
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Anytime Recursive Best-First Search for Bounding Marginal MAP

Radu Marinescu,1 Akihiro Kishimoto,1 Adi Botea,1 Rina Dechter,2 Alexander Ihler2

1IBM Research
2University of California, Irvine

radu.marinescu@ie.ibm.com,akihirok@ie.ibm.com,adibotea@ie.ibm.com, dechter@ics.uci.edu,ihler@ics.uci.edu

Abstract

Marginal MAP is a difficult mixed inference task for graphical
models. Existing state-of-the-art solvers for this task are based
on a hybrid best-first and depth-first search scheme that allows
them to compute upper and lower bounds on the optimal solu-
tion value in an anytime fashion. These methods however are
memory intensive schemes (via the best-first component) and
do not have an efficient memory management mechanism. For
this reason, they are often less effective in practice, especially
on difficult problem instances with very large search spaces.
In this paper, we introduce a new recursive best-first search
based bounding scheme that operates efficiently within limited
memory and computes anytime upper and lower bounds that
improve over time. An empirical evaluation demonstrates the
effectiveness of our proposed approach against current solvers.

Introduction
Graphical models provide a powerful framework for rea-
soning about conditional dependency structures over many
variables. The Marginal MAP (MMAP) query asks for the
optimal configuration of a subset of variables that has the
highest marginal probability. Specifically, MMAP distin-
guishes between maximization variables (called MAP vari-
ables) and summation variables, and it is more difficult than
either max- or sum- inference tasks alone primarily because
summation and maximization operations do not commute,
forcing processing along constrained variable orderings that
may have significantly higher induced widths (Dechter 1999;
2013). This implies larger search spaces (when using search
algorithms) or larger messages (when using message-passing
schemes). In general, MMAP is NPPP-complete and it can
be NP-hard even on tree structured models (Park 2002).
Still, MMAP is often the appropriate task where hidden
variables or uncertain parameters exist. It can be also
treated as a special case of the more complicated frame-
works of decision networks (Howard and Matheson 2005;
Liu and Ihler 2013).

Over the past few years, a prominent direction of research
has focused on a new generation of solvers that provide not
only anytime lower bounds but also anytime upper bounds
on the optimal MMAP value. We distinguish two classes of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solvers that can provide either deterministic or probabilis-
tic bounds. Indeed, the most advanced deterministic bound-
ing schemes are based on a hybrid best+depth-first search
strategy over an AND/OR search graph. The best-first com-
ponent aims at generating improved upper bounds while
the depth-first search facilitates the generation of improved
lower bounds, which are obtained by solving exactly the cor-
responding conditioned summation subproblems. For this
reason, these methods are limited to problems with tractable
summation subproblems (Marinescu et al. 2017).

On the other hand, the probabilistic bounding algorithms
were introduced recently to address the case when the con-
ditioned summation subproblem is intractable (Marinescu,
Dechter, and Ihler 2018). Indeed, these methods, which in
general do not come with completeness guarantees, com-
bine stochastic best-first search strategies with concentration
bounds on the conditioned likelihood computations in order
to produce probabilistic upper and lower bounds with high
confidence in an anytime fashion.

A major drawback of these recent deterministic and proba-
bilistic solvers is that they are essentially memory intensive
schemes (via the best-first component) and do not use an
efficient memory management mechanism. When the avail-
able memory is exhausted, improving the upper bound via
the best-first search component is no longer possible. In this
case, the only option is to switch to depth-first search and try
to improve the current lower bound for the remaining time.
Therefore, these solvers are often less effective in practice,
especially under more restrictive memory requirements.

Contribution In this paper, we focus on deterministic
bounding schemes and introduce a new memory efficient
anytime scheme for computing deterministic upper and lower
bounds on the optimal MMAP value. In addition, our pro-
posed approach is also complete, namely it guarantees finding
the optimal solution if given enough time. More specifically,
we develop an anytime recursive best-first search algorithm
that traverses the AND/OR search space for MMAP and
uses a bounded size cache table to store partial search results
that allows it to operate efficiently within restricted mem-
ory. Therefore, our proposed algorithm replaces the best-first
search component (which is used by the existing state-of-the-
art hybrid best+depth-first schemes) with recursive best-first
search that yields best-first behavior with any memory bound.

7924

However, unlike regular recursive best-first search which
backs up the value of a node only to its parent, our algorithm
propagates the node values all the way up to the root of the
search space. The important benefit of this scheme is that
it can generate upper bounds in an anytime and anyspace
manner. Furthermore, unlike the previous hybrid schemes,
our approach applies search over the entire AND/OR graph,
including the conditioned summation problems. The earlier
algorithms search the MAP subspace only and exactly solve
the summation subproblems by whatever means. The inclu-
sion of the summation subspace can facilitate more gradual
upper bounds that improve with time, as we will show in
our experiments. Notice that for pure optimization (max-
imization), a lower bound is obtained by the best current
solutions that are found. In contrast, for MMAP, computing
the cost of a MAP solution exactly may not be possible at all
(current state-of-the-art schemes must solve the summation
subproblems exactly). Therefore, our new algorithm explores
the conditioned sum spaces partially, and computes heuris-
tic lower bounds on the tip nodes, which are subsequently
propagated back to generate a global lower bound. For effi-
ciency, these local lower bounds can be precomputed using
any lower bounding scheme for conditioned likelihood, but in
our work we illustrate this methodology using the weighted
mini-bucket approximation (Liu and Ihler 2011).

Our empirical evaluation on various difficult benchmarks
demonstrates the effectiveness of the new bounding scheme
compared with the most recent deterministic and probabilistic
bounding approaches.

Background
A graphical model is a tupleM = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and
D = {Di : i ∈ V } is the set of their finite domains of
values. F = {ψα(Xα) : α ∈ F} is a set of discrete non-
negative real-valued factors indexed by set F , where each ψα
is defined on a subset of variables Xα ⊆ X, called its scope.
Specifically, ψα : Ωα → R+, where Ωα is the Cartesian
product of the domains of each variable in Xα. The scopes
of the factors define a primal graph whose vertices are the
variables and whose edges connect any two variables that
appear in the scope of the same factor. The modelM defines
a factorized probability distribution on X,

P (x) =
1

Z

∏
α∈F

ψα(xα)

The partition function, Z, normalizes the probability.
Let XM = {X1, ..., Xm} be a subset of X called MAP

variables and XS = X \ XM be the complement of XM ,
called sum variables. The Marginal MAP (MMAP) task seeks
an assignment x∗M to variables XM having maximum proba-
bility. This requires access to the marginal distribution over
XM , which is obtained by summing out variables XS :

x∗M = argmax
XM

∑
XS

∏
α∈F

ψα(xα) (1)

(a) Primal graph (b) Pseudo tree

(c) AND/OR search graph

Figure 1: A simple graphical model.

AND/OR Search Spaces
A significant recent improvement in search for MMAP in-
ference has been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods (Marinescu, Dechter, and Ihler 2014;
Dechter and Mateescu 2007). The AND/OR search space is
defined relative to a pseudo tree of the primal graph, which
captures problem decomposition.

Definition 1 (pseudo tree). A pseudo tree of an undirected
graphG = (V,E) is a directed rooted tree T = (V,E′) such
that every arc of G not in E′ is a back-arc in T connecting a
node in T to one of its ancestors. The arcs in E′ may not all
be included in E.

For MMAP we need to restrict the collection of pseudo
trees to valid ones only. Specifically, given a graphical model
M with primal graph G, a pseudo tree T of G is valid for the
MAP variables XM if T restricted to XM forms a connected
start pseudo tree having the same root as T .

Given a graphical model M = 〈X,D,F〉 with primal
graph G and valid pseudo tree T of G, the AND/OR search
tree ST based on T has alternating levels of OR nodes cor-
responding to the variables, and AND nodes correspond-
ing to the values of the OR parent’s variable, with edge
weights extracted from the original functions F (for details
see (Dechter and Mateescu 2007)). Identical sub-problems,
identified by their context (the partial instantiation that sep-
arates the sub-problem from the rest of the problem graph),
can be merged, yielding an AND/OR search graph. Merg-
ing all context-mergeable nodes yields the context minimal
AND/OR search graph, denoted CT . The size of CT is expo-
nential in the induced width of G along a depth-first traversal
of T (also known as the constrained induced width).

Definition 2 (solution subtree). A solution subtree x̂M of
CT relative to the MAP variables XM is a subtree of CT
restricted to XM that: (1) contains the root of CT ; (2) if an
internal OR node n∈CT is in x̂M , then n is labeled with a
MAP variable and exactly one of its children is in x̂M ; (3)

7925

if an internal AND node n ∈ CT is in x̂M then all its OR
children which denote MAP variables are in x̂M .

Each node n in CT can be associated with a value v(n)
capturing the optimal marginal MAP value of the conditioned
sub-problem rooted at n, while for a sum variable it is the
likelihood of the partial assignment denoted by n. Clearly,
v(n) can be computed recursively based on the values of n’s
successors: OR nodes by maximization or summation (for
MAP or sum variables), and AND nodes by multiplication.
Example 1. Figure 1 shows a graphical model with 8 bi-
valued variables and 11 binary factors, where the MAP
and sum variables are XM = {A,B,C,D} and XS =
{E,F,G,H}, respectively. Figure 1(a) is the primal graph
while Figure 1(b) is a valid pseudo tree whose MAP variables
form a start pseudo tree (dashed lines denote back-arcs). Fig-
ure 1(c) displays the context minimal AND/OR search graph
based on the pseudo tree (the contexts are shown next to the
pseudo tree nodes). A solution subtree corresponding to the
MAP assignment (A=0,B=1,C=1,D=0) is shown in red.

Deterministic Bounding Schemes
The most advanced deterministic anytime methods for bound-
ing MMAP are based on hybrids of best-first and depth-first
AND/OR search in order to facilitate the generation of upper
bounds (via the best-first component) alongside lower bounds
(via the depth-first component) in an anytime fashion (Mari-
nescu et al. 2017). Specifically, best-first AND/OR search
with depth-first lookaheads (LAOBF) traverses the search
space in a best-first manner while performing explicit depth-
first dives (or lookaheads) below the leaf nodes of the best
partial solution tree. Alternating best-first with depth-first
AND/OR search (AAOBF) is a parameter-free scheme that
interleaves an outer best-first loop with an aggressive depth-
first loop that aims to find improved suboptimal solutions
as quickly as possible. Learning depth-first AND/OR search
(LnDFS) is also a memory-intensive algorithm that consists
of a sequence of depth-first search iterations to find improved
feasible solutions that yield tighter lower bounds. Each depth-
first search iteration is then followed by a bottom-up up-
date of the heuristic node values to provide improved upper
bounds. Recent evaluations on various difficult benchmarks
demonstrated the effectiveness of these schemes compared
with previous anytime solvers (Maua and Campos 2012;
Lee et al. 2016; Marinescu et al. 2017).

Weighted Mini-Bucket Heuristics
The effectiveness of the above search algorithms greatly de-
pends on the quality of the upper bound heuristic function that
guides the search. Specifically, algorithms AAOBF, LAOBF
and LnDFS use a weighted mini-bucket (WMB) based heuris-
tic (Liu and Ihler 2011) which proved to be quite effective
over the past years. First, WMB improves the naı̈ve mini-
bucket bound (Dechter and Rish 2003) with Hölder’s inequal-
ity. For a given variable Xk, the mini-buckets Qkr associated
with Xk are assigned a non-negative weight wkr ≥ 0, such
that

∑
r wkr = 1. Then, each mini-bucket r is eliminated

using a powered sum, (
∑
Xk

f(X)1/wkr)wkr . Subsequently,
the cost shifting scheme (or reparameterization) is performed

Algorithm 1: GENERATEANDPROPAGATE(n)

Input: node n
1 if n labeled 〈Xi〉 is OR node then
2 forall values xi ∈ DXi do
3 create AND node ci labeled 〈Xi, xi〉
4 let ct = Context(ci)
5 if ct is in the cache table then
6 (q(ci), l(ci), ci.solved) = ReadCache(ct)

7 else (q(ci), l(ci), ci.solved) = (h(ci), lb(ci), false)

8 else if n labeled 〈Xi, xi〉 is AND node then
9 forall Xi’s children Xj in T do

10 create OR node ci labeled 〈Xj〉
11 let ct = Context(ci)
12 if ct is in the cache table then
13 (q(ci), l(ci), ci.solved) = ReadCache(ct)

14 else (q(ci), l(ci), ci.solved) = (h(ci), lb(ci), false)

15 forall nodes m along the path from n to root s do
16 if m is OR node labeled by MAP variable then
17 q(m) = maxci∈ch(m)(w(m,ci) · q(ci))
18 l(m) = w(m,cj) · l(cj), where cj is m’s child on the path

19 else if m is OR node labeled by SUM variable then
20 q(m) =

∑
ci∈ch(m) w(m,ci) · q(ci)

21 l(m) =
∑

ci∈ch(m) w(m,ci) · l(ci)
22 else if m is AND node then
23 q(m) =

∏
ci∈ch(m) q(ci), l(m) =

∏
ci∈ch(m) l(ci)

24 let U = q(s) and L = max(L, l(s)); output 〈L,U〉

across mini-buckets to match the marginal beliefs (or “mo-
ments”) to further tighten the bound. The single-pass message
passing algorithm yields a scheme denoted by WMBu(i),
where i is called the i-bound and controls the accuracy of the
approximation (Dechter and Rish 2003). The heuristic can
be pre-compiled along a reversed depth-first traversal of a
pseudo tree and used to guide the search (Kask and Dechter
2001; Marinescu, Dechter, and Ihler 2014).

Anytime Recursive Best-First AND/OR Search
In this section, we describe a new memory efficient best-first
search scheme that computes anytime deterministic upper
and lower bounds on the optimal MMAP value. Specifically,
we develop RBFAOO+, a recursive best-first AND/OR search
algorithm that operates with restricted memory and (1) uses
a threshold controlling mechanism to explore the AND/OR
search space in a depth-first like manner, (2) employs an over-
estimation technique to reduce the overhead of re-expanding
internal nodes, and (3) uses a back propagation mechanism
to facilitate the computation of improved upper and lower
bounds in an anytime fashion. We should emphasize that
although recursive best-first AND/OR search was previously
used as an exact method for pure MAP inference (Kishimoto
and Marinescu 2014) and MMAP (Marinescu, Dechter, and
Ihler 2015), this is the first time it is extended into a complete
anytime search scheme for bounding MMAP.

The basic idea behind our best-first search based approach
is to associate each node in the search space with two values

7926

Algorithm 2: BESTCHILD(n)

Input: node n (OR node labeled by MAP variable)
1 q = q2 = β = −∞ and n.solved = false
2 forall n’s child ci do
3 ct = Context(ci)
4 if ct ∈ Cache then (q(ci), s) = ReadCache(ct)
5 else (q(ci), s) = (h(ci), false)
6 qci = w(n,ci) · q(ci)
7 if s = true then β = max(β, qci)
8 if qci > q or (qci = q and n.solved = false) then
9 q2 = q, n.solved = s, q = qci and cbest = ci

10 else if (qci > q2) then q2 = qci

11 return (cbest, q, q2, β)

Algorithm 3: UNSOLVEDCHILD(n)

Input: node n
1 qbest = −∞
2 forall n’s child ci do
3 ct = Context(ci)
4 if ct ∈ Cache then (q(ci), s) = ReadCache(ct)
5 else (q(ci), s) = (h(ci), false)
6 if s = false and q(ci) > qbest then
7 qbest = q(ci) and cbest = ci

8 return (cbest, qbest)

denoted by q(n) and l(n), representing an upper bound and
a lower bound on the value of the subproblem rooted at n,
respectively. During search, these node values are revised
recursively based on the values of their successors and then
propagated bottom up to the root node in order to generate
global upper and lower bounds that improve over time. It
is important to note that, unlike the existing deterministic
bounding schemes which conduct the hybrid best+first-search
over the MAP variables only, our approach explores best-first
the entire AND/OR search space, including the sub-space
defined by the conditioned summation subproblem.

Notations

We use U and L to denote the current best global upper and
lower bounds on the optimal MMAP value. For node n, ch(n)
denotes its children, while w(n,m) is the weight labeling the
arc n → m in the search space. Cache is the cache table
that stores the partial search results. It is implemented as a
hash table with the Zobrist function (Zobrist 1970) using
96-bit integers to compute the hash keys of the node contexts.
When the cache table is filled up and new results need to
be stored there, some cached results must be replaced. We
use SmallTreeGC (Nagai 1999), a batch-based replacement
that discards R% of the table entries with small subtree sizes.
Functions ReadCache and WriteCache are used to read
and write the cache table entries. Algorithm 1 describes the
node generation and node values propagation during search,
while Algorithms 2 and 3 show how the best child node and,
respectively, an unsolved child node is selected for expansion.

Algorithm 4: RBFAOO+
Input: node n

1 Function RBFAOO+(root):
2 root.th = 0
3 q = RBFS(root)
4 return q
5 Function RBFS(n):
6 if ch(n) = ∅ then
7 SaveCache(Context(n), q = 1, l = 1, s = true)
8 return q
9 GenerateAndPropagate(n)

10 if n is an OR node then
11 while true do
12 if n is labeled by MAP variable then
13 (cbest, q, q2, β) = BestChild(n)
14 if q < n.th or n.solved = true then break
15 cbest.th = max(n.th, q2/δ, β)/w(n,cbest)

16 else if n is labeled by SUM variable then
17 q = Sum(n), cbest = UnsolvedChild(n)
18 if q < n.th or n.solved = true then break
19 cbest.th = (n.th− q + q(cbest))/w(n,cbest)

20 RBFS(cbest)

21 else if n is an AND node then
22 while true do
23 q = Prod(n)
24 if q < n.th or n.solved = true then break
25 cbest = UnsolvedChild(n)
26 cbest.th = q(cbest) · (n.th/q)
27 RBFS(cbest)

28 SaveCache(Context(n), q, n.solved)
29 return q

Lower Bounds
The q-value q(n) which represents an upper bound is typi-
cally provided by the heuristic evaluation at node n (i.e., the
WMBu value). In the following, we elaborate on a WMB
based approach for computing the initial lower bounding l-
values of the nodes. For simplicity, let us assume that node n
roots a conditioned summation subproblem and we want to
lower bound the corresponding partition function Z below n.
Following previous work (Liu and Ihler 2011), a simple way
to compute a lower bound on Z is to apply the WMB scheme
on the subproblem rooted by n but using negative instead
of positive weights, which we denote hereafter by WMBl.
Specifically, for a given variable Xk, its mini-buckets Qkr
are assigned a negative weight wkr < 0, all except for one
which gets a non-negative weight such that

∑
r wkr = 1. The

intuition behind the use of negative weights is to facilitate
the reversed Hölder’s inequality which in turn guarantees
that eliminating all variables of the subproblem (and corre-
sponding mini-buckets) using the corresponding power sum
operators yields a lower bound Ẑ on Z (Liu and Ihler 2011).

While the WMBl scheme is sound for sum-inference, ap-
plying it to Eq. 1 does not necessarily yield an overall lower
bound on the optimal MMAP value. This could be problem-
atic during search especially if we want to use lower bound

7927

values to initialize the l-values of the nodes labeled by MAP
variables. Therefore, to ensure correct initial l-values for all
nodes in the search space we need to replace max by min in
Eq. 1 and therefore apply the WMBl scheme to the expres-
sion: minxM

∑
xS

∏
α∈F ψα(xα). Clearly, each node in the

search space can initialize its l-value by applying the WMBl
scheme dynamically on the subproblem below it. However,
for efficiency, we can pre-compile the WMBl scheme along
the same ordering used for generating the upper bounding
heuristic values (via the WMBu scheme).

Although this approach typically yields loose initial lower
bounds, we will show in our experiments that exploring fur-
ther the search space associated with the conditioned summa-
tion subproblems and revising the l-values of the nodes in a
bottom-up manner can potentially generate improved global
lower bounds, in some cases much faster than those methods
that rely on exact conditioned likelihood evaluations.

The Search Algorithm
Algorithm 4 shows the pseudo-code of RBFAOO+. Besides
the q- and l-values, each node n is associated with a thresh-
old denoted by n.th which is used to drive the search in a
depth-first like manner (Korf 1993). When RBFAOO+ starts
solving a problem, the threshold of the root node is set to 0.
If RBFAOO+ does not meet this threshold, the problem is
proven to have no solution. Otherwise, RBFAOO+ returns
the optimal MMAP value of the problem.

Function RBFS(n) traverses the subtree rooted at n in a
depth-first like manner. It calculates either an optimal solution
value or an upper bound and checks if the termination condi-
tion is satisfied (i.e., q(n) < n.th). Namely, if q(n) < n.th
this indicates that examining n’s subtree is no longer the best
strategy. If the solution optimality is guaranteed at n, the flag
n.solved is set to true.

After selecting the current best node n, the algorithm ex-
pands n by generating its successors and initializes the cor-
responding q- and l-values using the h(n) and lb(n) func-
tions, respectively. The latter could be implemented using the
WMBu and WMBl schemes. Then, a bottom up propagation
step updates the values of the nodes along the current path
from n to the root, which results in improved global upper
and lower bounds (see also lines 1-14 and 15-24 in Algo-
rithm 1 for expansion and propagation, respectively). During
propagation, the q-values are updated in the usual way: by
maximization or summation for OR nodes (labeled by MAP
or sum variables), and by multiplication for AND nodes, re-
spectively. Clearly, the revised q-value q(s) of the root node s
is the current best global upper bound. The l-values of the OR
nodes labeled by sum variables are updated by summation,
while AND nodes update their l-values by multiplication. For
OR nodes labeled by MAP variables we only consider the
l-value of the AND child on the current path together with
the corresponding arc weight. This gives us the lower bound
associated with the current path. Then the algorithm reports
the best global bounds found so far.

At an OR node labeled by a MAP variable, RBFS(n) may
find a suboptimal solution. In this case, n.solved is still set
to false and RBFS(n) continues examining other children
until it finds an optimal solution at n. Because the solution

domain # n k w∗c (avg) w∗s (avg)
grid 75 144–2500 2 16–376 (96) 4–24 (8)
pedigree 110 334–1289 3–7 18–300 (97) 3–28 (7)
promedas 50 453–1849 2 11–490 (120) 3–18 (6)

Table 1: Benchmark statistics.

value found so far is still smaller than the optimal one (we
solve a maximization problem), RBFS(n) uses that solution
value (maintained by β in line 13) to prune away unpromising
branches and to adjust the threshold. When RBFS(n) selects
the best child cbest, it examines cbest with a new threshold.
Specifically, cbest.th is set to dividing the weight between n
and cbest from the maximum of:

1. The current threshold for n.

2. The second largest upper bound q2 amongst the unsolved
children of n. This indicates when the current second best
child becomes the best one. Notice that q2 includes the
corresponding arc weight (line 6 in Algorithm 2). Addi-
tionally, q2 is divided by the overestimation rate δ ≥ 1 to
avoid an excessive number of backtracks to n.

3. The current best solution value β at n.

At AND nodes which are labeled by either MAP or summa-
tion variables, cbest.th is set to the product of cbest’s q-value
and the gap between n.th and the total q-value of n’s children.
If q(cbest) < cbest.th, then q(n) < n.th also holds.

At OR nodes labeled by summation variables, RBFS may
in principle have to examine all of n’s children. In this case,
cbest is selected as the one having the largest q-value amongst
n’s unsolved children. Its threshold is then set to the sum be-
tween q(cbest) and the gap between n’s threshold and n’s
current q-value which is calculated by summation. The intu-
ition behind setting thresholds for OR summation nodes is
to diversify the search below these nodes and allow the algo-
rithm to backtrack from the summation subproblems. This in
turn could potentially lead to finding tighter bounds.

Finally, based on previous work (Kishimoto and Marinescu
2014), we can show that:

Theorem 1 (correctness and completeness). Given a graphi-
cal modelM algorithm RBFAOO+ is sound and complete.

We also consider a simple variation of RBFAOO+ which
we denote by RBFAOO-. The idea is to forgo setting a thresh-
old for OR nodes labeled by summation variables, thus forc-
ing the algorithm to search completely the conditioned sum-
mation subproblems. Specifically, RBFAOO- is obtained by
replacing line 19 in Algorithm 4 with cbest.th = 0.

Experiments
We evaluate empirically the anytime performance of the pro-
posed algorithms RBFAOO+ and RBFAOO- against recent
state-of-the-art anytime bounding schemes on benchmark
problems generated from standard probabilistic inference
networks (Elidan, Globerson, and Heinemann 2012). The
competing algorithms, are the earlier AAOBF, LAOBF and
LnDFS, respectively, which are the current best-performing

7928

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

g
a
p

50-20-5_I1-g3: anytime gap vs time

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

g
a
p

pedigree20_I2-g3: anytime gap vs time

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

g
a
p

chain4_I2-g3: anytime gap vs time

AAOBF
LAOBF
AnyLDFS
LnDFS
RBFAOO-
RBFAOO+
AnySBFS
UBFS

Figure 2: Anytime gap between upper and lower bounds for selected problem instances. Time limit 1 hour.

algorithm grid pedigree promedas
upper bounds (1min/10min/60min)

AAOBF 57/75/75 98/108/108 36/49/49
LAOBF 58/75/75 99/110/110 34/49/49
LnDFS 69/75/75 104/108/108 44/49/49
UBFS 59/75/75 103/110/110 35/49/49
AnyLDFS 7/10/14 0/0/0 20/24/28
AnySBFS 18/19/23 6/6/6 29/32/33
RBFAOO+ 53/75/75 105/110/110 34/49/49
RBFAOO- 53/75/75 105/110/110 34/49/49

lower bounds (1min/10min/60min)
AAOBF 57/75/75 98/108/108 36/50/50
LAOBF 56/75/75 77/92/95 32/49/49
LnDFS 69/75/75 104/108/108 44/50/50
UBFS 0/0/0 0/0/0 0/0/0
AnyLDFS 75/75/75 110/110/110 50/50/50
AnySBFS 75/75/75 110/110/110 50/50/50
RBFAOO+ 53/75/75 105/110/110 34/50/50
RBFAOO- 53/75/75 105/110/110 34/50/50

Table 2: Number of instances with non-trivial upper and
lower bounds at 1 min, 10 min and 60 min time intervals.

best+first-search hybrid schemes for providing anytime de-
terministic lower and upper bounds on the optimal MMAP
value (Marinescu et al. 2017). For reference, we also consid-
ered UBFS which is a recent bounding scheme for MMAP
that is based on best-first search (Lou, Dechter, and Ihler
2018). However, unlike our algorithms, UBFS provides any-
time upper bounds only. In addition, we also run two recent
stochastic anytime search algorithms for bounding MMAP
called AnyLDFS and AnySBFS, respectively (Marinescu,
Dechter, and Ihler 2018). In contrast to the previous algo-
rithms, these schemes compute anytime probabilistic upper
and lower bounds. For RBFAOO+ and RBFAOO- we set the
overestimation parameter δ to 2.0 and their garbage collec-
tion scheme replaced R = 30% of the cache entries. The
cutoff parameter θ used by LAOBF to trigger the depth-first
lookaheads was set to 1000, while AnySBFS and AnyLDFS
were run with the default parameters specified in (Marinescu,
Dechter, and Ihler 2018). All competing algorithms used the
same heuristic function WMBu(i) with the i-bound set to

algorithm grid pedigree promedas
tightest upper bound

AAOBF 0/25/29 3/16/16 1/13/15
LAOBF 5/34/32 6/26/24 3/19/19
LnDFS 10/6/11 4/3/4 8/8/9
UBFS 11/26/23 25/24/20 25/35/26
AnyLDFS 5/0/0 1/0/0 5/2/2
AnySBFS 5/1/0 1/0/0 1/0/1
RBFAOO+ 36/57/61 31/43/50 4/21/24
RBFAOO- 34/62/64 66/68/78 6/24/35

tightest lower bound
AAOBF 18/41/38 47/60/50 21/30/33
LAOBF 11/38/35 38/47/48 10/24/25
LnDFS 33/32/33 26/23/23 18/18/20
UBFS 0/0/0 0/0/0 0/0/0
AnyLDFS 5/0/0 5/2/2 8/3/1
AnySBFS 1/0/0 0/0/0 0/0/0
RBFAOO+ 0/31/34 0/6/10 0/19/21
RBFAOO- 20/45/52 7/17/23 0/21/22

Table 3: Number of instances for which an algorithm found
the tightest upper bound and the tightest lower bound, respec-
tively, at 1 min, 10 min and 60 min time intervals.

10. Similarly, we used WMBl(10) to pre-compile the initial
lower bounds. The time limit was set to 1 hour and we ran
all algorithms with a 20GB of RAM memory limit.

Our benchmark set includes 3 standard problem do-
mains from grid networks (grid), genetic linkage anal-
ysis (pedigree), and medical diagnosis expert systems
(promedas). Since the original problems are pure MAP
tasks, we generated 5 synthetic MMAP instances for each
pure MAP instance by randomly selecting 50% of the vari-
ables as MAP variables as suggested previously in (Lee et al.
2016; Marinescu et al. 2017). Therefore, we created 75 grid,
110 pedigree, and 50 promedas MMAP instances. Table 1
shows the typical ranges of the problem instance parameters
where n is the number of variables, k is the domain size, w∗c
is the constrained induced width and w∗s is the induced width
of the conditioned summation subproblem (we also include
in parenthesis the average values of the latter two measures).
Note that these instances were generated so that most of them

7929

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 a

c
c
u
ra

c
y

grid: anytime accuracy (upper bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

re
la

ti
v
e
 a

c
c
u
ra

c
y

pedigree: anytime accuracy (upper bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.1

0.2

0.3

0.4

re
la

ti
v
e
 a

c
c
u
ra

c
y

promedas: anytime accuracy (upper bounds)

AAOBF
LAOBF
AnyLDFS
LnDFS
RBFAOO-
RBFAOO+
AnySBFS
UBFS

Figure 3: Average relative accuracy for upper bounds. Time limit 1 hour.

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0

10

20

30

40

50

60

70

80

re
la

ti
v
e
 a

c
c
u
ra

c
y

grid: anytime accuracy (lower bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0

5

10

15

20

re
la

ti
v
e
 a

c
c
u
ra

c
y

pedigree: anytime accuracy (lower bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0

25

50

75

100

125

150

175

re
la

ti
v
e
 a

c
c
u
ra

c
y

promedas: anytime accuracy (lower bounds)

AAOBF
LAOBF
AnyLDFS
LnDFS
RBFAOO-
RBFAOO+
AnySBFS
UBFS

Figure 4: Average relative accuracy for lower bounds. Time limit 1 hour.

could not be solved optimally within 1 hour and therefore be
relevant to anytime bounding schemes.

Responsiveness The responsiveness characterizes how fast
an algorithm can discover non-trivial bounds. We require all
algorithms to produce upper bounds other than the initial
bounds from the heuristic. Similarly, we require the lower
bounds found to be different from the default one −∞. Table
2 shows the number of instances for which each algorithm
found non-trivial upper (top) and lower (bottom) bounds
within 1 minute, 10 minutes and 1 hour, respectively. The
best performance points are highlighted. We can see that
RBFAOO+/RBFAOO- are competitive with the previous de-
terministic approaches AAOBF, LAOBF and LnDFS as they
all discover non-trivial upper and lower bounds on most of
the problem instances, across all time bounds.

Results on individual instances Figure 2 plots the gap
between the anytime upper and lower bounds obtained on
three selected problem instances, one from each benchmark
domain. More specifically, we define the gap at time t as
gapt = log(lt)−log(ut)

log(lt)
, where ut and lt are the upper and

respectively the lower bounds obtained at time t. Notice that
we normalize the gap value in order to be between 0 and 1.
Clearly, if ut = lt then gapt = 0. Alternatively, if no solution

was found, we assume that gapt = 1 (this is typically the
case for UBFS because it doesn’t compute lower bounds).
We can see that both RBFAOO+ and RBFAOO- start off with
relatively loose lower bounds (the gap is close to 1). How-
ever, as the search progresses, they compute more accurate
bounds and therefore are able to tighten the gap considerably
compared with the other algorithms. For example, on the grid
instance 5-20-5 I1, both RBFAOO+ and RBFAOO- found
much tighter bounds with RBFAOO- proving optimality in
less than 1 hour, UBFS and LAOBF ran out of memory after
nearly 15 minutes, while AAOBF, LnDFS, AnyLDFS and
AnySBFS found relatively poor quality bounds thus yielding
much larger gaps.

Quality of the bounds Table 3 summarizes the win-
ners in terms of finding the tightest upper (top) and
lower (bottom) bounds within a given time bound of 1
minute, 10 minutes and 1 hour, respectively. We can see
that RBFAOO+/RBFAOO- typically find the tightest upper
bounds, especially for longer time horizons. This is because
both algorithms explore effectively the search space associ-
ated with the summation subproblems which allows them
to propagate the heuristic values associated with the sum-
mation nodes as well. This eventually translates into tighter
global upper bounds. In contrast, the lower bounds produced
by RBFAOO- are slightly tighter than those produced by

7930

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 a

c
c
u
ra

c
y

grid: anytime accuracy (upper bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

re
la

ti
v
e
 a

c
c
u
ra

c
y

pedigree: anytime accuracy (upper bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

0.1

0.2

0.3

0.4

re
la

ti
v
e
 a

c
c
u
ra

c
y

promedas: anytime accuracy (upper bounds)

LAOBF (10GB)
LAOBF (1GB)
LAOBF (20GB)
RBFAOO+ (10GB)
RBFAOO+ (1GB)
RBFAOO+ (20GB)

Figure 5: Average relative accuracy for upper bounds. Time limit 1 hour. Memory limits 1GB, 10GB and 20GB.

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0

10

20

30

40

50

60

re
la

ti
v
e
 a

c
c
u
ra

c
y

grid: anytime accuracy (lower bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

re
la

ti
v
e
 a

c
c
u
ra

c
y

pedigree: anytime accuracy (lower bounds)

0 500 1000 1500 2000 2500 3000 3500

time (sec)

0

20

40

60

80

100

re
la

ti
v
e
 a

c
c
u
ra

c
y

promedas: anytime accuracy (lower bounds)

LAOBF (10GB)
LAOBF (1GB)
LAOBF (20GB)
RBFAOO+ (10GB)
RBFAOO+ (1GB)
RBFAOO+ (20GB)

Figure 6: Average relative accuracy for lower bounds. Time limit 1 hour. Memory limits 1GB, 10GB and 20GB.

RBFAOO+, but overall they both are on average inferior
to those produced by the deterministic bounding schemes.
This is because unlike AAOBF, LAOBF, and LnDFS which
compute the lower bounds by solving exactly the summa-
tion subproblems, RBFAOO+/RBFAOO- compute the lower
bounds by propagating local lower bounds associated with
the summation nodes (l-values). The latter are typically quite
loose compared with the corresponding exact values.

In Figures 3 and 4 we plot the average relative accuracy
with respect to the tightest upper (resp. lower) bounds as a
function of time for all three domains and for all competing
algorithms. For a given problem instance and algorithm we
compute the relative accuracy at time t as

∣∣∣ log(ut)−log(u∗)
log(u∗)

∣∣∣
and

∣∣∣ log(lt)−log(l∗)log(l∗)

∣∣∣, where ut (resp. lt) is the current upper
(resp. lower) bounds and u∗ (resp. l∗) is the tightest upper
(resp. lower) bound found for that instance. If an algorithm
did not find a lower bound at time t then we compute the
relative accuracy as

∣∣∣ 2∗log(l−)−log(l∗)
log(l∗)

∣∣∣, where l− is the worst
lower bound for that particular instance. If an algorithm ran
out of memory at time t before the time limit then we con-
sider ut and lt for all time steps between t and the limit. In
summary, we can see that both RBFAOO+ and RBFAOO-
dominate clearly all the other competitors in terms of upper
bounds. In contrast, the lower bounds produced by RBFAOO-

algorithm grid pedigree promedas
instances out of memory (1GB/10GB/20GB)

AAOBF 55/28/24 89/29/22 28/4/1
LAOBF 59/48/44 102/89/71 35/34/30
LnDFS 16/0/0 17/5/2 1/0/0
UBFS 61/53/52 103/102/99 35/34/33
AnyLDFS 57/7/0 101/11/0 50/9/0
AnySBFS 19/7/3 60/20/10 13/7/4
RBFAOO+ 0/0/0 0/0/0 0/0/0
RBFAOO- 0/0/0 0/0/0 0/0/0

Table 4: Number of instances for which an algorithm ran out
of memory at 1GB, 10GB and 20GB memory limits.

are slightly tighter than those produced by RBFAOO+, but
overall both are on average inferior to those produced by the
deterministic bounding schemes. The probabilistic schemes
AnyLDFS and AnySBFS have a relatively large overhead
associated with bounding each conditioned summation sub-
problem which prevents them to explore a large search space
and thus improve the global upper bound.

Impact of limited memory In Table 4 we summarize the
behavior of all competing algorithms under different memory
requirements. In particular, we show the number of instances

7931

on which the respective algorithm ran out of memory, for
1GB, 10GB and 20GB memory limits. We can see that both
RBFAOO+ and RBFAOO- are extremely robust in terms of
memory usage as they use the available memory most effec-
tively to improve the bounds. In contrast, the other algorithms
ran out of memory on significantly more instances, especially
at the smallest memory bound. In Figures 5 and 6 we plot the
anytime average gap with respect to the tightest upper and
lower bounds, when using 1GB, 10GB and 20GB of mem-
ory, respectively. For our purpose, we compare RBFAOO+
against LAOBF which was one of the best performing hybrid
schemes (we obtained similar results with RBFAOO- but we
omit them for space reasons). When looking at the quality of
the upper bounds, we can see that RBFAOO+ hardly suffers
from any performance degradation as the memory becomes
more restricted. On the other hand, the impact of restricted
memory is more prominent for LAOBF especially at the 1GB
limit where it computes relatively weak bounds. Finally, in
terms of lower bounds, LAOBF produces the tightest bounds
regardless of the memory used, whereas RBFAOO+ improves
slightly the bounds as more memory is available.

Conclusion
We introduced a recursive best-first AND/OR search method
to compute anytime upper and lower bounds on the op-
timal MMAP value using limited memory. Our approach
overcomes a major limitation of existing memory-intensive
search-based bounding schemes for MMAP and therefore
it can handle successfully difficult MMAP instances with
very large search spaces. Our extensive empirical evaluation
on various benchmarks demonstrates the effectiveness of the
new algorithms compared with existing state-of-the-art de-
terministic and probabilistic bounding schemes. While we
focused here on computing deterministic bounds, we believe
that our approach can be extended to compute probabilistic
bounds as well, but we leave this as future work. Another im-
portant direction of research we plan to pursue in the future
is to explore parallel search schemes for MMAP.

Acknowledgements This work was supported in part by
NSF grants IIS-1526842 and IIS-1254071, and by con-
tracts FA8750-14-C-0011 and W911NF-18-C-0015 under
the DARPA PPAML and World Modelers programs. We are
grateful to the reviewers for their helpful comments.

References
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73–106.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme of approximating inference. Journal of ACM
50(2):107–153.
Dechter, R. 1999. Bucket elimination: A unifying framework
for reasoning. Artificial Intelligence 113(1-2):41–85.
Dechter, R. 2013. Reasoning with Probabilistic and De-
terministic Graphical Models: Exact Algorithms. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Elidan, G.; Globerson, A.; and Heinemann, U. 2012.
PASCAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/.
Howard, R., and Matheson, J. 2005. Influence diagrams.
Decision Analysis 2(3):127–143.
Kask, K., and Dechter, R. 2001. A general scheme for
automatic search heuristics from specification dependencies.
Artificial Intelligence 129(1-2):91–131.
Kishimoto, A., and Marinescu, R. 2014. Recursive best-first
AND/OR search for optimization in graphical models. In
Uncertainty in Artificial Intelligence (UAI), 400–409.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.
Lee, J.; Marinescu, R.; Dechter, R.; and Ihler, A. 2016. From
exact to anytime solutions for marginal MAP. In AAAI Con-
ference on Artificial Intelligence (AAAI), 1749–1755.
Liu, Q., and Ihler, A. 2011. Bounding the partition function
using Hölder’s inequality. In International Conference on
Machine Learning (ICML), 849–856.
Liu, Q., and Ihler, A. 2013. Variational algorithms for
marginal MAP. Journal of Machine Learning Research
14:3165–3200.
Lou, Q.; Dechter, R.; and Ihler, A. 2018. Anytime anyspace
AND/OR best-first search for bounding marginal MAP. In
AAAI Conference on Artificial Intelligence (AAAI), 860–867.
Marinescu, R.; Lee, J.; Dechter, R.; and Ihler, A. 2017. Any-
time best+depth-first search for bounding marginal MAP. In
AAAI Conference on Artificial Intelligence, 1749–1755.
Marinescu, R.; Dechter, R.; and Ihler, A. 2014. AND/OR
search for marginal MAP. In Uncertainty in Artificial Intelli-
gence (UAI), 563–572.
Marinescu, R.; Dechter, R.; and Ihler, A. 2015. Pushing for-
ward marginal MAP with best-first search. In International
Joint Conference on Artificial Intelligence (IJCAI), 696–702.
Marinescu, R.; Dechter, R.; and Ihler, A. 2018. Stochastic
anytime search for bounding marginal MAP. In International
Joint Conference on Artificial Intelligence (IJCAI), 5074–
5081.
Maua, D., and Campos, C. D. 2012. Anytime marginal MAP
inference. In International Conference on Machine Learning,
1471–1478.
Nagai, A. 1999. A new depth-first search algorithm for
AND/OR trees. Master’s thesis, Department of Information
Science, University of Tokyo.
Park, J. 2002. MAP complexity results and approximation
methods. In Uncertainty in Artificial Intelligence (UAI), 388–
396.
Zobrist, A. L. 1970. A new hashing method with applications
for game playing. Technical report, Department of Computer
Science, University of Wisconsin, Madison.

7932

