
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Compiling Bayesian Network Classifiers into Decision Graphs

Andy Shih, Arthur Choi, Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{andyshih,aychoi,darwiche}@cs.ucla.edu

Abstract

We propose an algorithm for compiling Bayesian network
classifiers into decision graphs that mimic the input and
output behavior of the classifiers. In particular, we compile
Bayesian network classifiers into ordered decision graphs,
which are tractable and can be exponentially smaller in
size than decision trees. This tractability facilitates reasoning
about the behavior of Bayesian network classifiers, including
the explanation of decisions they make. Our compilation al-
gorithm comes with guarantees on the time of compilation
and the size of compiled decision graphs. We apply our com-
pilation algorithm to classifiers from the literature and discuss
some case studies in which we show how to automatically ex-
plain their decisions and verify properties of their behavior.

1 Introduction
Bayesian network classifiers have been used extensively
in the literature (Friedman, Geiger, and Goldszmidt 1997;
Ng and Jordan 2002; Pernkopf and Bilmes 2005; Roos et
al. 2005). These classifiers encode a probability distribution
over a set of features and a class variable, and then classify
an observation on features based on the posterior marginal of
the class variable. Although the classification process com-
putes probabilities, the classifier’s behavior can be captured
as a discrete mapping from the states of features (instances)
to the states of the class variable (classes). We refer to this
mapping as the classifier’s decision function. Obtaining the
decision function in a symbolic, tractable form was recently
shown to be useful for explaining the decisions and formally
verifying the properties of classifiers (Shih, Choi, and Dar-
wiche 2018a; 2018b).

Previous work proposed algorithms for compiling Naive
Bayes and latent tree classifiers into decision graphs (Chan
and Darwiche 2003; Shih, Choi, and Darwiche 2018b).
In this paper, we propose an algorithm that compiles a
Bayesian network classifier with an arbitrary structure.
We then illustrate the utility of our compilation algorithm
through case studies, in which we symbolically reason about
the behavior of some Bayesian network classifiers from the
literature. This follows a recent trend in analyzing machine
learning models using symbolic approaches (Narodytska et
al. 2018; Katz et al. 2017).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In particular, our algorithm compiles a Bayesian net-
work classifier into an ordered decision graph, a well-known
and tractable class of decision graphs in which features are
tested in the same order, along each path from the root
of the graph to any of its leaves. When the features and
the class variable are binary, the ordered decision graph is
known in the literature as an Ordered Binary Decision Di-
agram (OBDD) (Bryant 1986; Meinel and Theobald 1998;
Wegener 2000). When only the class variable is binary, it is
known as an Ordered Decision Diagram (ODD) (Chan and
Darwiche 2003). In this paper, we focus on the case of bi-
nary classifiers, but discuss an adaptation of our proposed
compilation algorithm to support multi-class classifiers.

This paper is structured as follows. Section 2 provides
an introduction to Bayesian network classifiers and ODDs.
Sections 3 and 4 provide key results on Bayesian network
classifiers, which are utilized by our compilation algorithm
in Section 5. Experimental results relating to scalability are
then given in Section 6, followed by a case study in Sec-
tion 7. We finally conclude in Section 8.

2 Background
In this section, we describe Bayesian network classifiers and
Ordered Decision Diagrams in more detail.

Bayesian Network Classifiers
A Bayesian network classifier is a Bayesian network con-
taining a special set of variables: a single class variable C
and n feature variables X = {X1, . . . , Xn}. The class C
is usually a root in the network and the features X are usu-
ally leaves. An instantiation of variables X is denoted x and
called an instance. When the class variable is binary, its two
values c and c̄ correspond to 1 and 0 decisions. A binary
Bayesian network classifier specifying probability distribu-
tion Pr(.) will classify an instance x as 1 iff Pr(c | x) ≥ T ,
where T is called the classification threshold. We denote the
decision function of a classifier B as FB .

Ordered Decision Diagrams
An Ordered Binary Decision Diagram (OBDD) is a
tractable representation of a Boolean function over variables
X = X1, . . . , Xn (Bryant 1986; Meinel and Theobald 1998;
Wegener 2000). An OBDD is a rooted, directed acyclic

7966

C

A

N1

G F M

N2

(a) Bayesian network classifier

0 1

A

F

G

F

M

(b) Ordered Decision Diagram

Figure 1: A Bayesian network classifier and its correspond-
ing decision graph. The details of the Bayesian network clas-
sifier are provided in Table 3 in the Appendix.

graph with two sinks called the 1-sink and 0-sink. Every
node (except the sinks) in the OBDD is labeled with a vari-
able Xi and has two labeled outgoing edges: the 1-edge and
the 0-edge. The labeling of the OBDD nodes respects some
global ordering of the variables X: if there is an edge from
a node labeled Xi to a node labeled Xj , then Xi must come
before Xj in the global ordering. To evaluate the OBDD on
an instance x, start at the root node of the OBDD and let
xi be the label of the current node. Repeatedly follow the
xi-edge of the current node, until a sink node is reached.
Reaching the 1-sink means x is evaluated to 1 and reaching
the 0-sink means x is evaluated to 0 by the OBDD.

An OBDD is defined over binary variables, but can be
extended to discrete variables with arbitrary values. This is
called an ODD: a node labeled with variable Xi has one
outgoing edge for each value of variable Xi. Hence, an
OBDD/ODD can be viewed as representing a function f(X)
that maps instances x into {0, 1}.

Consider the Bayesian network classifier in Figure 1a,
which classifies a movie as being a box office success or
not. It has four binary features: A (Adapted Screenplay), G
(Great Cinematography), F (Famous Cast), and M (Mar-
keting). The ODD in Figure 1b captures the input and output
behavior of the classifier in a tractable form. That is, given
an instantiation of the features {A,G,F ,M}, we start from
the root node of the ODD and repeatedly follow the solid
edge if the feature of the current node is set to 1, and follow
the dotted edge otherwise. We will reach either the 0-sink
or the 1-sink, which tells us if the instance is classified as 0
or 1. Moreover, the reached decision is guaranteed to match
the one obtained from the Bayesian network classifier in Fig-
ure 1a. Given this tractable representation, we follow the ap-
proach of (Shih, Choi, and Darwiche 2018b) to efficiently
explain the decisions of the Bayesian network classifier.

Consider a movie that is an adapted screenplay, has great
cinematography, a famous cast, heavy marketing, and is
classified as being a box office success. This movie corre-
sponds to features {A=1,G=1,F=1,M=1} and a classifica-
tion of 1. Using the ODD in Figure 1b we can deduce, in
time linear on the size of the ODD, that the movie could have
had poor cinematography and low marketing, and would still
be classified as being a box office success. In fact, the par-

H U

V

C

(a) Classifier B.

V

C

H

(b) Subclassifier BH
u .

Figure 2: Variable H splits features into (U,V). When
given an instantiation u on the variables U, we can con-
struct a subclassifier that has the same decision function as
the original classifier over variables V.

tial instantiation {A=1,F=1} completely determines that the
movie will be classified as being successful, regardless of
how the remaining features are set. Furthermore, we can for-
mally verify that the classifier is monotonic. That is, any in-
stance classified as 1 remains classified as 1 even if some of
its features are flipped from 0 to 1.

The above analysis is exemplary of many more queries
that one can efficiently answer about a Bayesian network
classifier, once it has been compiled into an ODD. We de-
scribe below some more queries that can also be efficiently
answered (Shih, Choi, and Darwiche 2018a).

• Robustness: Given an instance, what is the least number
of features we need to flip to change its classification?

• Irrelevant Features: Are there features that do not impact
any classification?

• If-Then Rules: Does the classifier satisfy some given rules
of thumb?

The above queries can be computed in linear or quadratic
time in the size of the compiled ODD. This highlights
the significance of compiling Bayesian network classifiers
into ODDs. Next, we present some key observations about
Bayesian network classifiers that we exploit later.

3 Subclassifiers
Our compilation algorithm is based on recursively decom-
posing into smaller classifiers and identifying those that are
equivalent to avoid the compilation of a classifier if an equiv-
alent one has already been compiled. In this section we
present the method of decomposing into smaller classifiers,
which can be described at a high level as follows. Given a
Bayesian network classifier B, let U and V be a partition of
its features X and letH be a variable not in X. Suppose now
that we are only interested in classifying instances x that set
features U to some state u. When certain conditions hold,
we can perform the classification using a smaller classifier,
which is obtained from classifier B as follows:

– Node H is disconnected from its parents and C, the class
node, is added as the new parent of H .

7967

– A CPT is assigned to H based on inference on B.

– A prior is assigned to C based on inference on B.

– Leaves are repeatedly removed from classifier B as long
as they are not in C ∪H ∪V.

The resulting classifier is called a subclassifier. Figure 2 de-
picts an example of the structural changes needed to con-
struct a subclassifier. The main insight regarding these sub-
classifiers is that they compute the same decision function
over the remaining variables V as the original classifier.
Once we fix u and obtain a subclassifier BHu from an orig-
inal classifier B, the decision function FBHu (v) will output
the same classification as FB(uv). This key property will be
used in the algorithm to reduce the compilation of a classi-
fier into the compilation of subclassifiers.

We will now spell out the above result on subclassifiers.
We first state the conditions under which a subclassifier can
be constructed.

Definition 1 Let (U,V) be a partition of the features X in
a Bayesian network classifier B, and let H be a variable
outside X. We say that H splits features X into (U,V) iff
H d-separates features V from C and U.

Recall that Z d-separates X from Y if X and Y are in-
dependent given Z (Darwiche 2009). We are now ready to
define subclassifiers.

Definition 2 Let B be a Bayesian network classifier, H be
a variable that splits features into (U,V), and u be an in-
stantiation of features U. The subclassifier for H and u,
denoted BHu , is obtained from classifier B as follows:

1. Disconnect node H from its parents.
2. Make H a child of class variable C, and set its Condi-

tional Probability Table (CPT) to P (H|Cu).
3. Set the CPT of C to P (C|u).
4. Repeatedly remove every leaf node from B that is not in
C ∪H ∪V.

Constructing a subclassifier requires some computational
work on the original classifier B. First, we need to identify
a variable H that satisfies the condition of Definition 1. This
can be done in polynomial time as it only involves reason-
ing about d-separation (Darwiche 2009). Second, we need
to determine the CPTs of H and C, which require the com-
putation of posteriors on the H and C, given the state u of
features U. This requires exact inference on the classifierB.
We will later provide a bound on the number of inference
calls made by our compilation algorithm for this purpose.
The next theorem formalizes the property of subclassifiers.

Theorem 1 Let B be a Bayesian network classifier and let
H be a variable that splits features into (U,V). For a sub-
classifier BHu , we have FB(uv) = FBHu (v) for all instanti-
ations v of features V.

According to this theorem, the classification of an instance
uv by classifier B will match the classification of v by sub-
classifier BHu . As we shall see, when our compilation algo-
rithm fixes the state of features U to u, it will construct and
recursively compile the subclassifier BHu .

H U

V

C

(a) Classifier B.

V

C

H

(b) Subclassifier BH
u .

Figure 3: A construction of a subclassifier using a set of
splitting nodes H.

Multiple Splitting Nodes
For Bayesian network classifiers with dense structure, there
may not exist a single node H that splits the features into
two parts. In such cases, we can actually relax the splitting
node to the case of a set of nodes, using the formulation of
a meganode (Russell and Norvig 2016). More specifically,
a set of nodes in a Bayesian network can sometimes be re-
placed by a single meganode whose state space is the Carte-
sian product of the state spaces of the set of nodes (Figure
3). To simplify the discussion, for the rest of the paper we
will only focus on the case where H is a single node.

4 Equivalent Classifiers
We will now introduce the second key result that will form
the basis of our algorithm for compiling a Bayesian network
classifier into an ODD. This result provides a method for de-
tecting when two “similar” Bayesian network classifiers in-
duce the same decision function. In this section we assume,
without loss of generality, that the classifier has a class node
C which has a single child H . This assumption is satisfied
by all subclassifiers and can easily be satisfied for any clas-
sifier by adding a dummy class node with the original class
node as its single child. First we define when two classifiers
are considered similar.

Definition 3 Let B be a Bayesian network classifier with a
class node C which has a single child node H . A second
Bayesian network classifier is similar to B if it has the same
structure as B and differs only in the CPTs of C and H .

Let X be the feature variables of two similar classifiers
B and B′. Note that P (X|H) is the same across the two
classifiers, and H d-separates C from X by our earlier as-
sumption. Thus, we can rewrite P (C|X) as follows:

P (C|x) =
∑
h

P (C|h)P (h|x)

=
∑
h

P (C, h)P (x|h)/P (x) (1)

So far, the results from Section 3 and this section have
not assumed that the class variable C and the variable H are
binary. These results will be used in the context of the com-
piling multi-class classifiers in Section 5. For the rest of this

7968

α βγ

Figure 4: Visualization of the equivalence interval of a clas-
sifier B. The red dots represent instances classified as 1 and
the blue dots represent instances classified as 0. A classifier
that is similar to B shares the same decision function as B
if its coefficient γ falls within the equivalence interval of B,
depicted by the white region between α and β.

section, we will assume that nodes C and H are binary, and
the classification threshold is t. In this setting, we have an
efficient way of detecting when two similar classifiers share
the same decision function, in time linear in the number of
features X. We present the details next.

Setting ah = P (c,H = h)− tP (H = h), we can rewrite
the classification as a linear inequality.∑

h

P (c, h)P (x|h) ≥ tP (x)∑
h

(P (c, h)− tP (h))P (x|h) ≥ 0∑
h

ahP (x|h) ≥ 0 (2)

For two similar classifiers, the values ah vary but P (x|h)
is the same. To detect if two similar classifiers share the same
decision function, we just need to verify that the two sets of
values ah classify all instances x the same way. To do so, we
define the sign, margin, and coefficient of such classifiers.
Definition 4 LetB be a non-trivial1 Bayesian network clas-
sifier with a threshold t and a binary class nodeC which has
a single binary child node H . Let σ denote the sign of the
classifier, which is defined to be 1 if P (c|H = 1) ≥ t and 0
otherwise. The margin α, β and coefficient γ of B are de-
fined as follows:

α = max
x:FB(x)=1

P (x|H = 1− σ)/P (x|H = σ)

β = min
x:FB(x)=0

P (x|H = 1− σ)/P (x|H = σ)

γ = −1 · P (c,H = σ)− tP (H = σ)

P (c,H = 1− σ)− tP (H = 1− σ)

That is, α is the largest value of P (x|H = 1−σ)/P (x|H =
σ) attained by any instance classified as 1, and β is the small-
est such value attained by any instance classified as 0 (see
Figure 4). The values α, β, and γ come from a rearrange-
ment of Equation 2 for the case of a binary H variable. The
notion of a margin was actually identified by (Chan and Dar-
wiche 2003) in connection to Naive Bayes classifiers, and
turns out to apply to general Bayesian network classifiers.

The next result was proven only for Naive Bayes clas-
sifiers in (Chan and Darwiche 2003). Our generalization is
phrased differently and is more succinct.

1A non-trivial classifier with a binary class node classifies at
least one instance as 1 and at least one instance as 0.

Theorem 2 Let B be a non-trivial Bayesian network clas-
sifier with a binary class node C and a single binary child
nodeH . LetB′ be a second classifier that is similar toB and
has the same sign as B. Let t be their threshold, (α, β) be
the margin of classifierB, and γ be the coefficient ofB′. The
two classifiers have the same decision function, FB = FB′ ,
iff γ belongs to the interval [α, β). This is called the equiva-
lence interval of classifier B.

The above theorem enables us to perform binary search
over equivalence intervals to identify equivalent subclassi-
fiers: ones that lead to the same decision function and hence
the same compilation. This technique avoids the compila-
tion of a subclassifier if an equivalent one has already been
compiled.

5 From Numeric Bayesian Network
Classifiers to Symbolic ODDs

We now present our algorithm for compiling a Bayesian net-
work classifier B into an ODD. We address the case of bi-
nary classifiers first and then describe the adaptation of our
algorithm to multi-class classifiers.

The overall structure of the algorithm is pretty simple. We
first identify a binary variable H that splits the features into
(U,V). We then start enumerating over the values of fea-
tures in U as if we are building a decision tree (in a depth-
first manner). Each leaf of this decision tree corresponds
to a distinct instantiation u and a subclassifier BHu with its
equivalence interval. These subclassifiers are similar to one
another, since they differ only in the CPTs of class C and
variable H . Our algorithm will then compile these subclas-
sifiers recursively using the same technique, except that it
will avoid compiling a subclassifier if it already compiled an
equivalent one—as determined by Theorem 2.

The efficiency of this algorithm depends on the choice
of variable H and the corresponding feature decomposition
(U,V) as we want U to be as small as possible. We identify
such feature decompositions in a preprocessing step. That is,
after first decomposing features into (U,V), using an ap-
propriate H , we follow by decomposing V recursively. This
leads us to the notion of a block ordering of features.

Definition 5 Given a Bayesian network classifier, a block
ordering of its features X is a sequence π = (X1, . . . ,Xm)
such that X1, . . . ,Xm is a partition of features X, and for
each 0 < k < m, there exists a binary variableH that splits
features X into (X1 ∪ . . . ∪Xk,Xk+1 ∪ . . . ∪Xm).

Each element Xi is called a block of the block ordering π.
We will assume that the features in a block are ordered (ar-
bitrarily). As such, we will refer to features by their position
in the block ordering π.

We will later discuss a heuristic for obtaining a block or-
der, which we used in our experiments. But for now, we
will discuss Algorithms 1 and 2. Algorithm 1 is passed a
Bayesian network classifierB and a block ordering π of fea-
tures. It creates the sinks of the ODD and calls Algorithm 2.

Algorithm 2 implements the proposal we discussed ear-
lier. It maintains a cache that stores tuples of the form
(D, I, σ, k), where D is an ODD node, I is an equivalence

7969

Algorithm 1 compile-classifier(B, π)

input: Bayesian network classifier B and block ordering π of fea-
tures
output: ODD for the decision function of classifier B
main:
1: 0-sink ← terminal ODD node labeled with 0
2: 1-sink ← terminal ODD node labeled with 1
3: D ← compile-subclassifier(B, {}, π, 0)
4: return reduced form of D

Algorithm 2 compile-subclassifier(B,u, π, k)

input: Bayesian network classifier B, instantiation u of some fea-
tures, block ordering π of features, integer k
output: ODD for the decision function of classifier B
main:
1: if u is an instantiation of a block in ordering π then
2: B ← get-subclassifier(B,u, π, k)
3: if B has no feature variables then
4: return get-sink(B)
5: γ, σ ← coefficient and sign of B
6: D ← find-in-cache(γ, σ, k)
7: if D = null then
8: D ← compile-subclassifier(B, {}, π, k)
9: I ← equivalence-interval(D)

10: store-in-cache(D, I, σ, k)
11: return D
12: X ← feature at position k in ordering π
13: S ← {}
14: for each state x of feature X do
15: C ← compile-subclassifier(N,u ∪ x, π, k + 1)
16: add (C, x) to set S
17: return get-odd-node(S)

interval, σ is a boolean, and k is an integer. Such a cache en-
try means that ODD D is the result of compiling a subclas-
sifier Bu that has equivalence interval I and sign σ. It also
means that the last feature in block U is at position k − 1 in
the block ordering π. The cache is fetched based on a coef-
ficient γ, a sign σ and a level k. That is, it returns ODD D if
γ ∈ I for the same σ and same k.

Algorithm 2 makes use of four auxiliary functions. First,
get-subclassifier(B,u, π, k) constructs a subclassi-
fier and requires a constant number of calls to an exact in-
ference algorithm to get the coefficients of the subclassifier.
get-sink(B) takes in a subclassifier with no more fea-
tures, and returns either the 0-sink or the 1-sink based
on a simple check. equivalence-interval(D) com-
putes the equivalence interval of the classifier leading to
ODD D. This is done in constant time using the equivalence
intervals for the children of D (Chan and Darwiche 2003).
Finally, get-odd-node(S) returns an ODD node, which
is defined by the set S that specifies the node’s children and
the labels of edges pointing to these children.

Algorithm 3 implements a simple, greedy heuristic for
obtaining a block ordering of features. Its running time is
O(n4), where n is the number of features, which was suffi-
cient for our experiments.

Algorithm 3 block-order(B,X)

input: A Bayesian network classifier B with features X
output: A block ordering π of the features X
main:
1: H,U,V← class variable of B, X, ∅
2: for each variable H ′ that splits features X into (U′,V′) do
3: if |U′| ≤ |U| then
4: H,U,V← H ′,U′,V′

5: u← some instantiation of U
6: return U,block-order(BH

u ,V)

H0

H2X0 X1

H4 X3X2

...
X2n-2 X2n-1X2n

(a) Ladder classifier (vari-
ables Xi are features)

H0

(b) Cluster classifier (clouds
contain arbitrary structure)

Figure 5: Examples of classifier families with improved
compilation time.

We close this section by providing time and size bounds
on our compilation algorithm. We later show that for certain
classes of Bayesian networks, these bounds can be as tight
as the bounds provided by (Chan and Darwiche 2003) for
compiling Naive Bayes classifiers into ODDs.

Definition 6 Let π = (X1, . . . ,Xm) be a block ordering of
the features in a Bayesian network classifierB. Let pi denote
the size of the state space of the features in block i, and let
s(i, j) = log2(pi× . . .×pj). The width wπ of this order and
the compilation width wB of classifier B are defined as:

wπ = max
i∈{1,...,m}

[
pi ·min(s(1, i− 1), s(i,m)

)
]

wB = min
π
wπ.

We now have the following bounds on Algorithm 1.

Theorem 3 The number of nodes in the ODD returned by
Algorithm 1 is O(2wπ), where wπ is the width of order π.
Moreover, the running time of the algorithm is O(PT +
wπ2wπ), where P is the sum of the state space sizes of blocks
in π and T is the time of an inference call on the classifier.

Consider the family of ladder classifiers depicted in Fig-
ure 5a, which has n = 2m + 1 features. We can use the se-
quence of nodes H2, H4, . . . ,H2m to decompose features,
leading to the block ordering

[X0, X1], [X2, X3], . . . , [X2m−2, X2m−1, X2m],

which has width n/2, assuming binary features. The size of
the ODD isO(2n/2) and the running time isO(nT+n2n/2).

7970

The family of cluster classifiers in Figure 5b has similar
bounds. Assume that we have n features and k clusters, with
each cluster having n/k features. We can repeatedly use the
node H0 to split features into k blocks of size n/k, leading
to a block order width n/2, assuming binary features, and a
largest block size n/k. The size of the ODD is O(2n/2) and
the running time is O(k2n/kT + n2n/2).

What is interesting about these bounds is that they match
the ones for compiling Naive Bayes classifiers to ODDs
(Chan and Darwiche 2003)—an NP-hard problem as shown
by (Shih, Choi, and Darwiche 2018b). In practice, however,
the time and size complexity of Algorithm 1 can be signifi-
cantly better as we show in Section 6.

Multi-class Classifiers
We can adjust our algorithm to support the compilation of
multi-class classifiers. For a multi-class classifier B, an in-
stance is classified based on the highest posterior probabil-
ity among all states of the class variable. That is, FB(x) =
argmaxc P (c|x). Since the output is non-binary, we use a
variation of the ODD called the Algebraic Decision Diagram
(ADD), which has multiple sinks, one for each state of the
class node (Bahar et al. 1997). ADDs are tractable, so we
can still explain and perform verification on the behavior of
multi-class classifiers efficiently.

The construction of a subclassifier in Section 3 general-
izes directly to multi-class classifiers. Equation 1 holds for
multi-class classifiers as well. Our current formulation of
equivalence intervals is designed for binary classifiers, so
for future work we will look into generalizing equivalence
intervals to multi-class classifiers.

We can still obtain a bound on the compilation time using
a naive method of detecting equivalent subclassifiers. First,
we modify Algorithm 1 to support multiple sinks. We mod-
ify Algorithm 2 so that instead of finding an equivalent sub-
classifier using binary search on equivalence intervals, we
enumerate over all instances of the subclassifier if the num-
ber of instances is small enough. Using Equation 1 to share
inference calls among similar subclassifiers, we can get a
bound on the running time of our adapted compilation algo-
rithm on multi-class classifiers.

Theorem 4 The running time of the adapted version of Al-
gorithm 1 on a multi-class Bayesian network classifier with
a block ordering π is O(PT + 2s), where P is the sum of
the state space sizes of all blocks in π, T is the time of an
inference call on the classifier, and s is the log of the product
of the state space sizes of blocks in π.

Reducing the classifier into subclassifiers provides signif-
icant savings on the number of exact inference calls. The
number of computations may be greatly reduced once we
develop equivalence intervals for multi-class classifiers.

6 Experiments
Table 1 summarizes compilation experiments we ran on
three binary Bayesian networks using all leaf nodes as fea-
tures. For each network we included a number of classi-
fiers, each corresponding to one root of the network, using a

Table 1: win95pts has 76 nodes, 16 features and width 9.
Andes has 223 nodes, 24 features and width 18. cpcs54 has
54 nodes, 13 features and width 14. Width refers to the net-
work tree-width, approximated by the minfill heuristic.

network class block
order
width

largest
/ # of
blocks

ODD
size

compile
time (s)

win95pts GRDS 15 15 / 2 498 21
win95pts NP 14 14 / 3 413 11
win95pts NC 14 14 / 3 430 12
win95pts PO 15 15 / 2 291 21
win95pts POOK 15 15 / 2 285 21
win95pts PAT 13 13 / 4 636 5
win95pts PDrvr 14 14 / 3 352 11
win95pts PMem 13 13 / 4 890 5
win95pts POn 14 14 / 3 31 11
win95pts PPpr 14 14 / 3 31 10
Andes TK 23 18 / 7 47 11,708
Andes VKE 19 19 / 6 2,107 27,495
Andes CNBG 19 19 / 6 2,893 24,374
Andes MDA 19 19 / 6 5,454 26,614
cpcs54 x3 12 12 / 2 25 69
cpcs54 x4 12 12 / 2 92 69
cpcs54 x7 12 12 / 2 13 69
cpcs54 x8 12 12 / 2 20 69
cpcs54 x9 11 11 / 3 13 35

threshold of 1
2 . Table 2 provides similar results on two other

binary networks, except in this case we sampled some of the
leaf nodes to include as features (the networks were too large
to fully compile). Inference calls were performed using the
SamIAm library.2

The actual sizes of the resulting ODDs are much
smaller than the theoretical upper bounds. For example,
the size of the ODD of the Andes classifier with root
ValueKnownEq(VKE) is less than 1% of the bound given
by the block order width. The limiting factor for the compi-
lation algorithm is the compilation time, which depends on
the treewidth of the network and scales exponentially with
respect to the largest feature block. The treewidth affects
the time of each inference call, and the largest feature block
bounds the number of inference calls made by the compila-
tion algorithm. For example, the two emdec6g experiments
in Table 2 with 27 and 30 features differ only by 2 in block
order width. But, since they differ by 11 in the largest fea-
ture block, we notice a large jump in the compilation time
for these two experiments (two orders of magnitude). On
the other hand, the experiment with 30 and 33 features also
differ by 2 in block order width. Since their largest feature
blocks differ only by 2, the compilation times are compa-
rable (factor of 2). The ODD size and compilation time are
also significantly affected by the threshold of the classifier.
A heavily biased threshold can lead to a very small ODD and
a short compilation time, while a balanced threshold gener-
ally leads to larger ODDs.

Our results suggest that the compilation algorithm can be
used to implement and deploy Bayesian network classifiers

2Available at http://reasoning.cs.ucla.edu/samiam/

7971

Table 2: Network tcc4e has 98 nodes and width 10. Network
emdec6g has 168 nodes and width 7. We use t27 as the class
node for tcc4e, and x29 as the class node for emdec6g.

network #
sampled
features

block
order
width

largest
/ # of

blocks

ODD
size

compile
time (s)

tcc4e 21 15 11 / 7 167 4
tcc4e 26 19 14 / 8 930 11
tcc4e 30 30 20 / 6 3,057 1,873
tcc4e 37 37 25 / 8 10,442 39,705
tcc4e 38 38 26 / 8 22,508 91,332

emdec6g 24 24 7 / 13 115 6
emdec6g 27 27 10 / 10 122 11
emdec6g 30 29 21 / 7 4,154 2,487
emdec6g 33 31 22 / 8 3,855 5,308

more effectively, given that they may induce small ODDs
that can be evaluated in linear time, without requiring float-
ing point computations. In the next section, we show another
major application: the ability to reason symbolically about
the behavior of a Bayesian network classifier.

7 Case Study: Explaining Classifiers
We illustrate the utility our compilation algorithm, showing
how the resulting ODDs can be used to explain and verify
a given classifier. We consider two networks from the liter-
ature: win95pts and Andes; see Table 1. We treat each net-
work as a set of classifiers, taking each root node as a class
variable; each leaf node is treated as a feature. We assume a
threshold of 1

2 .
We compile an ODD for each classifier and then ex-

plain their decisions using two types of explanations that
were proposed in previous work: minimum cardinality (MC)
explanations and prime implicant (PI) explanations (Shih,
Choi, and Darwiche 2018b). An MC-explanation of a pos-
itive decision identifies a minimal set of 1-features that are
responsible for the decision. That is, the decision will stick
even if all other features are set to 0. In contrast, a PI-
explanation identifies a minimal set of features (regardless
of their state) that are responsible for the current decision.
That is, one can toggle all other features in any fashion with-
out changing the decision. Given an ODD representing the
decision function of a classifier, many types of explanations
become tractable (in contrast to the case of unordered de-
cision graphs). Moreover, certain types of formal verifica-
tion become tractable as well, e.g., testing if the classifier is
monotonic (Shih, Choi, and Darwiche 2018a).

The win95pts network is used to diagnose why a print-
ing job has failed (Breese and Heckerman 1996). It has 76
binary variables, 16 of which are leaves which we take as
the features of the classifier. One of its root nodes PtrOffline
(PO) represents a failure mode (the printer is offline), and
has two states: Online (0) and Offline (1). An instance is clas-
sified positively if the the probability of being Offline is≥ 1

2 .
We first consider a positively classified instance (indicating
a printing failure) that sets 7 of 16 features as 1. The unique
MC-explanation for this decision consists of a single feature
set to 1: the printer icon is grayed out (PrtIcon is GrayedOut

(1)). That is, observing this one symptom positively is suf-
ficient for a positive decision (printer is offline), even if all
of the other 6 features were observed as 0 instead of 1. For
a technician using such a classifier for decision support, this
suggests that the troubleshooting of a printer failure should
focus on this observation, as it is the most pertinent among
all positively observed features.

Consider the shortest PI-explanation of this positive in-
stance, which consists of three features: the printer icon is
grayed out (PrtIcon is GrayedOut), the problem is repeat-
able (NotRepeat is No), and the graphics are not distorted
(GraphicsDistorted is No). With just these three observa-
tions, the classifier will always decide that the printer is of-
fline (PtrOffline is Offline), no matter how the other features
are observed. Such a guarantee can help users trust the clas-
sifier, especially if its behavior matches the users’ intuition.
In fact, users can even enter their own partial observation
of interest (say, PrtIcon is Normal and GraphicsDistorted is
Yes) and check if the classifier is guaranteed to behave ac-
cording to their expectations (say, decide that PtrOffline is
Online) regardless of how the remaining features are set.

Next, we consider the Andes network, which mod-
els students’ problem-solving skills in physics (Gertner,
Conati, and VanLehn 1998). We consider the class node
TryKinematics (TK), which has two states: false (0) and
true (1). This class predicts whether a student has devel-
oped problem-solving skills in kinematics, and assesses the
student positively if the probability of true is ≥ 1

2 . This
classifier has 24 binary features. First, we verify whether
the classifier is monotonic or not: it is indeed monotonic.
Next, we consider a positively classified instance that ob-
served 5 of these features as 1. The MC-explanation tells
us that 3 of these 5 features are responsible for the deci-
sion: TryKinematicsForAccel, TryKinematicsForDuration,
and TryKinematicsForDisplacement. That is, we can flip the
other two features to 0 and still maintain a positive classifi-
cation. We can also efficiently test whether the classification
of this instance is robust, given an ODD of the classifier’s
decision function (Shih, Choi, and Darwiche 2018a). In our
example, it only takes a single feature to be flipped (from 1
to 0) to flip the decision to negative.

8 Conclusion

We presented an algorithm for compiling Bayesian network
classifiers with arbitrary structure into tractable decision
graphs in the form of ODDs. These decision graphs capture
the input and output behavior of the classifiers and can be
used to efficiently reason about a classifier’s behavior. We
provided a bound on the time complexity of our algorithm
and a bound on the resulting ODD size, showing they can
be as tight as previous bounds for compiling Naive Bayes
classifiers. We managed to compile Bayesian network clas-
sifiers with over a hundred nodes and thirty features into
compact ODDs of only a few thousand nodes. We also pre-
sented a case study where we examined the compiled de-
cision graphs of classifiers from literature and symbolically
reasoned about their behavior.

7972

Acknowledgments This work has been partially sup-
ported by NSF grant #IIS-1514253, ONR grant #N00014-
18-1-2561 and DARPA XAI grant #N66001-17-2-4032.

A Appendix

Table 3: Details of Bayesian network classifier in Figure 1a

Threshold 0.5
C = 1 0.5

C 0 1
A = 1 0.6 0.7

C 0 1
N1 = 1 0.3 0.9

N1 0 1
N2 = 1 0.3 0.7

N1 0 1
G = 1 0.5 0.6

N2 0 1
M = 1 0.2 0.9

N1, N2 00 01 10 11
F = 1 0.1 0.8 0.3 0.9

B Proofs
Proof of Theorem 1 We want to show that FB(uv) =
FBH

u
(v). We let P (.) denote the probability distribution of

the original classifier B and let P ′(.) denote the probability
distribution of the subclassifier BH

u . First, we work out the
following equalities:

P (h|u) =
∑
c

P (h|cu)P (c|u)

=
∑
c

P ′(h|c)P ′(c) = P ′(h)

P (v|u) =
∑
h

P (v|hu)P (h|u)

=
∑
h

P (v|h)P (h|u)

=
∑
h

P ′(v|h)P ′(h) = P ′(v)

This gives us the following list of identities:

P (c|u) = P ′(c) P (h|cu) = P ′(h|c)
P (h|u) = P ′(h) P (v|u) = P ′(v)

Next, we will show the main property we are after: for any
c and v, P (c|uv) = P ′(c|v).

P (c|uv) =
∑
h

P (c|huv)P (h|uv)

=
∑
h

P (c|hu)P (h|vu)

=
∑
h

P (h|cu)P (c|u)

P (h|u)

P (v|hu)P (h|u)

P (v|u)

=
∑
h

P ′(h|c)P ′(c)
P ′(h)

P ′(v|h)P ′(h)

P ′(v)

=
∑
h

P ′(c|h)P ′(h|v) = P ′(c|v)

Since the threshold is the same for the classifierB and the
subclassifier BH

u , it follows that FB(uv) = FBH
u

(v) for all
v. �

Proof of Theorem 2 We let P (.) denote the probability dis-
tribution of the classifier B and let P ′(.) denote the prob-
ability distribution of the classifier B′. Using Equation 2
we can rewrite the classification decision of classifier B as∑
h ahP (x|h) ≥ 0, where ah = P (c,H = h) − tP (H =

h). Since h is binary, we can expand the summation.

a0P (x|H = 0) + a1P (x|H = 1) ≥ 0

Since the classifierB is nontrivial, we know that a0/a1 <
0. Suppose that the sign σ of B is 1, and thus a1 > 0. Rear-
ranging, we get:

−1 · a1
a0
≥ P (x|H = 0)

P (x|H = 1)
(3)

Now suppose FB(x) = 1 for some x. Recall that α is
the maximum value of P (x|H=0)

P (x|H=1) attained by any instance
classified as 1. Let a′h = P ′(c,H = h)− tP ′(H = h).

−1 · a
′
1

a′0
= γ ≥ α ≥ P (x|H = 0)

P (x|H = 1)

So we have that F ′B(x) = 1. The proof is analogous for
instances classified as 0, as well as for classifiers with sign
0, thus FB(x) = F ′B(x) for all x. �

Proof of Theorem 3 Let π = (X1, . . . , Xm) be the block
ordering of the features, and let s(i, j) = log2(pi × . . . pj),
where pl denotes the size of the state space of the features
in block l. Let tk be the number of ODD nodes from level
s(1, k − 1) to level s(1, k) − 1, and note that

∑
k tk is the

total number of nodes in the ODD.
We will bound the number of nodes in the ODD by bound-

ing the number of nodes in each feature block. The number
of ODD nodes on level s(1, k − 1) is bounded from above
by 2s(1,k−1) (by decision trees) and also by 2 · 2s(k,m) (by
equivalence intervals). The bound of 2 · 2s(k,m) from equiv-
alence intervals is due to the following observation. For the
subclassifiers stored in cache of sign 1 and level s(1, k− 1),
their classification decision on an instance x can be written
as in Equation 3. Since the RHS of the inequality of Equa-
tion 3 is the same among all subclassifiers of sign 1 and level
s(1, k − 1), and there are 2s(k,m) distinct instances for such
subclassifiers, there are at most 2s(k,m) equivalence classes
of subclassifiers of sign 1 and level s(1, k − 1). The anal-
ysis for subclassifiers of sign 0 and level s(1, k − 1) is the
same, so we have at most 2 · 2s(k,m) equivalence classes for
subclassifiers on level s(1, k − 1).

From level s(1, k − 1) to level s(1, k)− 1, the algorithm
constructs the ODD in a decision tree manner. Therefore, we
have that tk is bounded by pk · min(2s(1,k−1), 2 · 2s(k,m)).
So, tj = O(2wπ), where j = argmaxk(tk). To finish, ob-
serve that both sequences tj+1, tj+2, . . . and tj−1, tj−2, . . .
on either side of j decay exponentially fast, so we have that
the total number of nodes is

∑
k tk = O(tj) = O(2wπ).

7973

Next we will bound the time complexity of the algorithm.
We start by showing that the number of exact inference calls
is P = p1 + . . . + pm. This number is much smaller than
the number of subclassifiers constructed, which is O(2wπ),
because we can share the results of inference calls across
different subclassifier constructions.

We want to show that for multiple classifiers that are simi-
lar, the construction of their subclassifiers can reuse the same
inference calls. For a set of similar classifiers, let H ′ be the
child of class node C and let H be the new splitting node
used to construct the subclassifiers. Note that to construct a
subclassifier, we need the values P (h|uc) and P (c|u).

P (h|uc) =
∑
h′

P (h|uch′)P (h′|c)

The terms P (h|uch′) are actually the same across similar
classifiers, since similar classifiers only differ in the CPTs
of C and H ′ and those variables are fixed in these terms.
As well, the terms P (h′|c) do not require any inference at
all, since these are just the CPTs encoded in the network.
A similar analysis shows that inference calls can also be
shared when calculating the value of P (c|u). Therefore, the
total number of inference calls for the i-th feature block is
O(pi). Finally, computing equivalence intervals in the al-
gorithm can be done without any inference calls using the
equivalence intervals of subclassifiers. So, the total number
of inference calls is O(P).

As for the number of computations of the algorithm, ob-
serve that the most expensive operation is finding and stor-
ing equivalent subclassifiers in cache, which requires binary
search on O(2wπ) intervals. This gives us O(wπ2wπ) com-
putations and a time complexity of O(PT + wπ2wπ). �

Proof of Theorem 4 The bound on the number of infer-
ence calls uses the same analysis as Theorem 3. As well,
the bound on the number of computations in the algorithm
also follows the same analysis, except that we cannot use
equivalence intervals so we do not get the same bound on
the number of ODD nodes. We only know that there are at
most O(2s) ODD nodes due to the bound from decision tree
sizes, so we get a time complexity of O(PT + 2s). �

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebric de-
cision diagrams and their applications. Formal methods in
system design 10(2-3):171–206.
Breese, J. S., and Heckerman, D. 1996. Decision-theoretic
troubleshooting: A framework for repair and experiment. In
Proceedings of the Twelfth international conference on Un-
certainty in artificial intelligence, 124–132. Morgan Kauf-
mann Publishers Inc.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
C-35:677–691.
Chan, H., and Darwiche, A. 2003. Reasoning about
Bayesian network classifiers. In Proceedings of the Nine-

teenth Conference on Uncertainty in Artificial Intelligence
(UAI), 107–115.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997.
Bayesian network classifiers. Machine Learning 29(2-
3):131–163.
Gertner, A. S.; Conati, C.; and VanLehn, K. 1998. Procedu-
ral help in andes: Generating hints using a bayesian network
student model. AAAI/IAAI 1998:106–11.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochender-
fer, M. J. 2017. Reluplex: An efficient smt solver for veri-
fying deep neural networks. In International Conference on
Computer Aided Verification, 97–117. Springer.
Meinel, C., and Theobald, T. 1998. Algorithms and Data
Structures in VLSI Design: OBDD — Foundations and Ap-
plications. Springer.
Narodytska, N.; Kasiviswanathan, S. P.; Ryzhyk, L.; Sagiv,
M.; and Walsh, T. 2018. Verifying properties of binarized
deep neural networks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI).
Ng, A. Y., and Jordan, M. I. 2002. On discriminative vs.
generative classifiers: A comparison of logistic regression
and naive Bayes. In Advances in Neural Information Pro-
cessing Systems (NIPS), 841–848.
Pernkopf, F., and Bilmes, J. 2005. Discriminative versus
generative parameter and structure learning of Bayesian net-
work classifiers. In Proceedings of the 22nd international
conference on Machine learning, 657–664. ACM.
Roos, T.; Wettig, H.; Grünwald, P.; Myllymäki, P.; and Tirri,
H. 2005. On discriminative bayesian network classifiers and
logistic regression. Machine Learning 59(3):267–296.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,.
Shih, A.; Choi, A.; and Darwiche, A. 2018a. Formal veri-
fication of Bayesian network classifiers. In Proceedings of
the 9th International Conference on Probabilistic Graphical
Models (PGM).
Shih, A.; Choi, A.; and Darwiche, A. 2018b. A symbolic
approach to explaining Bayesian network classifiers. In Pro-
ceedings of the 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI).
Wegener, I. 2000. Branching Programs and Binary Decision
Diagrams. SIAM.

7974

