: N , U , Ẑ, HM(U), ∆, V̂ar.
1: Build an initial variational upper bound that fits the mem-

ory budget.
2: while within the time budget do
3: Generate (R,S) via policy P .
4: for r ← 1 to R do
5: Run one round of message passing.
6: Update U .
7: end for
8: for s← 1 to S do
9: Draw one sample from the current proposal.

10: Update N , Ẑ, HM(U), ∆, V̂ar via (3), (4), (6)
11: and (7) respectively.
12: end for
13: Update policy P if necessary.
14: end while

Theorem 1. Let {xi}Ni=1 be a series of samples drawn from
proposal distributions {qi(x)}Ni=1 respectively via Alg. 1,
with {Ẑi = f(xi)/qi(x

i)}Ni=1 the corresponding importance
weights, and {Ui}Ni=1 the corresponding variational upper
bounds respectively. Let

Ẑ =
HM(U)

N

N∑
i=1

Ẑi
Ui
, (3)

where

HM(U) =
[ 1

N

N∑
i=1

1

Ui

]−1
(4)

is the harmonic mean of {Ui}Ni=1. then, Ẑ is an unbiased
estimator of Z, i.e.,

E Ẑ = Z. (5)
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Define a deviation term

∆ = HM(U)
(√2V̂ar ln(2/δ)

N
+

7 ln(2/δ)

3(N − 1)

)
, (6)

where

V̂ar =
1

N − 1

N∑
i=1

[ Ẑi
Ui
− Ẑ

HM(U)

]2
(7)

is the unbiased empirical variance of {Ẑi/Ui}Ni=1. Since the
boundedness of each Ẑi guarantees that Ẑi/Ui ≤ 1 for all i,
applying standard empirical Bernstein results we have

Pr[Z ≤ Ẑ + ∆] ≥ 1− δ,
Pr[Z ≥ Ẑ −∆] ≥ 1− δ,

(8)

i.e., Ẑ+ ∆ and Ẑ−∆ are upper and lower bounds of Z with
probability at least 1− δ, respectively.

Interleaving Policies
The key for our framework to work well is its interleaving
policy. Our goal is to design a policy balancing the effort
between message passing and sampling, so that the prob-
abilistic bounds in (8) can improve as quickly as possible.
Alg. 1 controls this balance by alternating between R steps
of message passing, and S steps of sampling, within each
iteration.

Optimize-First Policy. In most prior work, the variational
bound is optimized first, as a separate pre-processing step.
Within the framework of Alg. 1, this takes the form of setting
(R,S) = (1, 0) (all message passing) until some convergence
or time-out criteria are satisfied, then changing the policy P
so that (R,S) = (0, 1) (all sampling). A simple strategy is
to switch over after some fixed time. As noted previously,
this approach suffers from several drawbacks. The determin-
istic variational bounds are considerably weaker than those
provided by sampling, and the early work serves mainly to
improve the quality of later sampling, so that quality does
not improve in a smooth, anytime way. A related point is that
this makes it difficult to know how much effort to put into the
optimization process; too little, and the probabilistic bounds
will improve only slowly; too much, and we waste time that
could have been used for sampling.

Static Policy. Alternatively, we can interleave updates us-
ing a simple static policy, fixing (R,S) in Alg. 1 to some
constants. While this choice will alternate between update
types, giving smoother performance, it is also non-trivial to
automate for different types of problems. In particular, it is
difficult to know how any given (R,S) will perform a pri-
ori; the characteristics of the problem instance may make
message updates more or less expensive and more or less
effective, changing the desired balance between R and S.

Adaptive Policy. The main issue with static policies is that
they are “blind” to the current status and behavior of the in-
ference process on a particular problem instance. We propose
an adaptive policy that is able to adjust its behavior based

on information available on the fly. The basic idea of our
adaptive policy is to select the action that is projected to have
larger unit contribution to the probabilistic upper bound in
each iteration. Details follow.

Suppose we have already drawn N samples so far. The
deviation term ∆ in (6) can be roughly approximated by ∆′:

∆ ≈ ∆′ = HM(U)
(√ ln(2/δ)

2N
+

7 ln(2/δ)

3(N − 1)

)
. (9)

∆′ is derived from ∆ by substituting the empirical variance
V̂ar (see (7)) with 1/4, which is an upper bound of the em-
pirical variance in expectation according to Popoviciu’s in-
equality (Popoviciu 1935). This means that ∆′ is actually an
upper bound of the expectation of ∆ thanks to the concavity
of the square root function. Therefore, the probabilistic upper
bound Ẑ + ∆ in (8) can be approximated by Z + ∆′ since
Ẑ is an unbiased estimate of Z (see (5)).

Thus, we define a gain function that approximates improve-
ment in the probabilistic upper bound (difference between
current one and the projected one) if we draw N ′ samples
from now with respect to the variational upper bound:

gain(N,U,N ′) = (Z + ∆′)− (Z + ∆′N ′)

= ∆′ −∆′N ′

where

∆′N ′ =[ 1

N+N ′
(N ′
U

+

N∑
i=1

1

Ui

)]−1(√ ln(2/δ)

2(N+N ′)
+

7 ln(2/δ)

3(N+N ′−1)

)
.

Assuming that one sampling step takes time tis, we can easily
define the unit gain gainis of drawing one sample:

gainis = gain(N,U, 1)/tis (10)

However, to define the gain of running one message passing
step is more complicated: message passing does not directly
contribute to the current probabilistic bound, but rather, af-
fects the deterministic upper bound and quality of all later
samples. We introduce a projected upper bound U ′ that one
message passing step can achieve from now, and assume one
message passing step will affect Ns later samples with this
projected bound. We then define the unit gain gainmsg of
one message passing step:

gainmsg = gain(N,U ′, Ns)/tmsg (11)

where tmsg is the time it takes to complete one message
passing step. Note that U ′ is computed via a simple linear
interpolation in our experiments.

In a nutshell, our adaptive policy compares gainis and
gainmsg and takes the action with larger unit gain in the fol-
lowing step. Note that neither gainis nor gainmsg involves
information from the samples themselves, which ensures
that their independence is preserved and that Theorem 1 still
applies.
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Table 1: Statistics of the three evaluated benchmark sets.

pedigree protein promedas
# instances 22 50 50
avg. # variable 917.14 99.96 682.12
avg. # of factor 917.14 355.84 682.12
avg. max domain size 4.95 77.94 2.00
avg. max scope 4.45 2.00 3.00
avg. induced width 25.50 11.24 25.76

Empirical Evaluation
In this section, we present empirical results to demonstrate
the usefulness of our framework and the effectiveness of our
adaptive policy.

We evaluated on three benchmarks of real-world problem
instances from recent UAI competitions. Our benchmarks
include: pedigree, 22 genetic linkage instances from
the UAI’08 inference challenge1; protein, 50 instances
made from the “small” protein side-chains of (Yanover and
Weiss 2002); promedas, 50 medical diagnosis expert sys-
tems (Wemmenhove et al. 2007). These three sets are selected
to illustrate different problem characteristics. Table 1 shows
some summary statistics of these benchmarks.

We adopted WMB as our variational bound, and allocated
a maximum of 512MB memory, using the largest ibound
that fit our memory budget. We set a maximum time budget
of 600 seconds. The confidence parameter δ for our proba-
bilistic bounds is set to 0.025. In the experiments, we also
used Ẑδ, a (1− δ) probabilistic lower bound by the Markov
inequality (Gogate and Dechter 2011), and switched to our
lower bound Ẑ − ∆ when it becomes non-trivial. We also
replaced Ẑ + ∆ with the best deterministic upper bound
reached so far if the latter is tighter.

Table 2 explains the evaluated algorithms, all of which
share the same initial WMB structure. We test our adaptive ap-
proach against several non-interleaved strategies (“fixed-X”)
as well as statically interleaved strategies (“static-X”). The
“equal time” strategy corresponds to “static (1, tmsg/tis)”
instead of “static (tis/tmsg, 1)” because message passing
is usually much more expensive than sampling (typically,
tmsg/tis > 103). Note that “static (0, 1)” can also be viewed
as an optimize-first (non-interleaving) strategy “fixed 0%”,
because it does not spend any time improving the variational
bound after the initial bound construction. During one round
of message passing, i.e., one forward-backward pass (see Liu
and Ihler (2011)), we do cost-shifting and weight optimiza-
tion simultaneously. All implementations are in C/C++. We
ran experiments on AMD Opteron 6276 processors with a
clock speed of 2.3 GHz.

Interleaving versus Non-interleaving
Fig. 2 shows anytime bounds from some typical instances of
each benchmark for interleaving and non-interleaving strate-
gies. We can observe from Fig. 2 that those non-interleaving
strategies except “static (0, 1)” lack good anytime behav-
ior compared to our adaptive interleaving strategy: they are

1http://graphmod.ics.uci.edu/uai08/Evaluation/Report/
Benchmarks/

Table 2: Notations and abbreviations used in figures and
tables for the evaluated algorithms.

fixed p%
optimize-first policy with the first p% of

time for message passing, and the rest
for sampling.

static (R,S) static policy with some given (R,S).
equal time static policy with (1, tmsg/tis).
adaptive Ns adaptive policy with Ns pseudo samples.

unable to compute a lower bound until they quit message
passing and start sampling; their early upper bounds corre-
spond to the deterministic variational bounds, which typically
do not improve as fast as the probabilistic upper bound of our
adaptive variant. “static (0, 1)” responds quickly but often
gives looser results at longer time scales; see Fig. 2(c) and
2(f) for example. It performs very well when the initial bound
is already close to the ground truth (see Fig. 2(a)), but such
information is usually not available to users beforehand.

To quantify the anytime performance of the methods in
each benchmark, we use two measures: one is the area be-
tween the upper bound of logZ and the (estimated) ground
truth of logZ; the other is the area between the upper and
lower bound of logZ as introduced in Lou, Dechter, and
Ihler (2017b). The first facilitates comparison with those
methods that do not provide lower bounds early on. These
quantities are computed for each instance and method, and
then normalized by those of “static (0, 1)”. Finally, we take
the (geometric) mean over these scores across each bench-
mark.

From Table 3, we observe that our adaptive policy performs
significantly better in terms of anytime upper bound than any
of the non-interleaving variants across all the benchmarks.
We can also see differences in performance stemming from
the different problem characteristics in the benchmarks: for
example, the performance of the non-interleaved strategies
degrades with higher time used for message passing on the
pedigree benchmark, while this is less true of the other
two benchmarks; this indicates the difficulty of deciding
when to quit message passing and start sampling for good
anytime behavior, especially when we do not know the time
limit in advance. In contrast, our interleaving framework does
not have such limitations.

We also examine performance at a fixed time limit, as
opposed to anytime behavior. Table 5 shows the mean final
gap between the upper bound and the (estimated) logZ. We
can see that our adaptive variants perform almost as well
as the best method for each benchmark, which implies that
although our algorithm is designed for a more responsive,
anytime behavior, it does not sacrifice much in terms of long-
term bound quality.

Adaptive versus Static
We next compare our adaptive interleaving strategy with sev-
eral statically interleaved approaches. Fig. 3 shows anytime
bounds of two instances per benchmark for various interleav-
ing settings. From Fig. 3, we observe that in general, the
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Table 3: Mean area between upper bounds and (estimated) ground truth logZ, normalized by that of “static (0, 1)”, for each
benchmark. Smaller numbers indicate better anytime upper bounds. The best for each benchmark is bolded.

static (0,1) static (1,10) static (1,100) fixed 25% fixed 50% fixed 75% fixed 100% equal time adaptive 10 adaptive 100
pedigree 1 2.436 1.262 2.084 3.027 3.904 4.655 0.947 0.781 0.786
protein 1 0.145 0.077 0.161 0.231 0.285 0.329 0.054 0.051 0.050
promedas 1 1.217 0.615 0.898 1.408 1.855 2.268 0.414 0.354 0.349

Table 4: Mean area between upper and lower bounds of logZ, normalized by that of “static (0, 1)”, for each benchmark. Entries
for some non-interleaved strategies are missing because they do not give lower bounds early on. Smaller numbers indicate better
anytime bounds. The best for each benchmark is bolded.

static (0,1) static (1,10) static (1,100) fixed 25% fixed 50% fixed 75% fixed 100% equal time adaptive 10 adaptive 100
pedigree 1 4.624 2.213 - - - - 2.061 1.544 1.529
protein 1 0.299 0.118 - - - - 0.104 0.080 0.078
promedas 1 2.674 1.203 - - - - 1.271 0.728 0.726

Table 5: Mean final gap between upper bound and (estimated) ground truth logZ, normalized by that of “static (0, 1)”, for each
benchmark. Smaller numbers are better; the best method for each benchmark is bolded.

static (0,1) static (1,10) static (1,100) fixed 25% fixed 50% fixed 75% fixed 100% equal time adaptive 10 adaptive 100
pedigree 1 2.113 0.804 0.468 0.480 0.581 6.576 0.534 0.554 0.572
protein 1 0.045 0.016 0.004 0.004 0.005 0.208 0.005 0.006 0.005
promedas 1 0.879 0.308 0.121 0.133 0.185 2.519 0.165 0.150 0.148
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Figure 2: Anytime bounds on logZ for two instances per benchmark, comparing our adaptive interleaving strategy with non-
interleaved strategies, spending various fractions of the time (0% through 100%) optimizing the deterministic bound first (see
Table 2; “static(0,1)” is equivalent to “fixed 0%”). The adaptive strategy strikes a balance between responsiveness (giving tighter
bounds early) and long-term performance (tight bounds later).
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Figure 3: Anytime bounds on logZ for two instances per benchmark, comparing our adaptive strategy with statically interleaved
strategies balancing message updates and sampling (see Table 2). The best fixed strategy is typically “equal time”, but adaptivity
is usually slightly better, as it is able to change its behavior dynamically based on the observed improvement in bounds from
message updates.

“equal time” variant performs better than a static choice of
interleaving rate, since it is able to take into account how
computationally expensive the message updates are. Even
so, both of our adaptive variants (corresponding to a shorter
or longer horizon when estimating the impact of a message
update) perform better most of the time; they are able to
make more informed decisions about the current benefits of
sampling versus message updates. These observations are
also supported by the statistical results in Table 3 and Table 4.
From Fig. 3, Table 3, and Table 4, we can also see that the two
adaptive variants perform fairly similarly. In fact, we found
in our experiments that our adaptive policy works reasonably
well within a wide range of Ns, i.e., it is not very sensitive to
the hyperparameter value, which simplifies its use in practice.

Conclusion
In this work, we propose a general framework that interleaves
optimization of a variational upper bound with importance
sampling based on its associated proposal, to obtain high-
quality anytime bounds and estimates of the partition func-
tion. This framework can be viewed as a meta-algorithm for

convex variational bounds such as TRW and WMB, giving
them more responsive bounds without sacrificing long-term
quality. Our proposed adaptive policy, which selects the ac-
tion with larger unit gain for improving the probabilistic
upper bound at each iteration, leads to excellent empirical
anytime performance, both in comparison to simple non-
interleaved baselines as well as simpler interleaved policies
within our framework. Our approach is easy to use in practice
since it does not appear to be sensitive to its hyperparame-
ter in our experiments. For future work, one may consider
incorporating importance sampling in the initial bound con-
struction as well, to further boost the anytime performance.
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