
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Semi-Parametric Sampling for Stochastic Bandits with Many Arms

Mingdong Ou, Nan Li, Cheng Yang, Shenghuo Zhu, Rong Jin
Alibaba Group, Hang Zhou, China

{mingdong.omd, nanli.ln, charis.yangc, shenghuo.zhu, jinrong.jr}@alibaba-inc.com

Abstract

We consider the stochastic bandit problem with a large candi-
date arm set. In this setting, classic multi-armed bandit algo-
rithms, which assume independence among arms and adopt
non-parametric reward model, are inefficient, due to the large
number of arms. By exploiting arm correlations based on a
parametric reward model with arm features, contextual ban-
dit algorithms are more efficient, but they can also suffer from
large regret in practical applications, due to the reward esti-
mation bias from mis-specified model assumption or incom-
plete features. In this paper, we propose a novel Bayesian
framework, called Semi-Parametric Sampling (SPS), for this
problem, which employs semi-parametric function as the re-
ward model. Specifically, the parametric part of SPS, which
models expected reward as a parametric function of arm
feature, can efficiently eliminate poor arms from candidate
set. The non-parametric part of SPS, which adopts non-
parametric reward model, revises the parametric estimation
to avoid estimation bias, especially on the remained candidate
arms. We give an implementation of SPS, Linear SPS (LSPS),
which utilizes linear function as the parametric part. In
semi-parametric environment, theoretical analysis shows that
LSPS achieves better regret bound (i.e. Õ(

√
N

1−α
dα
√
T )

with α ∈ [0, 1]) than existing approaches. Also, experiments
demonstrate the superiority of the proposed approach.

1 Introduction
In the stochastic bandit problem (Bubeck, Cesa-Bianchi, and
others 2012), the agent sequentially selects arms from a fi-
nite candidate set and receives corresponding stochastic re-
ward. The objective is to maximize the expected cumulative
reward up to final time step T . As the expected reward of
each arm is unknown, the agent has to face the exploration-
exploitation dilemma. On one hand, the agent can exploit
historical knowledge (including selected arms, stochastic re-
wards and state of arms) to select the arm with largest esti-
mated expected reward. This will guarantee relatively large
reward in current time step, but may suffer reward estima-
tion error because of insufficient knowledge, then miss the
real optimal arm. On the other hand, the agent can explore
arms to collect knowledge for more accurate estimation and
identification of optimal arm. Thus, the agent can expect to
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achieve larger reward in the future. However, it will prob-
ably obtain small reward in current time step. Such prob-
lem is ubiquitous in many practical applications, including
online advertisement (Schwartz, Bradlow, and Fader 2017),
personalized recommendation (Li et al. 2010), medical treat-
ment (Wang et al. 2018). There are often many newly emerg-
ing items with unknown reward to explore in these applica-
tions. For example, on some news platforms, more than one
hundred thousand news articles are published every day and
we does not know their popularity. Since the number of new
items is often large, stochastic bandits with many arms be-
comes important.

Existing bandits algorithms can be generally categorized
into two groups: multi-armed bandit (MAB) algorithms and
contextual bandit algorithms. Classic MAB algorithms, with
Upper Confidence Bound (Auer, Cesa-Bianchi, and Fischer
2002) and Thompson sampling (Thompson 1933) as repre-
sentatives, assume independence among candidate arms and
estimate the expected reward of an arm by empirical mean
of historical stochastic rewards. The reward estimation can
be unbiased with sufficient data. However, as the arms are
independent, the agent has to explore all the arms to collect
data, leading to Ω(

√
NT ) regret bound, which is dependent

on the number of arms N . This makes such group of algo-
rithms inefficient for large number of candidate arms. Con-
textual bandit algorithms, with LinUCB (Chu et al. 2011)
and LinTS (Agrawal and Goyal 2013) as representative ex-
amples, exploit the correlation among arms based on a para-
metric reward function of context features, and their regret is
usually free of arm number, indicating that they are efficient
for large arm set. In the following, contextual bandits are
called parametric methods, since they often employ a para-
metric function to model the reward expectation, and MAB
algorithms as non-parametric methods since they does not
make any parametric assumption of the reward. The fun-
damental assumption of parametric methods is that the ex-
pected reward can be well expressed as a function of context
features. However, it is generally difficult to specify a cor-
rect model and difficult to perfectly characterize the context
with numeric features, this makes the assumption impracti-
cal, leading to large regret in many applications. For exam-
ple, it has been shown in (Gopalan, Maillard, and Zaki 2016;
Ghosh, Chowdhury, and Gopalan 2017) that the regret can
be linear, i.e. Õ(T ), in the case of mis-specified model.

7933



Therefore, designing efficient algorithms for stochastic ban-
dit problem with many arms is still a open problem.

In this paper, we propose a novel framework, called Semi-
Parametric Sampling (SPS), to solve the problem. Specifi-
cally, SPS assumes that the stochastic rewards of arms are
generated by a hierarchical process. In this process, the
stochastic reward of an arm is assumed to be a sample from
a distribution whose mean is the expected reward variable of
the arm. It assumes a parametric prior distribution to gen-
erate the parametric part of expected reward, and a non-
parametric likelihood distribution to generate expected re-
ward deviating from parametric part. As the parametric prior
distribution exploits the correlation on arm feature, it will
concentrate fast with the increasing of collected stochastic
rewards. Thus, it can provide a good base of expected re-
ward. Informally, the candidate set of optimal arm will be
reduced rapidly. Then the exploration on reduced candidate
set will cost much less to correctly identify the optimal arm.
Therefore, SPS will be efficient because of rapid reduction
on candidate optimal arm set, and unbiased because of non-
parametric estimation on expected rewards of candidate op-
timal arms. We give an implementation of SPS when the
parametric part of expected reward is linear function, called
Linear Semi-Parametric Sampling (LSPS). We also prove
an upper Bayesian regret bound, Õ(

√
N

1−α
dα
√
T ) with

α ∈ [0, 1]. Compared to existing bandit algorithms, LSPS
achieves (

√
N/d)α-order improvement in semi-parametric

environment, where α is based on the level of parametric
estimation bias. We also conduct experiments on synthetic
data which shows that LSPS will achieve lower regret.

The rest of this paper is organized as follows. Section 2
gives a brief overview of related work. Section 3 and 4 for-
mally formulate the problem and present the algorithm. Sec-
tion 5 gives a bayesian regret bound. Section 6 summarizes
the experiments, and Section 7 concludes this work with fu-
ture directions.

2 Related Work
As mentioned above, most of the existing bandit algorithms
can be partitioned into two classes: classic MAB algorithms
and contextual bandit algorithms. Classic MAB algorithms
was first proposed in the literature. They work with strate-
gies, such as UCB (Agrawal 1995; Auer, Cesa-Bianchi,
and Fischer 2002), Thompson sampling (Thompson 1933),
Bayes-UCB (Kaufmann, Cappé, and Garivier 2012) and so
on. The lower regret bound of these algorithms is Ω(

√
NT )

which will be not feasible when arm number N is large.
Contextual bandit algorithms were then proposed to improve
the efficiency when the arm number is large or infinite. Many
linear bandit algorithms (Auer 2002; Abbasi-Yadkori, Pál,
and Szepesvári 2011; Agrawal and Goyal 2013; Chu et al.
2011; Dani, Hayes, and Kakade 2008; Rusmevichientong
and Tsitsiklis 2010) were proposed which assume the ex-
pected reward is a linear function of context feature. The best
upper regret bound of these algorithms is Õ(d

√
T ) which is

free of arm number and efficient when the feature dimen-
sion d is small. Generalized linear bandit (Filippi et al. 2010;
Li, Lu, and Zhou 2017) were also proposed. Besides, many

highly non-linear bandit algorithms (Elmachtoub et al. 2017;
Foster et al. 2018; Srinivas et al. 2012; Krause and Ong
2011; Valko et al. 2013) emerge in recent years where the
expected reward is assumed a non-linear function of context
feature, such as decision tree, Gaussian process. Although
efficient in the environment with assumed reward function,
the expected reward may deviate from the assumed reward
function in practice because of function assumption error
and/or incomplete context feature. Then, these contextual
bandit algorithms may suffer linear regret bound in more
general semi-parametric environment.

Few works study the stochastic multi-armed bandit
problem in semi-parametric environment. As the works
in (Gopalan, Maillard, and Zaki 2016; Besbes and Zeevi
2015) prove that the regret bound of linear bandit algorithms
can still be sub-linear when the expected reward deviate
slightly from linear function, the work in (Ghosh, Chowd-
hury, and Gopalan 2017) proposed a novel algorithm, called
RLB, which can work in semi-parametric environment. It
first distinguishes whether the bias is large or not, then ap-
plies linear bandit algorithm when bias is in the range that
the regret bound of linear bandit algorithm is sub-linear and
classic MAB algorithm is applied otherwise. Then, RLB will
also be inefficient for large arm set. The work in (Krishna-
murthy, Wu, and Syrgkanis 2018) just estimates the para-
metric part of expected reward and cannot be extended to
general semi-parametric environment.

3 Problem Formulation
Suppose there are N arms, {1, 2, · · · , N}. For arm i,
xi ∈ Rd is the feature vector which is known, ri ∈ R
is the expected reward which is unknown. Denote X =
{x1,x2, · · · ,xN} and r = {r1, r2, · · · , rN}. Expected re-
ward can be formulated with a semi-parametric form

ri = f (θ∗,xi) + εi , (1)

where f(θ∗,xi) is a parametric reward function of arm fea-
ture xi, θ∗ is the optimal function parameter

θ∗ = arg min
θ

N∑
i=1

|ri − f(θ,xi)| , (2)

and εi ∈ R is the bias of parametric function f from
real expected reward ri. Note that the bias εi is indepen-
dent among arms and with no parametric assumption. We
call it the non-parametric part of expected reward. Denote
εmax = max{|ε1|, · · · , |εN |} as the maximum bias. As-
sume ‖θ∗‖ ≤ 1 and ‖xi‖ ≤ 1. For the linear parametric
part case, f (θ∗,x) = θ∗>x. We call the environment with
semi-parametric expected reward as semi-parametric envi-
ronment. Actually, semi-parametric reward is a very general
reward form. As it assumes a unique non-parametric part to
each arm, it does not have strong assumption on parametric
reward function.

Then, the agent faces a sequential decision making prob-
lem where the agent needs to maximize cumulative expected
rewards. Formally, let T be the length of time horizon. At
each time step t, the agent needs to select an arm it, then re-
ceives corresponding stochastic reward r̃t = rit + ηt where
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Figure 1: Graphical model of semi-parameteric sampling.

ηt is a zero-mean random noise (i.e. E(ηt) = 0). {ηt}
are independent conditioned on it. Define the filtration as
Ft = {i1, r1, · · · , it, rt} ∪ {X}. The objective is to find a
policy that can maximize the cumulative expected reward

max

T∑
t=1

rit . (3)

As expected rewards are unknown, the agent needs to ex-
plore arms to estimate expected reward and exploit arms
with highest estimated reward at the same time. So, how to
find an optimal tradeoff between exploration and exploita-
tion is the key problem.

Since direct analysis of cumulative reward is not tractable,
we analyze the cumulative regret instead

R(T,X) =

T∑
t=1

(ri∗ − rit) , (4)

which is the difference on reward between the optimal arm
and the selected arm. Specifically, we adopt Bayesian regret,
which is the expectation of regret over a prior distribution of
r and θ∗.

BayesRegret(T,X) = E (R(T,X)) . (5)

Bayesian regret is a widely used metric of bandit method
performance (Russo and Van Roy 2014). In practice, a feasi-
ble policy should achieve sub-linear cumulative regret with
respect to the length of time horizon T which implies that
the selected arm will converge to the optimal arm and the
regret of one step will vanish.

Here, we define some notations used later. Let τi,t = {l <
t : il = i} be the set of selected time steps of arm i before
time step t, ni,t = |{l < t : il = i}| be the selected times,

and ri,t =

∑
{l<t:il=i} r̃t

ni,t
be the empirical mean of stochas-

tic rewards which will finally converge to real expected re-
ward ri.

4 Semi-Parametric Sampling
To achieve unbiased and efficient bandit algorithms, we pro-
pose a novel framework called Semi-Parametric Sampling
(SPS) which is designed as a combination of parametric
part and non-parametric part according to the definition of
expected reward. SPS inherits the efficiency of parametric

bandit and unbiased property of non-parametric bandit. The
parametric part helps to provide a prior of expected reward to
rapidly reduce the candidate arm set and avoid large regret.
Thus the non-parametric part can work in a relatively small
candidate set to efficiently estimate the expected reward and
correctly identify the optimal arm .

Before going into the detail of the framework, we first
give a brief introduction of Thompson sampling. Thomp-
son sampling (Thompson 1933) is a practical design prin-
ciple for bandit algorithms which selects arms by sampling
from the posterior distribution of optimal arm on candidate
arms. It assumes a prior distribution of optimal arm and the
posterior distribution is conditioned on historical instances,
including selected arms, rewards and observations. The pos-
terior distribution will concentrate to the optimal arm as his-
torical instances are collected.

In practice, instead of directly modeling the distribution
of optimal arm, modeling the distribution of expected re-
ward is adopted because of simpler implementation. In each
time step, the agent will sample a reward from the posterior
distribution of expected reward for each arm and select the
arm with largest sampled reward. Such a sampling process
is equivalent to direct sampling from posterior distribution
of optimal arm.

Algorithm 1 Semi-Parametric Sampling
t← 1
repeat

update posterior probability of parameter θ,
P (θt|Ft−1), according to Equation (6)

sample θt from P (θt|Ft−1)
for i ∈ {1, 2, · · · , N} do

update posterior probability of expected reward,
P (γi|Ft−1, θ), according to Equation (7)

sample γi,t from P (γi|Ft−1, θ)
end for
select arm it = arg maxi γi,t and observe reward r̃t
t← t+ 1

until t > T

SPS adopts a hierarchical generative process to model the
generation of stochastic reward (see Figure 1).

• Step 1: The parameter of parametric part, θ, is drawn, and
we can obtain the parametric part of reward by substitut-
ing θ and arm feature x into f(θ,x). Note that θ is shared
by all the arms

• Step 2: As the expected reward deviates from parametric
part, the expected reward, γi, is drawn from a distribution
whose mean is the parametric part, f(θ,xi). The bias εi
is modeled in this step, i.e. εi = γi− f(θ,xi). So, the ini-
tialization of the variance of γi depends on the maximum
bias, εmax.

• Step 3: Stochastic reward, r̃t, is drawn from a distribution
whose mean is the expected reward, γit . That is ηt = r̃t−
γit is zero-mean noise.

Algorithm 1 shows the process of SPS. The posterior distri-
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bution of θ can be formulated as

P (θ|Ft−1)

=
1

Zθ,t−1

∫
Γ

t−1∏
l=1

P (r̃l|γil)
N∏
i=1

P (γi|f (θ,xi))P (θ) dΓ ,

(6)

where Γ = {γ1, · · · , γN}, Zθ,t−1 is normalization factor.
According to Equation (6), θ can aggregate the information
of all the arms, including selected arms, returned stochastic
reward and arm features. Thus, the distribution of θ will con-
centrate fast. Although there exists bias, f(θ,x) provides a
low-variance base for expected reward and arms with small
parametric part will be selected much less. As the arms with
small parametric part are probably with small expected re-
ward, less selection of these arms will lead to smaller regret.

The posterior distribution of expected reward gammai is

P (γi|Ft−1, θ)

=
1

Zi,t−1

∏
l∈{τ<t:iτ=i}

P (r̃l|γi)P (γi|f (θ,xi)) , (7)

where Zi,t−1 is normalization factor. Given f (θ,xi), ex-
pected rewards in Γ are estimated independently.

To implement the framework, the distribution of stochas-
tic reward, P (r̃l|γi), the distribution of expected reward,
P (γi|f (θ,xi)), and the prior distribution, P (θ), need to be
specified.

4.1 Linear Parametric Part Case
We give an implementation of Semi-Parametric Sampling
when the parametric part of expected reward is a linear
function, that is f(θ,xi) = θ>xi. We call it Linear Semi-
Parametric Sampling (LSPS). The distribution of stochastic
reward, expected reward and linear parameter are all imple-
mented by Gaussian distribution. Specifically,

r̃t|γit ∼ N (γit , σ
2
1) , (8)

γi|θ ∼ N (θ>xi, σ
2
2) , (9)

θ ∼ N (0, σ2
3I) , (10)

where σ1, σ2 and σ3 are all hyper-parameters, 0 is a d-
dimension vector whose elements are all zero and I is an
d-by-d identity matrix. Substitute Equation (8), (9), (10) into
Equation (6), we can obtain the posterior distribution of θ.

θ|Ft−1 ∼ N (θ̂t,A
−1
t ) , (11)

where

At =
1

σ2
3

I +
∑
i∈S

ni,t
σ2

1 + ni,tσ2
2

xix
>
i , (12)

bt =
1

σ2
3

µ+
∑
i∈S

ni,tri,t
σ2

1 + ni,tσ2
2

xi , (13)

θ̂t = A−1
t bt , (14)

Substitute Equation (8), (9), (10) into Equation (7) and as-
sume θt be the sampled linear parameter from posterior

distribution, we can obtain the posterior distribution of ex-
pected rewards Γ,

γi|Ft−1, θt ∼ N (γ̂i,t, σ
2
i,t) , (15)

where

γ̂i,t =
σ2

2ni,tri,t + σ2
1θ
>
t xi

σ2
1 + ni,tσ2

2

, (16)

σ2
i,t =

σ2
1σ

2
2

σ2
1 + ni,tσ2

2

. (17)

The empirical estimation of expected reward γ̂i,t is a
weighted average between non-parametric empirical mean
ri,t and parametric function value θ>t xi. When selected
times ni,t is small, the parametric part θ>t xi dominates the
estimation. With ni,t increasing, the non-parametric part
will dominates the estimation and the variance δi,t will de-
crease which means that the distribution of γi will concen-
trate to the real expected reward. Algorithm 2 describes the
update and sampling process in detail.

Algorithm 2 Linear Semi-Parametric Sampling
S ← ∅, t← 1
repeat

At ←
1

σ2
3

I +
∑
i∈S

ni,t
σ2

1 + ni,tσ2
2

xix
>
i

bt ←
1

σ2
3

µ+
∑
i∈S

ni,tri,t
σ2

1 + ni,tσ2
2

xi

sample θt from N (A−1
t bt,A

−1
t )

for i ∈ {1, 2, · · · , N} do
sample γi,t from N (γ̂i,t, σ

2
i,t)

end for
select arm it = arg maxi γi,t and observe reward r̃t
S ← S ∪ {it}
t← t+ 1

until t > T

Note that Thompson sampling with linear pay-
off (Agrawal and Goyal 2013) and non-parametric
Thompson sampling with Gaussian priors (Agrawal and
Goyal 2017) are both special cases of Algorithm 2. If
σ2 = 0, then the algorithm becomes Thompson sampling
with linear payoff. And if σ2 → ∞, then the algorithm
becomes non-parametric Thompson sampling.

Moreover, prior knowledge of bias can help us tune the
hyper-parameters to achieve lower regret. The variance σ2

2
is closely related to the bias εmax. Intuitively, σ2

2 determines
the size of the region around parametric part to explore. If
the bias εmax is small, we only need to explore a small
region around the parametric part and can set a relatively
small σ2. Then the variance σ2

i,t will be small and the para-
metric part will make major contribution to the sampling
of expected reward. Finally, the algorithm is expected to
achieve regret bound close to Thompson sampling with lin-
ear payoff (i.e. Õ(d

√
T )). So, when the bias is small, LSPS

can achieve much lower regret bound than non-parametric
Thompson sampling when arm feature dimension is much
smaller than arm number. On the other hand, if the bias
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is large, σ2 should also be large enough to guarantee that
the real expected reward can be explored. Then, the algo-
rithm is close to non-parametric Thompson sampling and
will achieve regret bound close to Õ(

√
NT ).

The variance σ2
1 is closely related to the variance of

stochastic reward. If the variance of stochastic reward is
large, σ1 should also be large to prevent that the poste-
rior distribution of expected reward concentrates too fast to
wrong value and optimal arm is missed. When σ1 is large,
the variance σ2

i,t and At will also be large. Then the poste-
rior distribution needs more instances to concentrate. On the
other hand, if the variance of stochastic reward is small, σ2

1
can be relatively small which will make the posterior distri-
bution concentrate fast and achieve lower regret.

In summary, the hyper-parameters, σ1 and σ2, control
the balance between exploration and exploitation. Too large
hyper-parameters will lead to more exploration and larger
regret, but the algorithm will still find the optimal arm
and regret in one time step will vanish. Too small hyper-
parameters will increase the probability that the algorithm
converges to a sub-optimal arm and the regret in one time
step will never vanish. Based on above intuitive analysis, we
give a formal regret analysis in next section.

5 Regret Analysis
According to Proposition 3 (Russo and Van Roy 2016), the
bayesian regret bound of Thompson sampling with finite
arms is not worse than Õ(

√
NT ) which is also a upper

bayesian regret bound of SPS framework.
In this section, we mainly focus on the regret analysis of

LSPS and attempt to give a tighter bayesian regret bound.
We first give the analysis result
Theorem 1. If ∀t ≤ T , ηt is R-sub-Gaussian, i.e.

E
(
eληt

)
≤ eλ

2R2/2 , ∀λ ≥ 0 ,

d ≤
√
N and εmax ≤

√
N

dT

(
d√
N

)2α

where α ∈ [0, 1],

then, the algorithm LSPS can achieve upper bayesian regret
bound

Õ
(√

N
1−α

dα
√
T
)

(18)

with
σ2

2

σ2
1

=
T

N

(
d√
N

)α
. (19)

In semi-parametric environment, compared to existing

bandit algorithms, LSPS achieves at least
(√

N/d
)α

-order

improvement. If d�
√
N , the improvement will be signifi-

cant. According to the bound of bias εmax, smaller bias can
lead to larger αwhich means larger improvement. Moreover,
if N is comparable to T , then LSPS can achieve significant
improvement even when the bias is relatively large.

We will give the proof sketch below. The proof consists
of two steps. In the first step, we prove the high probabil-
ity bound of difference between the sampled expected re-
ward and the real expected reward where the bound will con-
verge to zero. This means the sampled expected reward will

converge to real expected reward. In the second step, with
the result of first step, we can construct the Upper Confi-
dence Bound (UCB) of expected reward. Then, according to
Proposition 1, the regret can be decomposed into the cumu-
lative confidence interval of the selected arms. We prove the
bound of parametric part and non-parametric part respec-
tively, then sum them up as the final regret bound.
Proposition 1. (Proposition 1 in (Russo and Van Roy 2014))
For any upper confidence bound function sequence {Ut|t ≤
T}, for all T ∈ N,

BayesRegret (T,X) = E (Ut(it)− rit) + E
(
ri∗ − Ut(i∗)

)
.

5.1 High Probability Bound of Sampled Expected
Reward

The difference between the sampled expected reward and the
real expected reward can be decomposed into four parts by
backtracking the sampling process of the expected reward.

|γi,t − ri| ≤|γi,t − γ̂i,t|+ |γ̂i,t − ri|

|γ̂i,t − ri| ≤
ni,tσ

2
2

σ2
1 + ni,tσ2

2

|ri,t − ri|

+
σ2

1

σ2
1 + ni,tσ2

2

|θ̃>t xi − θ̂>t xi|

+
σ2

1

σ2
1 + ni,tσ2

2

|θ̂>t xi − ri|

The difference is first decomposed into the difference be-
tween sampled expected reward γi,t and estimated expected
reward |γi,t− γ̂i,t| and the difference between estimated ex-
pected reward and real expected reward |γ̂i,t−ri|. |γ̂i,t−ri|
can be decomposed into three parts according to the formu-
lation of γ̂i,t. The high probability bound of the four parts
are given below respectively.

Lemma 1 is to bound the difference between sampled ex-
pected reward γi,t and estimated expected reward γ̂i,t.

Lemma 1. For any t ≤ T , with probability 1− δ

NT 2
,

|γi,t − γ̂i,t| ≤
√

2 ln
NT 2

2δ
σi,t (20)

Proof. According to Formula 7.1.13 from (Abramowitz and
Stegun 1965),

P (|γi,t − γ̂i,t| ≥ a · σi,t) ≤
1

2
e−a

2/2 .

Let
δ

NT 2
=

1

2
e−a

2/2, then we can prove the lemma.

Lemma 2 is to bound the difference between empirical
mean of expected reward and real expected reward.
Lemma 2. For any t ≤ T and i ≤ N , if ηt is R-sub-
Gaussian, i.e.

E
(
eληt

)
≤ eλ

2R2/2 , ∀λ ≥ 0 , (21)

then, with probability 1− δ

NT 2
,

|ri,t − ri| ≤ R

√
2 ln 2NT 2/δ

ni,t
. (22)
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It is easy to prove the lemma by applying the Azuma-
Hoeffding inequality.

Lemma 3 is to bound the difference between sampled
parametric part and estimated parametric part.

Lemma 3. For any t ≤ T and i ≤ N , with probability

1− δ

NT 2
,

|θ̃>t xi − θ̂>t xi| ≤
√

2d ln
dNT 2

2δ

√
x>i A

−1
t xi . (23)

The lemma can be proven by applying Cauchy-Schwarz
inequality and Formula 7.1.13 from (Abramowitz and Ste-
gun 1965).

Lemma 4 is to bound the difference between estimated
parametric part and real expected reward. Because of the
bias of parametric function, the difference will not vanish.
However, as the weight of parametric part will vanish with
the selected times increasing, the total difference will still
converge to zero.

Lemma 4. For any t ≤ T and i ≤ N , if ηt is R-sub-
Gaussian, i.e.

E
(
eληt

)
≤ eλ

2R2/2 , ∀λ ≥ 0 , (24)

then, with probability 1− δ

NT 2
,

|θ̂>t xi − ri| ≤εmax +

√
x>i A

−1
t xi

√
Nt

Nσ2
1 + tσ2

2

εmax

+ 2R

√
2d ln

NT 2

2δ

√
x>i A

−1
t xi . (25)

Combine the results in Lemma 1, Lemma 2, Lemma 3 and
Lemma 4, we can get the high probability bound of sampled
expected reward.

Lemma 5. For any t ≤ T and i ≤ N , with probability

1− 4δ

NT 2
,

|γi,t − ri| ≤ gi,t,

where

gi,t =

√
2 ln

NT 2

2δ

√
σ2

1σ
2
2

σ2
1 + ni,tσ2

2

+
ni,tσ

2
2

σ2
1 + ni,tσ2

2

·R

√
2 ln 2NT 2/δ

ni,t

+
σ2

1

σ2
1 + ni,tσ2

2

(2R

√
2d ln

NT 2

2δ

√
x>i A

−1
t xi

+ εmax +

√
x>i A

−1
t xi

√
Nt
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5.2 Bayesian Regret Bound
With Lemma 5, we can construct the UCB of expected re-
ward as Ut(i) = γi,t + gi,t. Then, we can exploit Proposi-
tion 1

E(
∑
t

∆it) = E(
∑
t

ri∗ − rUCBi∗ ) + E(
∑
t

rUCBit − rit)

≤ δ

T
+ E(2

∑
t

git,t) .

Finally, we have the bayesian regret bound described in
Lemma 6.

Lemma 6. For any t ≤ T and i ≤ N , if ηt is R-sub-
Gaussian, i.e.

E
(
eληt

)
≤ eλ

2R2/2 , ∀λ ≥ 0 , (27)

then, the bayesian regret bound of LSPS is

E(
∑
t

∆it) ≤
δ
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+R · σ2
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√
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+ 11
σ2

1

σ2
2

ln

(
σ2
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T

N
σ2

2

)
N
√
dεmax .

(28)

The detailed proof is in supplementary materials. Theo-
rem 1 can be proven by simply applying Lemma 6.

6 Experiment
We conduct experiments on synthetic data and an e-
commerce dataset in different environments to evaluate the
performance of LSPS.

6.1 Settings
Three alternative algorithms, including representative ban-
dit algorithms, including both classic MAB algorithm and
contextual bandit algorithm, are compared:

• TS-Gau (Agrawal and Goyal 2017): This algorithm is
a classic MAB algorithm which adopts Thompson sam-
pling with Gaussian prior. It is a special case of LSPS
with σ2 → ∞. Other hyper-parameters are set the same
value as LSPS.

• TS-Beta (Agrawal and Goyal 2017): This algorithm is
a classic MAB bandit algorithm which adopts Thomp-
son sampling with Beta prior. It is designed for binary
stochastic reward, i.e. r̃t ∈ {0, 1}

• TS-Lin (Agrawal and Goyal 2013): This algorithm is a
linear bandit algorithm which adopts Thompson sampling
with Gaussian prior. It is also a special case of LSPS with
σ2 = 0. Other hyper-parameters are set the same value as
LSPS.

The synthetic data is randomly generated. We first sample
context feature and linear parameter from standard Gaus-
sian distribution, and all the sampled data is transformed to
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Figure 2: Cumulative regret in semi-parametric environment
with a = 0.5.

Figure 3: Cumulative regret in linear environment.

its absolute value. Then context feature vectors are normal-
ized by the same factor so that the largest norm equals to
1. The linear parameter vector is normalized so that its norm
equals to a predefined constant a ∈ [0, 1]. Finally, the bias of
each arm is uniformly sampled from [1− a, 1]. In each time
step, stochastic reward of an arm is sampled from a Gaus-
sian distribution or binomial distribution whose expectation
is the expected reward of the arm.

The e-commerce dataset is collected from an online
e-commerce platform. It contains 1000 items with 5-
dimension feature. The expected reward function is a DNN
model trained on the historical user behavior log on the
items. In each time step, stochastic reward of an arm is sam-
pled from a binomial distribution whose expectation is the
expected reward of the arm.

6.2 Results
Figure 2 and Figure 3 show the results on synthetic data
with 1000 arms and 5-dimension feature. Figure 2 shows
that LSPS achieves much lower regret than the others in
semi-parametric environment. Note that even when the bias
is large (a = 0.5), LSPS still outperforms classic MAB al-
gorithms. This is because the classic MAB algorithms ig-
nore the correlation on feature and need to explore more than
LSPS. Moreover, as the expected reward deviate a lot from
the expected reward, the regret of TS-Lin is nearly linear.
Figure 3 shows the result in linear environment. LSPS can
achieve comparable regret with linear bandit algorithm (TS-
Lin).

Figure 4: Cumulative regret in the e-commerce dataset.

Figure 4 shows the results in the e-commerce dataset. As
linear reward function is a mis-specified function, TS-Lin
suffers large regret. With the help of non-parametric part,
LSPS achieves much lower regret.

7 Conclusion
We propose a novel framework, called Semi-Parametric
Sampling (SPS), which can work in the semi-parametric en-
vironment and is expected to receive smaller regret than ex-
isting bandit algorithms. An implementation of SPS is given
when the parametric part of expected reward is linear func-
tion. And we prove better regret bound than linear bandit and
classic MAB algorithms. The experiments also demonstrate
that the regret of LSPS is smaller. In the future, we will fo-
cus on automatic identification of the bias from parametric
part in order to automatically set the hyper-parameters and
obtain largest cumulative reward.
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