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Abstract

We present a dense representation for Markov Logic Net-
works (MLNs) called Obj2Vec that encodes symmetries in
the MLN structure. Identifying symmetries is a key challenge
for lifted inference algorithms and we leverage advances in
neural networks to learn symmetries which are hard to spec-
ify using hand-crafted features. Specifically, we learn an em-
bedding for MLN objects that predicts the context of an ob-
ject, i.e., objects that appear along with it in formulas of the
MLN, since common contexts indicate symmetry in the dis-
tribution. Importantly, our formulation leverages well-known
skip-gram models that allow us to learn the embedding ef-
ficiently. Finally, to reduce the size of the ground MLN, we
sample objects based on their learned embeddings. We inte-
grate Obj2Vec with several inference algorithms, and show
the scalability and accuracy of our approach compared to
other state-of-the-art methods.

Introduction
Neural embeddings have been extremely successful as a
general approach to learn efficient and effective repre-
sentations for a variety of real-world domains including
words (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014), knowledge graphs (Nickel et al. 2016), im-
ages (Kiela and Bottou 2014), etc. Inspired by these suc-
cesses, in this paper, we present a novel representation for
Markov Logic Networks (MLNs) (Domingos and Lowd
2009) using neural embeddings to represent symmetries in
the model. Our main motivation for such a representation
stems from the fact that over the last several years, it has
been widely recognized that exploiting symmetries in MLNs
(and in other statistical relational models such as PSL (Bach
et al. 2017)) yields exponential improvements in the scala-
bility of inference algorithms. Thus, several algorithms that
are collectively referred to as lifted inference (Poole 2003)
algorithms have been proposed that exploit symmetries in
the MLN.

However, identifying symmetries in the MLN efficiently
and effectively is non-trivial. Previous lifted inference meth-
ods have developed first-order rules to identify symme-
tries (de Salvo Braz 2007; Van den Broeck et al. 2011;
Gogate and Domingos 2011). However, such rules can
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identify a relatively small subset of symmetries and are
severely limited when the MLN is conditioned on evi-
dence variables (Van den Broeck and Darwiche 2013).
Consequently, more recent lifted inference algorithms try
to exploit approximate symmetries using matrix factoriza-
tion for binary evidence (Van den Broeck and Darwiche
2013) or clustering (Venugopal and Gogate 2014). Further,
algorithm-specific scalable lifting methods include cluster-
ing for MAP (Sarkhel, Singla, and Gogate 2015) and ap-
proximate messaging in BP (Singla, Nath, and Domingos
2014). Other lifted inference techniques focus on detecting
symmetries using the graph structure of the Markov net-
work underlying the MLN have been proposed. Specifically,
Bui et al. (Bui, Huynh, and Riedel 2013) connected au-
tomorphism groups in the Markov network structure with
lifted variational inference. Similar approaches have been
developed for MAP inference using ILPs (Apsel, Kersting,
and Mladenov 2014) and marginal inference (Mladenov and
Kersting 2015). However, these approaches are essentially
“bottom-up” approaches meaning that they work by instanti-
ating the MLN to create the Markov network and then detect
symmetries. For practical problems in domains such as in-
formation extraction (Venugopal et al. 2014) or question an-
swering (Khot et al. 2015; Venugopal and Rus 2016), creat-
ing the Markov network quickly becomes infeasible. There-
fore, we develop a generic, scalable approach that learns
subsymbolic vector representations for the MLN based on
symmetries.

Our main contribution in this paper is Obj2Vec, a dis-
tributed representation for objects in the MLN. Specifically,
if two objects are symmetrical, they are exchangeable in
ground formulas of the MLN. Thus, one possible representa-
tion is to vectorize objects using ground formulas and learn
a dense embedding from these vectors. However, learning
from vectors that directly encode ground formulas is not
scalable since the input representation is as big as the ground
Markov network. Therefore, inspired by the successful skip-
gram model, we propose a novel, more scalable approach
that creates an embedding based on local context informa-
tion for objects. Specifically, we train the neural network to
predict objects based on surrounding objects in the ground
formulas of the MLN. The embedding layer will then learn
similar representations for objects that have similar contexts.
Using this formulation, we can adapt skip-gram model ar-
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chitectures (Mikolov et al. 2013) to perform domain lifting
efficiently. To perform tractable inference using the Obj2Vec
embedding, we sample from the embedding and create a
smaller MLN with fewer meta-objects that represent groups
of exchangeable objects.

We perform experiments on marginal and MAP infer-
ence algorithms implemented in two state-of-the-art systems
Tuffy (Niu et al. 2011) and Magician (Venugopal, Sarkhel,
and Gogate 2016), and compare our approach with other
approaches for lifting, binary matrix factorization (Van den
Broeck and Darwiche 2013) and clustering (Venugopal and
Gogate 2014). Our results clearly show that our approach is
more scalable and accurate for several benchmark inference
problems.

Background
Markov Logic Networks
Markov logic networks (MLNs) are template models that de-
fine uncertain, relational knowledge as first-order formulas
with weights. Weights encode uncertainty in a formula. ∞
weight formulas are hard constraints which should always
be true. Similarly, formulas with −∞ weights are always
false. Thus, MLNs offer a flexible framework to mix hard
and soft formulas. In MLNs, we assume that each argument
of each predicate in the MLN is typed and can only be as-
signed to a finite set of constants. By extension, each logical
variable in each formula is also typed. Thus, each variable
corresponds to a specific domain of objects. A ground atom
is an atom where each of its variables has been substituted by
constants from their respective domains. A ground formula
is a formula containing only ground atoms.

Given a set of constants that represent the domains of vari-
ables in the MLN, an MLN represents a factored probabil-
ity distribution over the possible worlds, in the form of a
Markov network. A world in an MLN is an assignment of
0/1 to all ground atoms of the MLN. Specifically, the distri-
bution is given by,

Pr(ω) =
1

Z
exp

(∑
i

wiNi(ω)

)
(1)

wherewi is the weight of formula fi,Ni(ω) is the number of
groundings of formula fi that evaluate to True given a world
ω, and Z is the normalization constant. The two common
inference problems over MLNs are marginal inference and
MAP inference which are both intractable problems.

Skip-Gram Models
Skip-gram models are used to learn an embedding over
words based on the context in which they appear in the
training data (i.e., nearby words). Word2vec (Mikolov et al.
2013) is a popular model of this type, where we train a neu-
ral network based on pairs of words seen in the training data.
Specifically, we use a sliding window of a fixed size and
generate all pairs of words within that sliding window. Each
word is first represented as a one-hot encoded vector. Then,
for each pair of words, we consider one word of the pair as
input and the other word as a target. That is, we learn to pre-
dict a word based on its context or nearby words. The hidden

layer typically has a much smaller number of dimensions
as compared to the input/output layers. Thus, the hidden-
layer learns a low-dimensional embedding that is capable of
mapping words to their contexts. Typically the hidden-layer
output is used as features for other text processing tasks, as
opposed to using hand-crafted features.

Related Work

Lifted inference is the predominant approach to improving
the scalability of inference in relational models. Exact lifted
inference approaches include (Poole 2003; de Salvo Braz
2007; Gogate and Domingos 2011; Van den Broeck et al.
2011). Approximate inference methods that exploit exact
symmetries include (Singla and Domingos 2008; Niepert
2012; Venugopal and Gogate 2012; Sarkhel et al. 2014).
Our approach is most closely related to pre-processing ap-
proaches that exploit approximate symmetries such as bi-
nary evidence processing (Van den Broeck and Darwiche
2013) and clustering methods that use specific count-based
features (Venugopal and Gogate 2014). However, our ap-
proach is more general since it can be applied to all evi-
dence types, and also does not use hand-coded features. The
second line of research in lifted inference identifies symme-
tries on the Markov network structure using automorphism
in graphs (Niepert 2012; Bui, Huynh, and Riedel 2013;
Van den Broeck and Niepert 2015). Specifically, color pass-
ing algorithms are used to find exchangeable variables for
marginal as well as MAP inference (Apsel, Kersting, and
Mladenov 2014; Mladenov and Kersting 2015). However,
such algorithms compute symmetries on the ground Markov
network, and for large practical problems, this becomes
infeasible. In contrast to detecting symmetries, Kopp et
al. (Kopp, Singla, and Kautz 2015) used symmetry break-
ing techniques commonly used in the SAT community and
applied it to lifted inference. Anand et al. (Anand et al.
2016) developed methods that detect contextual symmetries
for probabilistic graphical models. These methods also re-
quire the ground Markov network structure in order to adapt
them to MLNs.

Finally, recent approaches have been proposed that inte-
grate advances in deep learning with relational models. Also,
Rocktaschel and Riedel (Rocktäschel and Riedel 2017) de-
veloped subsymbolic representations and learning for logi-
cal inference operators. Specifically, they developed vector
representations for logical symbols and used them within
theorem proving. Our approach can be viewed as developing
representations for probabilistic reasoning taking advantage
of distributional symmetries. Note that while graph-based
embeddings have been proposed for relational data previ-
ously (Bordes et al. 2011), in our case, the graph structure
is enormous and constructing the ground Markov network
is infeasible which is our primary motivation in develop-
ing new representations that are scalable to learn and take
advantage of symmetries in the model. To the best of our
knowledge, ours is the first work to connect lifted inference
with neural embeddings.
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Obj2Vec
We next describe our model for embedding MLN objects.
First, we define what symmetry means for two objects.
Note that previous works have defined symmetry in terms
of orbits in the automorphism groups of variables in the
Markov network underlying the MLN (Bui, Huynh, and
Riedel 2013). Here, we characterize symmetry based on the
exchangeability of objects in ground formulas.
Definition 1. Given an MLNM and evidence database D,
let X and Y be two objects in the same domain ∆. X and Y
are exchangeable (denoted as X ∼ Y ) if we can exchange
X and Y in all groundings of the MLN in which they oc-
cur without changing the truth assignment of the groundings
(according to D).

The above definition can now be used to define the dis-
tance between two objects in a domain as,
Definition 2. Given an MLNM and evidence database D,
let X and Y be two objects in the same domain ∆. δ(X,Y )
=
∑
f I(f,X, Y ), where I(f,X, Y ) = 0 if the truth assign-

ment to f does not change when we exchange X and Y , and
1 otherwise.

Instead of using a threshold function to represent the dif-
ference between mismatches in the ground formula assign-
ment, we now define a continuous approximation of the δ
function as a sigmoid function. This allows us to represent
approximate symmetries between domain objects. Specifi-
cally,
Definition 3. Given an MLNM and evidence database D,
let X and Y be two objects in the same domain ∆. δ(X,Y )
= 1

1+e−βm
, where m is the number of ground formulas that

have a difference in assignments before and after exchang-
ing the objects X and Y , and β is a hyper-parameter that
controls the shape of the sigmoid function.

We can now search for an optimal set of approximately
exchangeable objects in ∆ by finding a subset that mini-
mizes δ. Specifically,

arg min
∆′⊆∆

∑
X∈∆′,Y ∈N (X)

δ(X,Y )

where N (X) is the set of objects in ∆ that X exchanges
with, and with the constraints that ∪XN (X) = ∆ and |∆′|
≤ α, for some constant α.

However, the above approach is computationally infeasi-
ble since the number of subsets is exponential. Alternatively,
we can cast the above problem as a clustering problem that
heuristically find α clusters of approximately exchangeable
objects with δ(X,Y ) as the distance function. However, note
that even finding a heuristic solution using such a clustering
formulation is difficult due to the curse of dimensionality.
Specifically, as the number of ground formulas increase, the
number of clustering dimensions increase accordingly.

To avoid the curse of dimensionality, we instead learn
a dense neural representation that yields a more compact,
distributed representation for the objects. However, the key
challenge here is, how can we encode or vectorize an ob-
ject to learn the subsymbolic representation scalably?. One

approach is to design an encoding over the ground for-
mulas. Specifically, the vector encoding for an object X ,
vX is a vector that specifies whether a ground formula is
True/False/unknown. For groundings whereX does not
appear, the vector component has a value unknown. How-
ever, such an encoding leads to an extremely large input
layer, since the size of the encoding is equal to the size of
the ground Markov network, and is thus not scalable for
MLNs. Therefore, we develop a more scalable representa-
tion inspired by the skip-gram model which is widely used
in word embeddings.

Learning Scalable Embeddings
The main idea in our approach is to train a neural network
that predicts objects from other objects. Specifically, bor-
rowing terminology from skip-gram models, we seek to pre-
dict the context of an object. The hidden layer of the neu-
ral network learns to represent the input object vectors in a
reduced dimension such that objects that appear in similar
contexts are placed close together in the embedded space.

Definition 4. Given an MLN M and evidence D, suppose
f is a ground formula satisfied by D and where X occurs,
the context for object X in f , C(f,X), is the set of objects
(other than X) that occur in f .

When defining the context, it is important to note the di-
chotomy between satisfied formulas and unsatisfied formu-
las. Specifically, we define the context of an object only
when the object appears in satisfied ground formulas. In gen-
eral, there can be ground formulas with an unknown truth
value (since not every ground atom is specified as evidence).
In such a case, we do not have sufficient information to
state whether the context of an object is valid (according
to the data) or not. To determine the context of objects in
such a ground formula, we first need to infer the most likely
truth assignment to the formula, which in turn requires us
to perform inference (e.g. MAP), or treat unknown atoms
as missing and run an EM algorithm, both of which are
computationally expensive. Therefore, we ignore such for-
mulas when defining context of an object. For example, let
us assume a simple MLN formula, R(x) ∧ S(x, y) with ev-
idence R(X1), S(X1, Y1), R(X2), S(X2, Y1), S(X3, Y1). In
this case, R(X3)∧S(X3, Y1) has an unknown truth value, so
the available data cannot assert that Y1 is in the context of
X3 for R(X3) ∧ S(X3, Y1), but it can assert that Y1 is in the
context of X1 and X2 for R(X1) ∧ S(X1, Y1) and R(X2) ∧
S(X2, Y1) respectively.

Proposition 1. Suppose X , Y ∈ ∆ are exchangeable, then
X and Y have common contexts.

Proof. (Sketch) IfX and Y are exchangeable, then, to guar-
antee that the MLN structure does not change, for every for-
mula f whereX occurs, we need to find a corresponding for-
mula f ′ where Y occurs, such that we replace occurrences of
X in f to Y , and occurrences of Y in f ′ to X , and the mod-
ified formulas are equivalent to the original formulas given
D. To guarantee this, f and f ′ must share the exact same
structure and truth assignment in D, which implies that they
have the same contexts.
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Thus, our task in learning the embedding is to ensure that
objects with common contexts lie close to each other in the
embedding. To do this, we vectorize an object X as a one-
hot encoding represented y vector vX . Specifically, the en-
coding is as large as the maximum domain size, and each
object in the domain is represented as a 0/1 value in this vec-
tor. vX will set the vector component corresponding to X to
1 and the other components to 0. Note that, the size of the
input encoding in this case equal to the maximum domain
size which is orders of magnitude lesser than the number of
ground formulas.

To learn the embedding, we assume a canonical form for
all the formulas in the MLN. Specifically, we assume that
each formula is a clause, and that there is an ordering over
the predicates. That is, in each formula, predicates appear
according to a pre-specified ordering. This is needed to give
a sequential ordering to the objects in the formulas. To learn
the embedding, for every ground formula satisfied by the ev-
idence, we predict an object given the surrounding objects or
context. Specifically, let f1 . . . fK denote the ground formu-
las, and let Oi represent the sequence of objects in fi, and
the oij represents the j-th object in the i-th formula. The
learning algorithm seeks to maximize,

K∑
i=1

|Oi|∑
j=1

∑
−c≤k≤c;k 6=0

logP (oij+k|oij)

Specifically, c defines a sliding window-size over the ob-
jects in Oi. Here, P (oij+k|oij) is defined as a softmax func-
tion proportional to exp(v

′>
oij+k

voij ), where vo refers to the
input vector representation for object o, and v′o refers to its
output vector representation. An example of specifying the
training data to learn the embedding is shown below.

Example 1. Consider a simple formula R(x) ∧ S(x, y). Let
∆x = {X1, X2, X3} and ∆y = {Y1, Y2}. Assume a closed
world with the evidence database R(X1), R(X2), R(X3),
S(X1, Y1), S(X2, Y1), S(X3, Y2). The training instances in-
clude, vX1

, vY1
; vX2

, vY1
; vX3

, vY2
;. That is, given X1 or

X2 at the input layer, we predict Y1 at the output layer, and
given X3 as input we predict Y2 as the output layer. This
means that the hidden layer in the model will derive features
such that X1 and X2 will make common predictions at the
output layer. At the same time, since X3 has a different con-
text, it needs to predict Y2 at the output layer, and therefore,
the hidden layer encoding for X3 will be different from that
of X1 and X2.

Context in Partially Satisfied Formulas. Defining context
of an object only in satisfied ground formulas has limita-
tions when the evidence is very sparse. In such cases, very
few ground formulas may be satisfied. For example, con-
sider an MLN R(x) ∧ S(x, y) ∧ T(y), with evidence R(X1),
S(X1, Y1), R(X2), S(X2, Y1), S(X2, Y2). Since none of the
ground formulas are satisfied by the evidence, we are unable
to detect any symmetries in this case. To account for sparse
evidences, we make a closed world assumption, where un-
known atoms are assumed false in partially satisfied formu-
las, and then compute the contexts as before.

Representing Joint Symmetries. Our embedding approach
implicitly propagates symmetries across domains, since we
are learning symmetries jointly over all objects. Specifically,
suppose P (Y1|X1) ≈ P (Y2|X1) ≥ ε, i.e., we can predict Y1

and Y2 from X1 with accuracy ε, where Y1, Y2 ∈ ∆1, and
X1 ∈ ∆2. Then, as ε → 1, the embedded vector distance
|v′Y1
− v′Y2

| diminishes since a compact embedding will try
to represent Y1 and Y2 using a similar representation.

Sampling the Embedding
We reduce the size of the ground Markov network by remov-
ing objects that are sufficiently close (in the embedding) to
an object that we retain in the MLN. Note that one approach
to doing this is to formulate a clustering problem using the
embedded vectors as features, use K-Means to cluster the
objects, and then sample the clusters. However, K-Means is
known to get stuck in local optima, and as we observed in
our experiments, it often creates imbalanced clusters. This is
problematic for MLNs. Specifically, in MLNs, a reduction
in the number of objects changes the structure of the under-
lying Markov network, and thus the distribution changes ac-
cordingly. There are some special cases where we can bound
this change in the absence of evidence (Sarkhel, Singla, and
Gogate 2015). However, bounding this change in the pres-
ence of evidence is known to be very challenging, and is
still an open problem. Intuitively though, sampling from im-
balanced clusters leads to some meta-atoms (atoms in the
reduced MLN) representing a large cluster of atoms, and
others representing a small cluster of atoms of the original
distribution. Since we project the meta-atom results to all
atoms in its cluster (marginal probability or MAP assign-
ment), inference error tends to get amplified on larger clus-
ters. Therefore, a heuristic that we use to minimize this error
is to sample objects from more balanced groups.

Given a domain, ∆i, let ∆̂i ⊆ ∆i, and let d(Xj , Xk) de-
note the distance between Xj , Xk ∈ ∆i in the embedding.
LetNK(X, ∆̂i) denote the K closest neighbors of X in ∆̂i.
We want to search for ∆̂i by minimizing,

arg min
∆̂i⊆∆i

∑
X∈∆̂i

∑
Y ∈NK(X,∆i\∆̂i)

d(X,Y ) (2)

with the constraint that |∆̂i| ≤ α. To do this, we start with
an empty ∆̂i. In each iteration, we choose X that minimizes∑
Y ∈NK(X,∆i\∆̂i\X) d(X,Y ), remove it from ∆i and add

it to ∆̂i. We also remove K nearest neighbors of X from
∆i. Specifically K is chosen to be equal to ∆i

α to ensure
balanced clusters. This neighborhood is now represented by
X .

We stop adding elements to ∆̂i when |∆̂i| ≥ α. If there
are objects that remain in ∆i, we sample one of them to rep-
resent all remaining objects and add it to ∆̂i. Since we re-
move neighbors greedily, we may add an object that is close
to a few objects, and miss objects that may be symmetri-
cal to many objects. To avoid these local optima, we borrow
from stochastic local search techniques such as MaxWalk-
SAT (Kautz, Selman, and Jiang 1997). Specifically, we in-
tersperse random walks in the solution-space along with the
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Algorithm 1: Obj2vec Lifting
Input: MLN structureM, Evidence D, Inference

algorithm I, embedding dimensions m, object
bound α

Output: Inference results R
// Encoding

1 for each ground formula f obtained from D do
2 if f is satisfied by D then
3 for sliding window c do
4 (vi, vo) = Create vectorized object pairs of

input object and predicted context object
5 Add (vi, vo) to training data T

// Embedding
6 H = Learn an embedding using skip-gram model

architecture and training data T
// Sampling Objects

7 for each domain do
8 ∆i = original domain
9 ∆̂i = {}

10 while |∆̂i| ≤ α do
11 Xt = With probability p, choose from ∆i

greedily
12 Xt = With probability 1− p, choose ∆i

uniformly at random
13 ∆̂i = Xt ∪ ∆̂i Remove Xt and its

neighborhood from ∆i

// Inference

14 Convert D to D′ using new domains ∆̂1, . . . ∆̂n

15 R′ = Run I onM conditioning on D′
16 R = Project R on original atoms
17 return R

greedy iterations. That is, with probability 1 − p, we select
a random X , and with probability p, we choose X greed-
ily. Thus, in each iteration, we remove a cluster of neighbors
that are symmetric with the chosen object added to ∆̂i. We
denote the neighborhood of X̄t byH(X̄t). All inference re-
sults obtained on X̄t are assumed to hold forH(X̄t).

Given the new domains ∆̂1, . . . ∆̂k, we change the ev-
idence database D, by removing all evidences that contain
objects that are not in the new domains. We map the results
obtained from inference using this new evidence database
to inference results on the original MLN as follows. The in-
ference results (marginal probability, MAP assignment, etc.)
obtained after conditioning on the changed evidence, for an
atom grounded with objects X1 . . . Xk is assumed to hold
for all atoms in the original MLN grounded with objects
H(X1) × . . . × H(Xk). Our complete approach is sum-
marized in Algorithm 1.

Experiments
Setup
We conducted our experiments on three problems, Web-
page classification (Webkb), Entity Resolution (ER) and

Protein Interaction (Protein), all of which are publicly
available in Alchemy (Kok et al. 2006). We implemented
Obj2vec using the Gensim package (Řehůřek and Sojka
2010). For the sampler, we set p = 0.01 to insert random
walks into the sampling. For performing inference, we inte-
grated Obj2vec with two state-of-the-art inference systems,
Tuffy (Niu et al. 2011) and Magician (Venugopal, Sarkhel,
and Gogate 2016). Tuffy uses databases to perform effi-
cient grounding, while Magician uses approximate count-
ing within inference to scale up. In Tuffy, we performed
marginal inference using MCSAT and MAP inference using
MaxWalkSAT. In Magician, we used Gibbs sampling with
approximate counting for marginal inference. Note that we
also tried to perform inference with algorithms implemented
in Alchemy, but due to problems in grounding the MLN,
Alchemy could not work with our benchmarks. Note that
we assumed the objects come from a fixed finite domain (as
is done in most cases for MLNs), so this means that there
are no unknown objects during testing (otherwise Obj2Vec
may not be able to embed these objects during testing).

We compared our Obj2Vec-based pre-processing ap-
proach which we refer to as NE, with two other pre-
processing based approaches that learn approximate symme-
tries. Venugopal and Gogate’s (Venugopal and Gogate 2014)
approach (VG) available in Magician compresses the MLN
using K-Means clustering, with features based on counts of
atoms satisfied by the evidence. Binary Matrix Factorization
(BMF) (Van den Broeck and Darwiche 2013) pre-processes
binary evidence. Specifically, we implemented BMF using
the NIMFA library in python and smoothed binary evidences
using a low-rank approximation. Finally, we added a base-
line method that reduces the evidence database by randomly
sampling the evidence atoms in the evidence, which we refer
to as Random.

Results
Accuracy For each of the benchmarks, we learned the
weights using Magician (Venugopal, Sarkhel, and Gogate
2016) (since learning is more efficient here than Tuffy). We
then used around 10% of the benchmark data as test data.
We needed to do this to ensure that the baseline inference
results that we obtained were reliable using existing infer-
ence systems since for larger datasets, inference in Tuffy
does not scale up. For Obj2vec, we set the hidden layer to
have 300 neurons (a typical size recommended for word em-
beddings (Mikolov et al. 2013)) (results on varying this pre-
sented later).

To compare different approaches, we had to use a com-
mon measure of compression in each of the pre-processors,
i.e., by how much do they reduce the size of the MLN.
For a fair comparison, we would need all the reduction in
MLN size to be approximately the same across all meth-
ods. We defined this reduction in terms of compression
ratios (CR). Specifically, CR is the average of the ratios
of original-domain-size and new-domain-size (after pre-
processing) across all domains. A larger CR means that we
are utilizing more objects to approximate the original do-
main. For VG we can achieve this CR through the param-
eter that controls the number of clusters. For NE, we con-
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Figure 1: Inference results. (a) - (c) Marginal Inference in Tuffy (d) - (f) MAP Inference in Tuffy (g) - (i) Marginal Inference in
Magician.

trol this by setting the α value during sampling to achieve
the required CR. For Random, we control the sample size to
achieve the required CR. For BMF, achieving the right CR
was not possible since changing rank does not change the
CR. Therefore for BMF, we varied rank from 20 to 100 (30
is the fault value in NIMFA), which is similar to the ranks
used in (Van den Broeck and Darwiche 2013), and report the
best results across the ranks.

Using the pre-processed evidence obtained using
Obj2vec, VG, and BMF, we performed marginal inference
and MAP inference using Tuffy and Magician. For MAP
inference, we computed the F1-score based on the atoms
on which we correctly obtained the MAP assignment.
Specifically, the gold standard is the set of atoms set to
true in the MAP assignment, when we perform inference
with the original evidence. Based on this gold standard,
we compute the precision and recall of MAP inference
after pre-processing with Obj2vec and VG respectively. For

marginal inference, we computed the average error on the
marginal probabilities computed for the query variables,
where the error is measured w.r.t the marginal probabilities
obtained when we perform inference using the full evidence
(no pre-processing).

Fig. 1 shows our results for all benchmarks, inference al-
gorithms, and lifting approaches. It is evident that our ap-
proach consistently outperforms every other approach on all
benchmarks for both marginal and MAP inference.
Exact Inference We evaluated our approach with a synthetic
MLN on which exact inference is tractable. Specifically,
we constructed m formulas of the form R(x) ∨ S1(x, y)
∨ T1(x, z); . . . R(x) ∨ Sm(x, y) ∨ Tm(x, z), with weights
ranging from−1 to 1. We set the domain of x to have 50 ob-
jects, and the domains of y and z to have 100 objects each.
We only set evidence on S1 . . . Sm and T1 . . . Tm atoms,
and considered R as the query predicate. Using the lifted
inference rules in PTP (Gogate and Domingos 2011), we
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Figure 2: (a) Error on synthetic MLN using exact inference baseline for different compression ratios (CR), for BMF we obtained
an error of around 0.1 (b) Error on synthetic MLN using exact inference baseline, varying with the number of formulas in the
synthetic MLN. (c) Variation of MAP Inference Accuracy with Embedding size

Benchmark Orig BMF VG Rand NE
ER 28;56.1 4.7;15.2 12.2;15.3 21.5;47 7.3;12.7

Protein 21.9;61 5;15.5 10.4;19.8 18.3;43.3 6.1;14.2
WebKB 41.3;112.6 5.3;23.4 17;22 32.8;79.9 7.8;31.4

Table 1: Comparison of running times (in minutes) for MAP
inference using Tuffy and Marginal inference using Magi-
cian. The results are reported in the format (MAP;Marginal)
in each column.

could compute the exact marginal probabilities for the query
atoms. We computed the average absolute error between
marginals obtained before pre-processing and marginals ob-
tained after pre-processing for the query atoms (form = 10).
Fig. 2(a) shows our result for different values of CR. As
seen here, with increased CR, the marginals approach the
true marginal probabilities much faster in NE as compared
to VG, and the accuracy obtained is better than BMF.
Increasing Context. For the same synthetic MLN (de-
scribed above), we changed the context by varying m, i.e.,
changing the number of formulas. As the number of for-
mulas increase, the context for the domain objects corre-
sponding to x will increase. This leads to our embedding
being much better and learning better representations for
the objects as opposed to VG (which uses hand-coded fea-
tures), leading to increasingly better performance as seen in
Fig. 2(b).
Embedding Dimension Fig. 2(c) shows the accuracy of
MAP inference (in terms of F1) as we change the number of
neurons in the hidden layer, i.e., we change the embedding
dimensions. As seen here, for WebKB and Protein bench-
marks, the results were relatively stable as we varied the
dimensions. For ER, changing the dimensions had a more
significant effect. As with other applications of neural net-
works, choosing the right embedding size is challenging in
our case as well. In the future, we plan to integrate our ap-
proach while learning the MLN, in which case, we can op-
timize the embedding size based on training or validation
sets.

Running Time We measured the total time required to
generate the embedding and reduce the objects, plus the time
for inference on the reduced MLN. We measured the running

time for Tuffy (MAP) and Magician (marginal). Table. 1
shows our results where we averaged the running times for
VG, NE and Random across CRs ranging from 0.1 to 0.8.
The pre-processing time is much smaller (less than 10%)
than the time taken for inference in each of our benchmarks.
As seen in these results, NE is more scalable than VG while
generating more complex symmetry features. BMF was the
fastest algorithm, but the accuracy (as seen in the previous
section) was lower than NE and VG.

Conclusion
In this paper, we proposed a novel subsymbolic representa-
tion for MLNs that is based on symmetries in the under-
lying model. The main motivation for this representation
was that leveraging symmetries is crucial to scaling up in-
ference in MLNs. We proposed an efficient way to learn the
symmetry-based representation by predicting objects in the
context of other objects in the MLN akin to skip-gram based
word embeddings. Our formulation leveraged efficient im-
plementations for learning the embeddings scalably. Our ex-
periments that used the object embeddings within inference
algorithms showed our approach to be more scalable and ac-
curate as compared to state-of-the-art systems. Future work
includes leveraging neural network architectures to perform
scalable discriminative learning (Islam, Sarkhel, and Venu-
gopal 2018; Farabi, Sarkhel, and Venugopal 2018).
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